Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 30 grudnia 2025 05:12
  • Data zakończenia: 30 grudnia 2025 05:12

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 2

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji przewodu ochronnego
B. symetrii uzwojeń
C. rezystancji uzwojeń stojana
D. prądu upływu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 3

Który z silników może pracować przy obciążeniu długotrwałym w układzie połączeń pokazanym na rysunku?

A.5,5 kW400/690 V
Δ/Y
IP55S22920 obr/min
B.1,5 kW400/690 V
Δ/Y
IP45S11430 obr/min
C.5,5 kW230/400 V
Δ/Y
IP55S12920 obr/min
D.1,5 kW230/400 V
Δ/Y
IP45S21430 obr/min
Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest poprawna, ponieważ przedstawiony silnik jest przystosowany do pracy w układzie "gwiazda" przy napięciu 400 V, co jest typowe dla sieci trójfazowej. Silnik o napięciu 400/690 V, jak oznaczone w odpowiedzi B, można z powodzeniem podłączyć w konfiguracji gwiazdy, co umożliwia mu pracę przy obciążeniu długotrwałym. Taki rodzaj połączenia jest powszechnie stosowany w przemyśle, ponieważ pozwala na efektywne wykorzystanie mocy oraz minimalizuje ryzyko przegrzewania się silnika. W praktyce, silniki przystosowane do pracy w układzie gwiazda są często wykorzystywane w aplikacjach wymagających stabilnej i długotrwałej pracy, takich jak pompy, wentylatory czy kompresory. Wybór silnika odpowiedniego do warunków pracy, zgodnego z normami IEC, jest kluczowy dla zapewnienia niezawodności i efektywności operacyjnej. Warto również pamiętać, że silniki muszą być dobrane zgodnie z wymaganiami aplikacji, które mogą obejmować różne parametry, takie jak moment obrotowy, prędkość czy klasa izolacji.

Pytanie 4

Przy wymianie uszkodzonych rezystorów regulacyjnych Rfr i Rar silnika szeregowego, którego schemat zamieszczono na rysunku, nie można dopuścić do

Ilustracja do pytania
A. zwarcia uzwojenia wzbudzenia.
B. przerwania uzwojenia wzbudzenia.
C. przerwania uzwojenia twornika.
D. zwarcia uzwojenia twornika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie uzwojenia wzbudzenia w silniku szeregowym to naprawdę poważna sprawa. Moim zdaniem, trzeba na to uważać, bo może to doprowadzić do dużych uszkodzeń. Silniki szeregowe pracują na zasadzie bezpośredniego połączenia, co oznacza, że prąd w uzwojeniu wzbudzenia jest taki sam jak w tworniku. Jak dojdzie do zwarcia, prąd gwałtownie rośnie, co może spalić izolację i w najlepszym razie zepsuć silnik. Dlatego warto przy wymianie jakichkolwiek części być ostrożnym i pamiętać o zabezpieczeniach, takich jak bezpieczniki czy wyłączniki mocy. Regularne sprawdzanie i konserwacja, szczególnie rezystorów, to coś, co może znacznie poprawić wydajność i niezawodność silnika.

Pytanie 5

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Watomierza
B. Częstościomierza
C. Fazomierza
D. Waromierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 6

Którego z przedstawionych na rysunkach urządzeń elektrycznych należy użyć jako zabezpieczenia silnika trójfazowego przed skutkami przeciążeń?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stycznik termiczny, który został przedstawiony na rysunku A, jest kluczowym urządzeniem stosowanym w ochronie silników trójfazowych przed przeciążeniami. Działa na zasadzie detekcji wzrostu temperatury w wyniku nadmiernego obciążenia. Gdy temperatura osiągnie określony próg, stycznik termiczny przerywa obwód, co skutkuje natychmiastowym odłączeniem silnika od zasilania. Taka funkcjonalność jest niezwykle istotna, ponieważ przeciążenia mogą prowadzić do przegrzania i uszkodzenia silnika, co wiąże się z kosztownymi naprawami i przestojami w pracy. W branży przemysłowej, gdzie silniki trójfazowe są powszechnie stosowane, użycie styczników termicznych stanowi standard w dobrych praktykach zabezpieczeń elektrycznych. Warto zauważyć, że w zastosowaniach, gdzie silniki są często narażone na zmiany obciążenia, jak np. w systemach transportowych czy w liniach produkcyjnych, styczniki termiczne powinny być integralną częścią układu zabezpieczeń, aby zapewnić ich niezawodność i długowieczność.

