Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 12:51
  • Data zakończenia: 8 grudnia 2025 13:10

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony przy uszkodzeniu (dodatkowej).
C. Ochrony uzupełniającej.
D. Ochrony podstawowej.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 2

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. E27
B. MR16
C. G9
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 3

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Dwubiegunowy
D. Krzyżowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 4

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru rezystancji
B. Miernika z funkcją pomiaru pojemności
C. Amperomierza
D. Woltomierza
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 5

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Stycznik
B. Odłącznik
C. Rozłącznik
D. Wyłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 6

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła D
B. żyła A
C. żyła C
D. żyła B
Odpowiedź dotycząca żyły C jako przerwanej jest prawidłowa z powodu wyników pomiarów rezystancji, które wskazują na istotną przerwę w obwodzie. Rezystancje R_A-B i R_D-A wynoszą 0, co oznacza, że obydwie żyły są w pełni przewodzące, co jest zgodne z teorią obwodów elektrycznych. Z kolei nieskończona rezystancja pomiędzy żyłami B-C i C-D sugeruje, że prąd nie ma możliwości przemieszczenia się przez te żyły, co jest klasycznym objawem uszkodzenia. W praktyce, identyfikacja przerwy w obwodzie jest kluczowa dla diagnostyki systemów elektrycznych, zwłaszcza w instalacjach przemysłowych. Przykład zastosowania tej wiedzy można znaleźć w systemach monitorujących, które regularnie sprawdzają integralność obwodów, co przyczynia się do minimalizacji ryzyka awarii. W kontekście norm, stosuje się procedury testowania rezystancji zgodnie z normami IEC 60364, co pozwala na systematyczne podejście do diagnozowania i utrzymania instalacji elektrycznych.

Pytanie 7

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YLYp
B. YDYp
C. YDYo
D. YnDYo
Wybór odpowiedzi niepoprawnej, takiej jak YLYp, YDYo czy YnDYo, wskazuje na nieporozumienie w zakresie oznaczeń przewodów elektrycznych oraz ich właściwości. Odpowiedź YLYp sugeruje, że przewód ten ma izolację z polichlorku winylu, co jest prawidłowe, jednak litera 'L' odnosi się do innego typu żył, które nie są jednodrutowe. Dla wielu użytkowników może być mylące, że użycie 'L' w oznaczeniu przewodu może sugerować, iż są to żyły wielodrutowe, co w tym przypadku jest niepoprawne. Z kolei odpowiedź YDYo, w której 'o' oznacza żyły okrągłe, również jest błędna, ponieważ na zdjęciu widoczne są żyły płaskie, a ich konstrukcja nie odpowiada oznaczeniu 'o'. Warto również zauważyć, że odpowiedź YnDYo, gdzie 'n' sugeruje obecność ekranu, jest myląca, ponieważ przewód YDYp nie ma ekranu ani dodatkowego zabezpieczenia, co czyni go mniej odpowiednim do zastosowań w środowiskach narażonych na zakłócenia elektromagnetyczne. Wybór niewłaściwych oznaczeń może prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych, dlatego kluczowe jest zrozumienie odpowiednich symboli oraz ich zastosowań zgodnie z normą PN-EN 50525. Zrozumienie tych różnic oraz umiejętność prawidłowego odczytywania oznaczeń przewodów jest niezbędne dla zapewnienia bezpieczeństwa oraz efektywności w pracy z instalacjami elektrycznymi.

Pytanie 8

Który z symboli przedstawionych na rysunkach jest stosowany na schematach montażowych?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Symbol przedstawiony na rysunku C. to schematyczna reprezentacja tranzystora, który jest kluczowym elementem w wielu układach elektronicznych. Tranzystory są powszechnie stosowane w aplikacjach takich jak wzmacniacze, oscylatory oraz przełączniki. Na schematach montażowych tranzystory są przedstawiane w sposób standardowy zgodnie z normami IEC oraz ANSI. Użycie jednolitych symboli na schematach montażowych ułatwia inżynierom oraz technikom zrozumienie i analizę układów, co jest szczególnie istotne w skomplikowanych projektach. W praktyce, poprawne zidentyfikowanie symboli na schematach pozwala na efektywniejsze projektowanie, budowanie oraz serwisowanie układów elektronicznych. Ponadto, znajomość symboli elektronicznych jest niezbędna do pracy z dokumentacją techniczną. W przypadku projektów wymagających współpracy zespołowej, posługiwanie się uznawanymi standardami znacząco przyspiesza proces komunikacji oraz minimalizuje ryzyko błędów.

