Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:56
  • Data zakończenia: 7 grudnia 2025 12:30

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. Oba wyłączniki sprawne.
B. 1 – sprawny, 2 – niesprawny.
C. Oba wyłączniki niesprawne.
D. 1 – niesprawny, 2 – sprawny.
Odpowiedź 1 – niesprawny, 2 – sprawny jest prawidłowa, ponieważ zgodnie z normami bezpieczeństwa wyłączników różnicowoprądowych, powinny one zadziałać przy określonym prądzie różnicowym. W przypadku wyłącznika EFI-2 25/0,03 wymagana wartość prądu różnicowego wynosi 30 mA. Wyłącznik nr 1 zadziałał przy prądzie 35 mA, co oznacza, że przekracza dopuszczalny poziom i nie jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Natomiast wyłącznik nr 2 zadziałał przy prądzie 25 mA, co jest zgodne z wymaganiami i wskazuje na jego sprawność. W praktyce, poprawne działanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych, ponieważ ich zadaniem jest ochrona przed skutkami prądów uziemiających i porażeniem. Regularne testowanie tych urządzeń zgodnie z normami PN-EN 61008 jest zalecane, aby zapewnić ich niezawodność i efektywność w warunkach użytkowania.

Pytanie 2

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ
A. Wyniki pomiarów pozytywne.
B. Zbyt duża rezystancja uzwojenia U.
C. Zbyt duża asymetria rezystancji uzwojeń.
D. Uszkodzona izolacja uzwojenia W.
Wybór odpowiedzi dotyczących uszkodzonej izolacji uzwojenia lub zbyt dużej asymetrii rezystancji uzwojeń opiera się na błędnym zrozumieniu wyników pomiarów i ich interpretacji. Uszkodzenie izolacji uzwojenia może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia, jednak w przypadku prezentowanych wyników, rezystancje izolacji są wysokie, co wskazuje na ich dobry stan. Typowym błędem myślowym jest nadinterpretacja odchyleń w rezystancjach uzwojeń. Choć różnice w rezystancji mogą sugerować problemy, w podanych wynikach wartości są wystarczająco zbliżone, aby uznać je za akceptowalne. Również, nadmierne zmartwienie o asymetrię rezystancji w sytuacji, gdy wartości są bliskie siebie, jest niewłaściwe. Istotne jest, aby nie mylić pojedynczych pomiarów z ogólną kondycją silnika. Właściwe podejście do oceny stanu technicznego obejmuje dokładne analizowanie wszystkich danych pomiarowych w kontekście praktyk inżynierskich, takich jak te opisane w normach PN-EN. Dobrą praktyką jest stosowanie systematycznego przeglądu maszyn, co pozwala na identyfikację i eliminację potencjalnych problemów przed ich wystąpieniem.

Pytanie 3

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 25 V
B. 50 V
C. 12 V
D. 60 V
Wartości napięcia dotykowego, które są podane w odpowiedziach, mogą wprowadzać w błąd, jeśli nie zostaną właściwie zrozumiane w kontekście bezpieczeństwa elektrycznego. Odpowiedzi 12 V, 25 V oraz 60 V nie spełniają kryteriów bezpieczeństwa, które zostały określone przez normy dotyczące ochrony przed porażeniem prądem. Przykładowo, napięcie 12 V jest często uznawane za stosunkowo bezpieczne, lecz w praktyce może być nieadekwatne w kontekście długotrwałego kontaktu z ciałem ludzkim, zwłaszcza w obecności wilgoci, co zwiększa ryzyko przepływu prądu. Z kolei napięcie 25 V, chociaż niższe od 50 V, nie jest wystarczające do oceny realnych zagrożeń, które mogą wystąpić w standardowych ustaleniach. Natomiast napięcie 60 V przekracza bezpieczny poziom, wprowadzając znaczne ryzyko dla zdrowia użytkowników. Pamiętajmy, że ochrona przed porażeniem prądem opiera się na systematycznym podejściu do projektowania instalacji elektrycznych, które uwzględniają nie tylko wartości napięcia, ale także warunki ich użytkowania. Kluczowe jest zrozumienie, że przekraczanie ustalonych wartości granicznych napięcia może prowadzić do poważnych konsekwencji zdrowotnych, a także odpowiedzialności prawnej w przypadku awarii. Normy bezpieczeństwa elektrycznego, takie jak IEC 60479, podkreślają znaczenie przestrzegania tych zasad, aby zminimalizować ryzyko dla użytkowników.