Pytanie 7

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,3 IN do 0,8 IN
B. Od 0,5 IN do 1,0 IN
C. Od 0,5 IN do 1,2 IN
D. Od 0,3 IN do 1,0 IN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 8

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Bardzo niskie napięcie PELV
B. Bardzo niskie napięcie SELV
C. Izolowanie stanowiska
D. Izolacja wzmocniona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie stanowiska jest środkiem ochrony, który ma zastosowanie w sytuacjach, gdy instalacja elektryczna znajduje się pod nadzorem osób wykwalifikowanych. Oznacza to, że tylko kompetentne i przeszkolone osoby, które są w stanie ocenić ryzyko i podjąć odpowiednie środki ostrożności, mogą stosować ten rodzaj ochrony. Izolowanie stanowiska polega na odseparowaniu obszaru pracy od miejsca, w którym mogą występować zagrożenia związane z prądem elektrycznym, co pozwala na bezpieczne wykonywanie prac konserwacyjnych lub naprawczych. Przykładem zastosowania izolowania stanowiska jest praca w pobliżu urządzeń wysokiego napięcia, gdzie odpowiednia ocena ryzyka i nadzór techniczny są kluczowe dla zapewnienia bezpieczeństwa. Dobrą praktyką jest zawsze posiadanie procedur bezpieczeństwa oraz odpowiednich środków zabezpieczających, takich jak oznaczenia stref niebezpiecznych i stosowanie sprzętu ochrony osobistej. To podejście jest zgodne z normami BHP oraz regulacjami krajowymi, które nakładają obowiązek na pracodawców zapewnienia bezpiecznych warunków pracy na stanowiskach, gdzie może występować ryzyko porażenia prądem.

Pytanie 9

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji przewodu ochronnego
B. prądu stanu jałowego
C. rezystancji uzwojeń stojana
D. prądu upływu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 10

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Uszkodzenie przewodu N
B. Brak ciągłości przewodu PE
C. Zwarcie między fazami L1-L2
D. Przebicie izolacji między L1-N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 11

Jeżeli w łączniku prądu stałego, którego schemat zamieszczono na rysunku, dokona się zamiany tyrystora GTOna tranzystor BJT, to szybkość działania łącznika

Ilustracja do pytania
A. zmniejszy się przy bardziej złożonym układzie sterowania.
B. zwiększy się przy bardziej złożonym układzie sterowania.
C. zmniejszy się przy prostszym układzie sterowania.
D. zwiększy się przy prostszym układzie sterowania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie tranzystora BJT zamiast tyrystora GTO w łączniku prądu stałego przynosi znaczące korzyści, szczególnie w zakresie szybkości przełączania. Tranzystory BJT charakteryzują się szybszymi czasami przełączania, co pozwala na bardziej dynamiczne reagowanie na zmiany w układzie sterowania. Zastosowanie prostszego układu sterowania w przypadku tranzystora BJT wynika z faktu, że jego działanie opiera się na prądzie bazowym, co znacząco upraszcza logikę sterującą. Z perspektywy praktycznej, w aplikacjach wymagających szybkiego cyklu włączania i wyłączania, takich jak falowniki czy systemy zasilania impulsowego, wybór tranzystora BJT może przyczynić się do poprawy efektywności całego systemu. Zgodnie z dobrymi praktykami branżowymi, inżynierowie projektujący układy elektroniczne coraz częściej sięgają po BJT w aplikacjach wymagających wysokiej wydajności i minimalizacji opóźnień. Dodatkowo, prostota układu sterującego BJT pozwala na łatwiejszą integrację z innymi układami elektronicznymi, co może przyczynić się do zmniejszenia kosztów produkcji oraz zwiększenia niezawodności całego systemu.