Pytanie 9

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 4.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 10

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Synchronicznych.
C. Uniwersalnych.
D. Asynchronicznych klatkowych.
Jak wybrałeś złą odpowiedź, to może być trochę mylące w kontekście konstrukcji silników elektrycznych. Silniki synchroniczne, które wskazałeś w odpowiedziach, mają wirniki z magnesami trwałymi albo z uzwojeniem wzbudzenia. Wiesz, kluczowa różnica to to, że w silnikach synchronicznych prędkość obrotowa wirnika jest zsynchronizowana z częstotliwością prądu zasilającego, a w asynchronicznych to działa na zasadzie poślizgu. Z kolei silniki pierścieniowe mają wirnik z uzwojeniem, połączonym z pierścieniami ślizgowymi, co pozwala regulować prędkość, ale nie daje takiej efektywności jak klatkowe. No i silniki uniwersalne, które mogą działać zarówno na prądzie stałym, jak i przemiennym, mają zupełnie inną konstrukcję wirnika. Błędy w myśleniu, które prowadzą do takich omyłek, zazwyczaj wynikają z pomylenia zasad działania różnych silników. Zrozumienie tych różnic to klucz do efektywnego projektowania i użytkowania systemów napędowych.

Pytanie 11

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Półprzewodnikowe.
C. Wyładowcze wysokoprężne.
D. Wyładowcze niskoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 12

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd zadziałania.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie znamionowe i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 13

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 14

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Impedancję pętli zwarcia oraz pomiar prądu upływu
B. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
C. Rezystancję izolacji przewodów oraz rezystancję uziemienia
D. Rezystancję przewodów ochronnych i rezystancję uziemienia
Rezystancja izolacji przewodów i rezystancja uziemienia, mimo że są ważnymi parametrami w analizie instalacji elektrycznych, nie są wystarczające do przeprowadzenia kompleksowego przeglądu w sieci TN-S. Zmierzona rezystancja izolacji informuje o stanie izolacji, ale nie dostarcza informacji o zabezpieczających mechanizmach w instalacji, które są kluczowe dla ochrony przed skutkami zwarcia. Ponadto, rezystancja uziemienia sama w sobie nie jest wystarczająca do zapewnienia bezpieczeństwa, ponieważ nie uwzględnia wymagań dotyczących szybkiego wyłączenia w przypadku awarii. Z kolei mierzona rezystancja przewodów ochronnych oraz rezystancja uziemienia, chociaż istotne, mogą prowadzić do mylnego wniosku o kompletnym bezpieczeństwie systemu, nie uwzględniając przy tym dynamiki systemu oraz potencjalnych zagrożeń związanych z zanikami uziemienia. Zastosowanie tylko pomiaru impedancji pętli zwarcia jest niewystarczające, ponieważ nie zapewnia pełnej oceny stanu instalacji, a brak pomiaru rezystancji izolacji może prowadzić do niedostrzegania uszkodzeń, które z czasem mogą stać się poważnym zagrożeniem. Z tego powodu, przeprowadzając przegląd instalacji elektrycznej, nie można pomijać żadnego z wymienionych parametrów, co jest zgodne z najlepszymi praktykami branżowymi i obowiązującymi normami.

Pytanie 15

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. znamionowego prądu instalacji.
B. prądu zadziałania zabezpieczenia.
C. spodziewanego prądu zwarcia.
D. maksymalnego prądu obciążenia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 16

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego - klasy II.
B. pośredniego - klasy V.
C. bezpośredniego - klasy I.
D. przeważnie pośredniego - klasy IV.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 17

Na którym rysunku przedstawiono układ zasilania lampy rtęciowej?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź B jest prawidłowa, ponieważ przedstawia typowy układ zasilania lampy rtęciowej, który składa się z dławika oraz kondensatora. Dławik, zwany także cewką, pełni kluczową rolę w stabilizacji prądu, co jest niezbędne dla prawidłowego działania lampy rtęciowej. W momencie zapłonu, lampa wymaga impulsu wysokiego napięcia, który generuje dławik. Po uruchomieniu, dławik ogranicza prąd, co jest istotne dla zapobiegania uszkodzeniom lampy przez nadmiar prądu. Kondensator z kolei wspiera dławik, pomagając w stabilizacji napięcia i minimalizując zakłócenia. W praktyce, układy zasilania lamp rtęciowych są szeroko stosowane w oświetleniu ulicznym oraz w dużych obiektach, gdzie ważna jest efektywność energetyczna oraz długotrwałość źródeł światła. Zastosowanie dławika i kondensatora w tych układach jest zgodne z obowiązującymi standardami branżowymi, co zapewnia ich niezawodność i bezpieczeństwo w użytkowaniu.