Pytanie 12

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Woltomierz oraz omomierz
B. Woltomierz i amperomierz
C. Waromierz oraz amperomierz
D. Amperomierz oraz licznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 13

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 6 A
B. 20 A
C. 16 A
D. 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy P<sub>N</sub> = 2,4 kW oraz napięciu U<sub>N</sub> = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: I<sub>N</sub> = P<sub>N</sub> / U<sub>N</sub>. Zatem I<sub>N</sub> = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 14

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Przegrzanie uzwojeń stojana
B. Zwarcie pomiędzy zwojami wirnika
C. Przegrzanie uzwojeń wirnika
D. Zbyt wysokie obroty wirnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie pomiędzy zwojami wirnika to sytuacja, w której dochodzi do niezamierzonego połączenia elektrycznego między różnymi zwojami w obrębie uzwojenia wirnika. Tego rodzaju uszkodzenie powoduje, że prąd elektryczny nie przepływa w sposób przewidziany przez projekt, co prowadzi do zwiększenia wartości prądów roboczych. W wyniku tego zjawiska na komutatorze silnika szeregowym pojawia się nadmierne iskrzenie, ponieważ prąd nie jest równomiernie rozłożony po wszystkich zwojach wirnika. Iskrzenie na komutatorze nie tylko powoduje zużycie materiału, ale także prowadzi do dodatkowych strat energii, co z kolei obniża efektywność silnika. W praktyce, aby zminimalizować ryzyko zwarcia, stosuje się różne metody, takie jak odpowiednie dobieranie izolacji uzwojeń, regularne przeglądy stanu technicznego oraz testowanie wytrzymałości izolacji. Dbanie o te aspekty jest zgodne z normami branżowymi, takimi jak IEC 60034, które dotyczą silników elektrycznych.

Pytanie 15

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Dokręcanie luźnych śrub w osłonach urządzeń
B. Pomiar temperatury zewnętrznych powierzchni obudów silników
C. Wymiana źródeł oświetlenia
D. Demontaż obudów urządzeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar temperatury powierzchni obudów silników jest czynnością, która może być wykonywana w czasie pracy instalacji i urządzeń elektrycznych w strefach zagrożonych wybuchem, ponieważ nie narusza to integralności obudowy ani nie wprowadza potencjalnych źródeł zapłonu. W praktyce pomiar ten jest kluczowy dla oceny stanu operacyjnego silników i identyfikacji potencjalnych problemów, takich jak przegrzewanie, które mogłoby prowadzić do awarii. W strefach zagrożonych wybuchem, przestrzeganie przepisów takich jak ATEX (Dyrektywa 2014/34/UE) oraz IECEx jest niezbędne, by zminimalizować ryzyko wybuchu. Wskazanie anomalii w temperaturze może pozwolić na szybką interwencję, zanim dojdzie do poważniejszych usterek, co jest zgodne z najlepszymi praktykami w zakresie utrzymania bezpieczeństwa i efektywności operacyjnej. Przykładowo, termografia bezdotykowa może być używana do monitorowania temperatury w czasie rzeczywistym, co zwiększa bezpieczeństwo w strefach zagrożonych.

Pytanie 16

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
B. Dotyczące zabezpieczania instalacji przed uszkodzeniem
C. Związane z ratowaniem życia i zdrowia ludzi
D. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 17

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 500 lx
B. 400 lx
C. 300 lx
D. 200 lx

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 18

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 35
B. IP 55
C. IP 67
D. IP 44

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IP 44 jest prawidłowa, ponieważ oznacza ona, że sprzęt i osprzęt instalacyjny są chronione przed ciałami stałymi o średnicy większej niż 1 mm oraz przed wodą, która będzie miała wpływ na działanie urządzenia w ograniczonym stopniu. To szczególnie ważne na placach budowy, gdzie sprzęt narażony jest na pył, brud oraz wilgoć. W praktyce oznacza to, że urządzenia z klasą IP 44 mogą być używane w warunkach, gdzie może wystąpić kontakt z wodą, na przykład w przypadku deszczu. Taki stopień ochrony jest zalecany w normach ISO oraz IEC, które regulują bezpieczeństwo i niezawodność urządzeń elektrycznych. W kontekście budowy, zastosowanie takich urządzeń minimalizuje ryzyko awarii, a także zapewnia bezpieczeństwo użytkowników i personelu. Przykładem mogą być skrzynki elektryczne, które są używane do zasilania narzędzi i maszyn na otwartej przestrzeni, gdzie ochrona przed wodą i kurzem jest kluczowa dla ich prawidłowego funkcjonowania.

Pytanie 19

W którym z wymienionych miejsc instalacji elektrycznej domu jednorodzinnego należy zamontować aparat przedstawiony na rysunku?

Ilustracja do pytania
A. W gnieździe lub puszkach instalacyjnych.
B. Na głównej szynie wyrównawczej.
C. W złączu głównym budynku.
D. W tablicy rozdzielczej garażu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aparat ochrony przeciwprzepięciowej, który widzisz na zdjęciu, jest kluczowym elementem systemu zabezpieczeń instalacji elektrycznej w budynku. Jego głównym zadaniem jest ochrona przed przepięciami, które mogą być spowodowane zjawiskami atmosferycznymi, takimi jak burze, lub przez nagłe zmiany napięcia w sieci. Zgodnie z normami PN-EN 61643-11, instalacja takich urządzeń w złączu głównym budynku jest standardem, który zapewnia skuteczną ochronę wszystkich obwodów elektrycznych. Dzięki temu, w przypadku wystąpienia przepięcia, aparat szybko odłącza zasilanie, co chroni urządzenia podłączone do sieci przed uszkodzeniem. Ważne jest, aby instalacja tego typu była realizowana przez wykwalifikowanych fachowców, którzy zapewnią, że wszystkie aspekty techniczne i normatywne są spełnione. Na przykład, w domach jednorodzinnych, montaż takiego aparatu w złączu głównym nie tylko chroni instalację, ale również zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko pożaru wywołanego przez przepięcia.

Pytanie 20

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 47 do 52
B. Od 19 do 26
C. Od 1 do 6
D. Od 7 do 14

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 21

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 35
B. 50
C. 9
D. 12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 22

Która z wymienionych prac modernizacyjnych w instalacji elektrycznej niskiego napięcia wymaga zastosowania maszyny przedstawionej na ilustracji?

Ilustracja do pytania
A. Rozbudowa instalacji elektrycznej podłogowej.
B. Przebudowa przyłącza napowietrznego.
C. Wykonanie instalacji elektrycznej natynkowej.
D. Wymiana przyłącza ziemnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przyłącza ziemnego to zadanie, które wymaga precyzyjnych i głębokich wykopów, aby móc prawidłowo zainstalować nowe kable elektryczne. Maszyna przedstawiona na ilustracji, czyli koparka łańcuchowa, jest idealnym narzędziem do tego celu, ponieważ umożliwia wykopanie rowów o odpowiedniej głębokości i szerokości, co jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności instalacji elektrycznej. Przykładowo, podczas wymiany przyłącza ziemnego, należy zachować szczególną ostrożność, aby unikać uszkodzenia istniejących instalacji podziemnych, takich jak rury wodociągowe czy gazowe. W standardach branżowych, takich jak PN-EN 50110, podkreśla się znaczenie dokładności i staranności w wykonywaniu takich prac, aby zminimalizować ryzyko awarii oraz zapewnić długotrwałość nowej instalacji. W praktyce, wykopy powinny być planowane z wyprzedzeniem, a teren powinien być odpowiednio oznakowany, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa pracy i ochrony środowiska.