Pytanie 18

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H03VVH2-F
B. H07V2-U
C. H07V-K
D. H03VV-F
Przewód przedstawiony na rysunku to H03VV-F, który jest typem przewodu elastycznego przeznaczonego do zastosowań w niskonapięciowych urządzeniach przenośnych. Charakteryzuje się on wieloma żyłami o różnorodnych kolorach izolacji, co jest zgodne z normą PN-EN 50525. H03VV-F jest często wykorzystywany w urządzeniach takich jak odkurzacze, małe sprzęty AGD i inne urządzenia o niewielkim obciążeniu. Jego konstrukcja umożliwia elastyczność i odporność na uszkodzenia mechaniczne, co czyni go idealnym do użytku w warunkach, gdzie przewód może być narażony na ruch. Dodatkowo, przewód ten spełnia normy dotyczące odporności na wysoką temperaturę oraz napotykane chemikalia, co zwiększa jego trwałość i bezpieczeństwo użytkowania. Stosując ten przewód, można mieć pewność, że urządzenie z niego zasilane będzie pracowało w sposób bezpieczny i efektywny.

Pytanie 19

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX4
B. IPX2
C. IPX5
D. IPX3
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 20

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. W pomieszczeniu zagrożonym wybuchem.
B. Na zewnątrz, do oświetlenia placu budowy.
C. Na dnie basenu o głębokości 4 m.
D. W pomieszczeniach z łatwopalnymi oparami.
Oprawa oświetleniowa z oznaczeniem IP65 jest odpowiednia do instalacji na zewnątrz, w tym na placu budowy, ze względu na jej odporność na kurz oraz strumienie wody. Oznaczenie IP65 wskazuje, że urządzenie jest całkowicie chronione przed dostępem kurzu (klasa 6) oraz że wytrzymuje strumienie wody z dowolnego kierunku (klasa 5). Takie właściwości są kluczowe w warunkach budowlanych, gdzie sprzęt narażony jest na trudne warunki atmosferyczne i konieczność zapewnienia odpowiedniego oświetlenia dla bezpieczeństwa pracowników i jakości wykonywanych robót. W praktyce oprawy oświetleniowe IP65 są często stosowane w przestrzeniach zewnętrznych, takich jak place budowy, parkingi, czy obiekty sportowe. Dobrą praktyką jest również zapewnienie, aby instalacja odbywała się zgodnie z przepisami lokalnymi i normami, takimi jak PN-EN 60598 dotycząca oświetlenia. Warto również zwrócić uwagę na odpowiednie akcesoria montażowe oraz dodatkowe zabezpieczenia, aby zapewnić długotrwałe i bezpieczne użytkowanie oświetlenia w trudnych warunkach.

Pytanie 21

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wzrostem temperatury.
B. wybuchem pyłu.
C. nadmierną wilgotnością.
D. wyziewami żrącymi.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 22

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Watomierza
C. Megaomomierza
D. Megawoltomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 23

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Prąd upływu.
B. Chwilową moc obciążenia.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Pomiar prądu upływu, impedancji pętli zwarcia oraz chwilowej mocy obciążenia opiera się na innych zasadach pomiarowych i wymaga odmiennych przyrządów. Prąd upływu dotyczy prądów, które uciekają z instalacji do ziemi lub do obudowy urządzeń, co jest istotne z punktu widzenia bezpieczeństwa, ale nie jest bezpośrednio związane z pomiarem rezystancji izolacji. Z kolei impedancja pętli zwarcia jest mierzona w celu oceny skuteczności ochrony przeciwporażeniowej i nie może być określona przy użyciu miernika izolacji. Mierniki do pomiaru impedancji pętli zwarcia wykorzystują inną metodologię pomiarową i zazwyczaj są dostosowane do pracy w obwodach z obciążeniem. Chwilowa moc obciążenia również nie jest zależna od wartości rezystancji izolacji, gdyż odnosi się do momentalnego zużycia energii przez urządzenie, co jest mierzono za pomocą liczników energii elektrycznej. Typowe nieporozumienie polega na myleniu różnych parametrów elektrycznych, co może prowadzić do niewłaściwych pomiarów i, w konsekwencji, do nieprawidłowych ocen stanu instalacji. Dlatego ważne jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć zastosowanie konkretnego narzędzia pomiarowego oraz jego możliwości.