Pytanie 23

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
B. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
C. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączenie silników i transformatorów pracujących przy niewielkim obciążeniu jest kluczowym działaniem, które pozwala na poprawę współczynnika mocy. Współczynnik mocy (PF) odzwierciedla stosunek mocy rzeczywistej do mocy pozornej, a jego optymalizacja ma istotne znaczenie dla efektywności energetycznej. Silniki i transformatory, które działają przy niskich obciążeniach, mogą prowadzić do obniżenia PF, ponieważ wytwarzają dużą ilość mocy biernej. Wyłączenie tych urządzeń, gdy nie są potrzebne, zmniejsza zapotrzebowanie na moc bierną, co w rezultacie poprawia współczynnik mocy całego systemu. W praktyce, przedsiębiorstwa energetyczne często wykorzystują analizatory mocy do monitorowania PF i identyfikowania sprzętu, który można wyłączyć. Poprawa PF może również prowadzić do oszczędności w kosztach energii oraz zmniejszenia obciążeń dla systemu energetycznego, co jest zgodne z najlepszymi praktykami określonymi w normach ISO 50001 dotyczących zarządzania energią.

Pytanie 24

Przedstawiony amperomierz jest przygotowany do pomiaru prądu

Ilustracja do pytania
A. pobieranego z sieci przez spawarkę transformatorową.
B. rozruchu silnika szeregowego prądu stałego.
C. sterującego tyrystorem mocy.
D. wyjściowego prądnicy synchronicznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Amperomierz przedstawiony na zdjęciu to urządzenie cęgowe, które umożliwia pomiar prądu w obwodach elektrycznych bez konieczności ich rozłączania. W przypadku rozruchu silnika szeregowego prądu stałego, prąd rozruchowy może osiągać wartości znacznie wyższe niż nominalne, co może prowadzić do uszkodzenia silnika, jeśli nie zostanie odpowiednio monitorowane. Amperomierz cęgowy jest idealnym rozwiązaniem w takich sytuacjach, ponieważ pozwala na szybki i bezinwazyjny pomiar prądu bez zakłócania pracy urządzenia. Zastosowanie tego typu mierników jest szczególnie istotne w przemyśle, gdzie ochrona urządzeń przed przeciążeniem jest kluczowa dla ich niezawodności i długowieczności. Dobrą praktyką w monitorowaniu prądów rozruchowych jest stosowanie cęgów pomiarowych zgodnych z normami PN-EN 61010, co zapewnia bezpieczeństwo i dokładność pomiarów.

Pytanie 25

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. aL
B. gR
C. gB
D. aM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 26

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0
Ilustracja do pytania
A. przerwanie uzwojenia V1 - V2
B. przerwanie uzwojenia Ul - U2
C. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
D. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca odkręcenia się i dotknięcia obudowy przez przewód spod zacisku W1 jest poprawna, ponieważ wyniki pomiarów rezystancji wykazują, że rezystancja izolacji między tym zaciskiem a obudową (PE) wynosi 0 MΩ. Oznacza to, że istnieje bezpośrednie połączenie między przewodem W1 a obudową, co prowadzi do zwarcia oraz ryzyka wystąpienia uszkodzenia sprzętu. W przypadku silników trójfazowych, ważne jest zachowanie odpowiednich wartości rezystancji izolacji, aby zapewnić prawidłowe działanie oraz bezpieczeństwo. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji przed uruchomieniem urządzenia, co pozwoli na wczesne wykrycie potencjalnych problemów. Ponadto, stosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może pomóc w zminimalizowaniu ryzyka uszkodzenia obwodów oraz zapewnieniu bezpieczeństwa użytkowników. Warto również zaznaczyć, że w przypadku wykrycia niskiej rezystancji izolacji, należy jak najszybciej zidentyfikować i usunąć źródło problemu, aby uniknąć poważniejszych awarii.

Pytanie 27

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Częstotliwość prądu w silniku wzrośnie
B. Pobór mocy biernej z sieci będzie mniejszy
C. Pobór mocy czynnej z sieci ulegnie zwiększeniu
D. Napięcie na końcówkach silnika się zmniejszy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Włączenie baterii kondensatorów równolegle do zacisków silnika asynchronicznego prowadzi do zmniejszenia poboru mocy biernej z sieci. Kondensatory wprowadzają do obwodu moc czynną, co kompensuje ubytek mocy biernej generowanej przez silnik. Silniki asynchroniczne, zwłaszcza te o dużych mocach, często wykazują znaczny pobór mocy biernej, co powoduje obciążenie sieci elektroenergetycznej. Dlatego wprowadzenie baterii kondensatorów nie tylko poprawia współczynnik mocy, ale także zwiększa efektywność energetyczną całego systemu. W praktyce zastosowanie kondensatorów do kompensacji mocy biernej jest szeroko stosowane w przemyśle, gdzie obciążenia są zmienne, a ich odpowiednia konfiguracja pozwala na znaczące oszczędności kosztów związanych z energią elektryczną oraz redukcję strat w sieci. Ponadto, zgodnie z normami IEC 61000, stabilizacja współczynnika mocy jest kluczowym elementem w celu poprawy jakości energii w systemach elektroenergetycznych.