Pytanie 24

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Wkrętaka płaskiego.
C. Wkrętaka imbusowego.
D. Szczypiec typu Segera.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 25

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź A jest prawidłowa, ponieważ symbol graficzny przedstawiony w tej opcji najdokładniej odwzorowuje łącznik ze schematu wieloliniowego. W standardach dotyczących projektowania instalacji elektrycznych, takich jak norma PN-EN 60617, łącznik jest reprezentowany w sposób, który zapewnia jasność i jednoznaczność w interpretacji schematów. W tym przypadku, symbol składający się z okręgu z przecinającą go linią pod kątem jest powszechnie akceptowanym sposobem graficznej reprezentacji łącznika. Zastosowanie takich symboli w praktyce inżynierskiej ułatwia komunikację pomiędzy projektantami, wykonawcami i inspektorami. Przy projektowaniu instalacji elektrycznych, znajomość tych symboli jest kluczowa dla zapewnienia bezpieczeństwa i efektywności działania systemów. Dobre praktyki wskazują, że każdy projektant powinien nie tylko znać te symbole, ale także rozumieć ich znaczenie i kontekst, w którym są używane.

Pytanie 26

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Niepoprawne odpowiedzi pokazują, jakie błędy można zrobić, gdy interpretujemy schematy połączeń watomierzy. Na przykład w odpowiedzi A przewód L jest źle podłączony, więc pomiar prądu nie będzie miał sensu. Może się to wziąć z mylnego przekonania, że w obwodzie można zmierzyć napięcie, gdy przewód prądowy jest pominięty. Z kolei schemat B może oznaczać, że przewody zostały pomieszane, co jest typowym błędem u osób, które nie mają dużego doświadczenia. Tego typu pomyłki mogą prowadzić do odczytów, które nie pokazują prawdziwego zużycia energii. Z kolei odpowiedź D ilustruje zupełnie błędne połączenie, gdzie zarówno L, jak i N są podłączone w nieodpowiedni sposób, co uniemożliwia prawidłowe pomiary. W praktyce ważne jest, żeby znać podstawowe zasady działania watomierzy i jak je prawidłowo podłączać, bo to ma kluczowe znaczenie dla dokładności pomiarów i norm w instalacjach elektrycznych. Złe połączenia mogą doprowadzić do poważnych konsekwencji, jak uszkodzenie urządzeń czy zagrożenie dla osób obsługujących instalację, więc warto znać zasady, żeby uniknąć problemów związanych z bezpieczeństwem i wydajnością energetyczną.

Pytanie 27

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
C. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
D. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 28

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Odizolowywania żył przewodów.
B. Mocowania przewodów wtynkowych do ściany.
C. Przecinania karbowanych rur winidurowych.
D. Zaciskania tulejek na końcówkach przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 29

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. rozdzielnica główna
B. wewnętrzna linia zasilająca
C. przyłącze
D. złącze
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 30

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. woltomierzem
B. amperomierzem
C. omomierzem
D. watomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 31

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Kształt budynku w przestrzeni
B. Liczba urządzeń zasilanych z tej instalacji
C. Warunki zewnętrzne, którym instalacja jest poddawana
D. Metoda montażu instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 32

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
B. Uszkodzenie izolacji przewodu zasilającego urządzenie
C. Zwarcie bezpiecznika wewnętrznego urządzenia
D. Zniszczenie przewodu ochronnego PE
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 33

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba sprawne.
B. 1 - niesprawny, 2 - sprawny.
C. 1 - sprawny, 2 - niesprawny.
D. Oba niesprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 34

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjne.
B. Fluorescencyjne.
C. Wyładowcze.
D. Żarowe.
Wybór jednego z pozostałych rodzajów źródeł światła, takich jak żarowe, wyładowcze czy fluorescencyjne, może prowadzić do kilku nieporozumień, które warto wyjaśnić. Źródła światła żarowego działają na zasadzie podgrzewania włókna, co jest procesem nieefektywnym i generującym dużą ilość ciepła, a nie światła. Takie podejście do oświetlenia, chociaż powszechnie znane, nie tylko zużywa dużo energii, ale także wymaga częstej wymiany żarówek, co nie jest korzystne pod kątem praktycznym i ekonomicznym. Źródła wyładowcze, takie jak lampy rtęciowe czy sodowe, emitują światło w wyniku wyładowania elektrycznego w gazie. Choć są stosunkowo wydajne, mają swoje ograniczenia, takie jak długi czas zapłonu oraz konieczność ich utylizacji w sposób zgodny z przepisami, co nie zawsze jest praktyczne. Z kolei lampy fluorescencyjne, które działają na zasadzie emisji światła z gazu po naświetleniu go promieniowaniem ultrafioletowym, również nie dorównują diodom LED pod względem efektywności energetycznej oraz żywotności. Zrozumienie różnic między tymi technologiami jest kluczowe dla wyboru odpowiednich źródeł światła, które będą nie tylko bardziej efektywne energetycznie, lecz także przyjazne dla środowiska. W kontekście standardów branżowych, większość nowoczesnych projektów oświetleniowych zaleca stosowanie diod LED, które spełniają najwyższe normy dotyczące efektywności i użytkowania energii.

Pytanie 35

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
B. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
C. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
D. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
Wybrana odpowiedź o pracach przy urządzeniach, które są wyłączone spod napięcia oraz pracach w wykopach do 2 metrów nie do końca uwzględnia ważne zasady BHP. Nawet jeśli urządzenia są wyłączone, to mogą pojawić się inne zagrożenia, jak urazy mechaniczne czy kontuzje przy obsłudze ciężkiego sprzętu. W przypadku wykopów, prace do 2 metrów nie muszą zwykle być wykonywane przez dwuosobowy zespół, ale i tak lepiej mieć kogoś obok, żeby móc pomóc w nagłej sytuacji. Muszę też dodać, że prace prowadzone przez upoważnione osoby w ustalonych miejscach mogą wydawać się bezpieczne, ale zawsze jest jakieś ryzyko, które warto zminimalizować odpowiednimi procedurami. Ignorowanie tych zasad może prowadzić do niebezpiecznych sytuacji, a co gorsza, może dać fałszywe poczucie bezpieczeństwa. Dlatego przestrzeganie standardów BHP, w tym norm PN-EN, jest naprawdę ważne dla ochrony wszystkich pracowników.

Pytanie 36

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór jakiejkolwiek innej odpowiedzi niż A jest nieprawidłowy, ponieważ przedstawia błędne podejście do podłączenia przewodów w gniazdach wtyczkowych w systemie TN-S. Kluczową kwestią jest zrozumienie, że w systemie tym układ przewodów ma istotne znaczenie dla bezpieczeństwa. W przypadku podłączenia przewodu neutralnego N do styku ochronnego, co jest błędnie przedstawione w niektórych odpowiedziach, powstaje ryzyko zagrożenia dla użytkowników, wynikające z potencjalnych zwarć. Zamiana miejscami przewodów L i N może prowadzić do nieprawidłowego działania urządzeń, co w konsekwencji może skutkować ich uszkodzeniem lub zwiększeniem ryzyka porażenia prądem. W praktyce, błędne podłączenie przewodów może również uniemożliwić prawidłowe działanie zabezpieczeń elektrycznych, co dodatkowo zwiększa ryzyko wystąpienia niebezpiecznych sytuacji. Warto zwrócić uwagę na to, że przestrzeganie norm i zasad bezpieczeństwa odgrywa kluczową rolę w projektowaniu i eksploatacji instalacji elektrycznych, dlatego każde odstępstwo od tych reguł powinno być traktowane z najwyższą powagą.

Pytanie 37

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 6,9 kW
B. 5,9 kW
C. 9,6 kW
D. 3,9 kW
Odpowiedź 6,9 kW jest prawidłowa, ponieważ maksymalna moc, jaką można zainstalować w obwodzie chronionym przez wyłącznik nadprądowy typu S-303 CLS6-C10/3, jest określona przez jego prąd znamionowy. W przypadku tego wyłącznika, prąd znamionowy wynosi 10 A. W systemach trójfazowych, całkowita moc jest obliczana ze wzoru P = √3 × U × I, gdzie U to napięcie międzyfazowe (400 V), a I to prąd wyłącznika (10 A). Obliczając, otrzymujemy P = √3 × 400 V × 10 A ≈ 6,93 kW, co zaokrąglamy do 6,9 kW. W praktyce oznacza to, że zainstalowanie klimatyzatora o tej mocy będzie zgodne z przepisami i zapewni bezpieczeństwo instalacji elektroenergetycznej, a także będzie zgodne z normami PN-IEC 60364. Ważne jest, aby przy doborze urządzeń zawsze uwzględniać parametry wyłączników oraz ich charakterystykę, aby uniknąć przeciążenia instalacji.