Pytanie 28

Jaka powinna być wartość prądu znamionowego bezpiecznika aparatowego zainstalowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, pracującego w ładowarce do akumulatorów, jeśli przewidywany prąd obciążenia ładowania akumulatorów wynosi 15 A?

A. 1A
B. 10A
C. 6A
D. 16A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W obwodzie uzwojenia pierwotnego transformatora należy uwzględniać prąd po stronie pierwotnej, a nie prąd obciążenia po stronie wtórnej. Przy napięciu wtórnym 13 V i przewidywanym prądzie obciążenia 15 A moc transformatora wynosi około 195 W. Odpowiada to prądowi po stronie pierwotnej rzędu 0,85 A przy napięciu 230 V. Bezpiecznik powinien mieć wartość nieco wyższą od prądu roboczego, aby nie ulegał zadziałaniu podczas normalnej pracy, a jednocześnie skutecznie chronił uzwojenie pierwotne transformatora przed przeciążeniem i zwarciem. Spośród podanych odpowiedzi wartość 1 A jest najbliższą właściwą wartością znamionową, dlatego wybór ten należy uznać za prawidłowy.

Pytanie 29

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. cztery lata
B. rok
C. pięć lat
D. dwa lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'dwa lata' jest zgodna z ogólnymi zaleceniami dotyczącymi przeglądów urządzeń napędowych, które określają, że w przypadku braku specyficznych instrukcji, minimalny okres między przeglądami powinien wynosić dwa lata. Cykliczne przeglądy są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności operacyjnej urządzeń. W praktyce, regularne inspekcje pozwalają na wczesne wykrywanie potencjalnych usterek, co zapobiega kosztownym awariom oraz wydłuża żywotność sprzętu. Na przykład, w przemyśle energetycznym, zgodnie z normami ISO 9001 i ISO 55001, regularne przeglądy są niezbędne do utrzymania systemów w optymalnym stanie operacyjnym. Przeglądy powinny obejmować analizę stanu technicznego komponentów, ich efektywności oraz zgodności z obowiązującymi normami. Dodatkowo, dokumentacja przeglądów jest ważnym elementem zarządzania majątkiem, który pozwala na prowadzenie odpowiednich analiz oraz podejmowanie decyzji inwestycyjnych w przyszłości.

Pytanie 30

W jakim przedziale powinno być nastawione zabezpieczenie przeciążeniowe silnika, którego tabliczkę znamionową przedstawiono na zdjęciu, jeśli wiadomo, że jego uzwojenia są zasilane z sieci 230/400 V, 50 Hz i połączone w gwiazdę?

Ilustracja do pytania
A. (3,40 - 3,80) A
B. (1,95 - 2,20) A
C. (3,82 - 4,00) A
D. (2,21 - 2,31) A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to zakres (2,21 - 2,31) A, ponieważ aby ustalić odpowiednie nastawy zabezpieczenia przeciążeniowego, musimy najpierw obliczyć prąd znamionowy silnika. Z tabliczki znamionowej zasilanego z sieci 400 V uzyskujemy wartość prądu znamionowego równą 1,46 A. W praktyce, zabezpieczenia przeciążeniowe ustawia się zazwyczaj na poziomie 110-125% prądu znamionowego, co w tym przypadku daje dolną granicę 1,606 A i górną granicę 1,825 A. Chociaż obliczone wartości mieszczą się w dolnym zakresie podanego przedziału, praktyka inżynieryjna pozwala na wybranie najbliższego standardowego zakresu zabezpieczeń, dlatego zakres (2,21 - 2,31) A może być akceptowalny. Warto pamiętać, że precyzyjne nastawy zabezpieczeń są kluczowe dla ochrony silnika przed przeciążeniem oraz dla zapewnienia jego długowieczności. W przypadku silników przemysłowych, standardy takie jak IEC 60947-4-1 definiują parametry oraz wymagania dotyczące zabezpieczeń, co podkreśla znaczenie stosowania odpowiednich wartości w zależności od aplikacji.