Pytanie 38

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. D.
B. C.
C. B.
D. A.
Wybór wyłącznika różnicowoprądowego z opcji A (BPC 425/030 4P AC) jest prawidłowy, ponieważ spełnia wszystkie kluczowe kryteria niezbędne do zastąpienia starego bezpiecznika trójfazowego 25 A. Prąd znamionowy 25 A oznacza, że urządzenie jest w stanie bezpiecznie obsługiwać obciążenia elektryczne o tym natężeniu, co jest niezbędne w instalacjach trójfazowych. Dodatkowo, wyłącznik ten posiada cztery bieguny, co jest istotne w kontekście ochrony trzech faz oraz przewodu neutralnego, co gwarantuje właściwe i równomierne zabezpieczenie całego układu. Czułość 30 mA jest zgodna z zaleceniami normy PN-EN 61008-1, która wskazuje, że wyłączniki różnicowoprądowe o tej czułości powinny być stosowane w obwodach zasilających urządzenia, które mogą stwarzać ryzyko porażenia prądem. Zastosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych to dobra praktyka w celu minimalizacji ryzyka uszkodzenia ciała ludzkiego przez prąd elektryczny oraz zapobieganie pożarom spowodowanym przez upływ prądu. Dlatego wybór opcji A jest zgodny z aktualnymi standardami oraz najlepszymi praktykami w dziedzinie ochrony przeciwporażeniowej.

Pytanie 39

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BN, BK, GY
B. BU, GY, GNYE
C. BK, BU, GY
D. BN, BK, GNYE
Wybór innych oznaczeń kolorystycznych, takich jak "BK, BU, GY" czy "BU, GY, GNYE", oparty jest na błędnym zrozumieniu zasad kolorystyki przewodów elektrycznych. Czarny (BK) jest często mylony z kolorem niebieskim (BU), który jednak w polskich standardach oznacza przewód neutralny tylko w niektórych kontekstach, a nie w połączeniu z innymi kolorami. Ponadto, brak brązowego przewodu fazowego w tych zestawieniach prowadzi do niebezpiecznych sytuacji, ponieważ identyfikacja przewodu fazowego jest kluczowa w każdej instalacji elektrycznej. W kontekście bezpieczeństwa, niewłaściwe oznaczenie przewodów może prowadzić do poważnych wypadków, takich jak porażenie prądem czy zwarcia. Użytkownicy często popełniają błąd, wybierając zestawienie kolorów, które nie jest zgodne z normami, ponieważ nie są świadomi, jak istotne jest przestrzeganie tych zasad dla bezpieczeństwa całej instalacji. Ostatecznie, błędne podejście do oznaczeń żył może prowadzić do trudności w diagnostyce i naprawie systemów elektrycznych, co zwiększa koszty eksploatacji i ryzyko uszkodzeń. Dlatego też istotne jest, aby znać i stosować się do przyjętych standardów w zakresie kolorystyki przewodów.

Pytanie 40

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. DY
B. LgY
C. YDYp
D. YDY
Wybór innych oznaczeń literowych, takich jak LgY, YDYp czy DY, wskazuje na pewne nieporozumienia związane z klasyfikacją i charakterystyką przewodów elektrycznych. Oznaczenie LgY odnosi się do przewodów instalacyjnych, które zazwyczaj są mniej elastyczne i nie posiadają ekranu, co ogranicza ich zastosowanie w środowiskach narażonych na zakłócenia elektromagnetyczne. Z kolei YDYp to przewód, który nie jest standardowym oznaczeniem i może budzić wątpliwości co do swojej specyfikacji technicznej, co może prowadzić do nieodpowiednich wyborów materiałowych w projektach elektrycznych. Oznaczenie DY odnosi się do przewodów, które są w zasadzie przewodami jednożyłowymi, co jest niezgodne z przedstawionym rysunkiem ilustrującym przewód z trzema żyłami. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi obejmują dezorientację w zakresie oznaczeń oraz niewłaściwe powiązanie ich z konkretnymi zastosowaniami. Aby skutecznie identyfikować przewody, kluczowe jest zrozumienie różnic między poszczególnymi oznaczeniami oraz ich zastosowaniem w praktycznych sytuacjach. Wiedza ta jest istotna dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.