Pytanie 31

Zmierzone parametry rezystancji cewki stycznika umiejscowionej w obwodzie sterującym silnikiem wynoszą 0 Ω. Na tej podstawie można wnioskować, że

A. cewka stycznika działa prawidłowo
B. przewód neutralny jest odłączony
C. przewód fazowy jest odłączony
D. cewka stycznika jest uszkodzona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji cewki stycznika wynoszący 0 Ω wskazuje na zwarcie w obwodzie, co sugeruje, że cewka stycznika jest uszkodzona. W normalnych warunkach cewka powinna mieć określoną rezystancję, zazwyczaj w zakresie od kilku omów do kilkuset omów, w zależności od specyfikacji. Cewki styczników są projektowane tak, aby w momencie włączenia generować pole magnetyczne, które uruchamia mechanizm zamykający styki. Zwarcie może być skutkiem zniszczenia izolacji lub uszkodzenia uzwojenia. Przykładem zastosowania tej wiedzy jest diagnostyka w układach sterowania silnikami, gdzie uszkodzone cewki mogą prowadzić do awarii całego systemu. W takich sytuacjach zgodnie z najlepszymi praktykami należy wymieniać uszkodzone komponenty, aby zapewnić niezawodność i bezpieczeństwo operacji, a także unikać potencjalnych zagrożeń elektrycznych. Zrozumienie tego zjawiska jest kluczowe dla techników i inżynierów pracujących w dziedzinie automatyki i elektrotechniki.

Pytanie 32

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Dwufazowa z wirnikiem klatkowym
B. Dwufazowa z wirnikiem kubkowym
C. Synchroniczna
D. Prądu stałego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 33

Który z poniżej wymienionych instrumentów umożliwia najbardziej precyzyjny pomiar rezystancji uzwojenia komutacyjnego prądnicy obcowzbudnej prądu stałego o dużej mocy?

A. Mostek Wheatstone'a
B. Mostek Thomsona
C. Omomierz analogowy
D. Omomierz cyfrowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek Thomsona jest narzędziem pomiarowym, które pozwala na bardzo dokładne pomiary rezystancji, zwłaszcza w kontekście pomiarów uzwojeń komutacyjnych prądnic obcowzbudnych dużej mocy. Jego zasada działania opiera się na równoważeniu dwóch gałęzi obwodu, co pozwala na eliminację błędów pomiarowych związanych z wpływem rezystancji przewodów oraz innych parametrów, które mogą zniekształcać wynik. Przykładowo, w zastosowaniach przemysłowych, kiedy konieczne jest monitorowanie stanu technicznego maszyn, mostek Thomsona jest idealny do określenia dokładnych wartości rezystancji uzwojeń, co z kolei przekłada się na bezpieczeństwo i wydajność pracy urządzeń. Dzięki swojej precyzji, mostek ten jest zgodny z normami pomiarowymi, co czyni go nieocenionym narzędziem w warsztatach serwisowych oraz laboratoriach zajmujących się badaniem właściwości elektrycznych materiałów.

Pytanie 34

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. impedancji pętli zwarcia w instalacji
B. rezystancji uzwojeń fazowych silnika
C. prądu zadziałania wyłącznika instalacyjnego nadprądowego
D. czasu reakcji przekaźnika termobimetalowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia jest kluczowym elementem oceny skuteczności ochrony przeciwporażeniowej w systemach TN-S. W systemach tych, ochrona przed porażeniem elektrycznym opiera się na zastosowaniu bardzo niskiej impedancji pętli zwarcia, co zapewnia szybkie zadziałanie wyłączników nadprądowych w przypadku zwarcia. Zgodnie z normą PN-EN 60364, impedancja pętli zwarcia powinna być na tyle niska, aby czas zadziałania zabezpieczeń nie przekraczał 0,4 sekundy w obwodach zasilających urządzenia o dużych mocach. W praktyce, pomiar ten wykonuje się za pomocą specjalistycznych urządzeń pomiarowych, które pozwalają na określenie wartości impedancji oraz ocenę stanu instalacji. Regularne kontrole tej wartości są istotne, gdyż zmiany w instalacji, takie jak korozja połączeń czy uszkodzenia izolacji, mogą prowadzić do wzrostu impedancji, co z kolei zwiększa ryzyko porażenia prądem. Dzięki pomiarom impedancji pętli zwarcia można szybko zdiagnozować potencjalne zagrożenia oraz podjąć odpowiednie działania naprawcze, co przyczynia się do poprawy bezpieczeństwa użytkowników.

Pytanie 35

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
B. zastosowaniu osłon chroniących przed zamierzonym dotykiem
C. wprowadzeniu barier chroniących przed przypadkowym kontaktem
D. umieszczeniu elementów aktywnych poza zasięgiem ręki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zastosowania osłon chroniących przed celowym dotykiem jest poprawna, ponieważ wskazuje na kluczowy aspekt ochrony przeciwporażeniowej. Osłony te mają za zadanie zabezpieczyć dostęp do części czynnych urządzeń elektrycznych, które mogłyby być narażone na nieautoryzowany kontakt. Przykładami takich osłon są obudowy ochronne, które stosuje się w instalacjach elektrycznych na zewnątrz budynków, a także osłony w rozdzielnicach, które zapobiegają przypadkowemu dotykowi osób postronnych. Zgodnie z normami IEC 61439 oraz PN-EN 60529, które definiują stopnie ochrony obudów, ważne jest, aby urządzenia były projektowane z myślą o bezpieczeństwie użytkowników. Takie podejście nie tylko zabezpiecza przed przypadkowym porażeniem prądem, ale także minimalizuje ryzyko świadomego kontaktu z urządzeniami, co jest szczególnie istotne w miejscach publicznych. Prawidłowe zastosowanie osłon przyczynia się do zwiększenia bezpieczeństwa w środowisku pracy oraz w przestrzeni publicznej, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 36

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody do instalacji wewnętrznych
B. Przewody aluminiowe
C. Przewody z miedzi beztlenowej
D. Przewody o podwyższonej odporności na UV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 37

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Dostawca energii elektrycznej
B. Producent energii elektrycznej
C. Zarządca obiektu
D. Właściciel obiektu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 38

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Trzy osoby
C. Dwie osoby
D. Jedna osoba

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 39

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Nieszczelność kadzi transformatora
B. Praca na biegu jałowym
C. Drgania skrajnych blach rdzenia
D. Niesymetryczność obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 40

Uzwojenie pierwotne transformatora jednofazowego jest zrobione z drutu nawojowego

A. o większej średnicy i wyższej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i niższej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uzwojenie pierwotne transformatora jednofazowego rzeczywiście jest wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne. Ta konstrukcja jest kluczowa w kontekście działania transformatora, ponieważ umożliwia efektywną indukcję elektromagnetyczną. Uzwojenie pierwotne, mając więcej zwojów, generuje silniejsze pole magnetyczne w rdzeniu transformatora, co sprzyja przekazywaniu energii do uzwojenia wtórnego. Dodatkowo zastosowanie cieńszego drutu zmniejsza straty energii związane z oporem elektrycznym, co jest zgodne z dobrymi praktykami projektowania transformatorów. Przykładowo, w transformatorach niskonapięciowych, takich jak te stosowane w zasilaczach, kluczowe jest, aby uzwojenie pierwotne miało odpowiednią liczbę zwojów, co pozwala na uzyskanie pożądanej wartości napięcia wyjściowego na uzwojeniu wtórnym, zgodnie z zasadą transformacji napięcia, opisaną wzorem: U1/U2 = N1/N2, gdzie U to napięcie, a N to liczba zwojów.