Pytanie 4

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmniejszenie prędkości obrotowej
B. zmianę kierunku obrotu
C. zatrzymanie wirnika
D. zwiększenie prędkości obrotowej
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 5

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
B. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
C. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
D. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
Analizując inne odpowiedzi, można zauważyć, że każda z nich zawiera istotne błędy w ocenie stanu technicznego transformatora. Wskazanie na uszkodzenie transformatora, takie jak zwarcie międzyzwojowe po stronie wtórnej, jest nieuzasadnione, ponieważ zwarcie zazwyczaj skutkuje poważnymi problemami z napięciem i prądem, a w analizowanym przypadku stwierdzono jedynie zmiany w obciążeniu. Z kolei sugestia, że zmiany napięcia i prądu wynikają ze zmniejszenia napięcia zasilającego, jest błędna, ponieważ zmniejszenie napięcia zasilającego powinno skutkować obniżeniem napięcia po stronie wtórnej, co nie miało miejsca w tej sytuacji. Chociaż przerwy po stronie wtórnej mogą powodować istotne zmiany w parametrach pracy transformatora, to jednak nie są one adekwatne do opisanych objawów. Kluczowe w tej analizie jest zrozumienie, że transformator w prawidłowych warunkach pracy powinien wykazywać stabilność napięcia oraz prądu, co potwierdza jego poprawną funkcjonalność. W przypadku wystąpienia jakichkolwiek anomalii, istotne jest przeprowadzenie szczegółowej analizy obciążenia oraz charakterystyki podłączonych odbiorników, aby uniknąć mylnych wniosków związanych z uszkodzeniami transformatora.

Pytanie 6

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 19 do 26
B. Od 7 do 14
C. Od 1 do 6
D. Od 47 do 52
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 7

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 6
B. 4
C. 12
D. 10
Wybór liczby 4, 6 lub 12 gniazd wtyczkowych do jednego obwodu w instalacji elektrycznej jest oparty na mylnych założeniach dotyczących bezpieczeństwa i funkcjonalności. Niska liczba gniazd, jak 4 lub 6, może wydawać się bezpiecznym wyborem, jednak w praktyce prowadzi do znacznych ograniczeń w użytkowaniu, co może być niepraktyczne w dzisiejszych czasach, gdy wiele urządzeń wymaga zasilania. Z drugiej strony, wybór 12 gniazd opiera się na przeświadczeniu, że zwiększenie ich liczby nie wpływa na bezpieczeństwo obwodu. Taka liczba jest nadmierna i stwarza ryzyko przeciążenia instalacji. Bezpieczne projektowanie obwodów wymaga uwzględnienia maksymalnego poboru mocy wszystkich podłączonych urządzeń. W przypadku, gdy przekroczona zostanie wartość znamionowa obwodu, może dojść do przegrzewania się przewodów, co zagraża zarówno sprzętowi, jak i osobom w pomieszczeniu. Istnieją także normy, które precyzują dopuszczalny pobór mocy oraz sposób ich rozdzielania w instalacjach elektrycznych, co powinno być wzięte pod uwagę przy projektowaniu systemu. Warto zatem kierować się obowiązującymi standardami i wytycznymi branżowymi, aby zapewnić nie tylko funkcjonalność, ale przede wszystkim bezpieczeństwo użytkowników.

Pytanie 8

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Całkowite zniszczenie wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 9

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,3 IN do 1,0 IN
B. Od 0,3 IN do 0,8 IN
C. Od 0,5 IN do 1,0 IN
D. Od 0,5 IN do 1,2 IN
Analizując inne możliwe odpowiedzi, można zauważyć, że podane zakresy nie spełniają wymogów dotyczących prawidłowej eksploatacji wyłącznika różnicowoprądowego typu AC. Przykładowo, zakres od 0,3 I_N do 0,8 I_N jest niewłaściwy, ponieważ zbyt niski prąd różnicowy może prowadzić do braku reakcji wyłącznika na małe prądy upływowe, co stwarza ryzyko porażenia prądem. Ustalony przez normy poziom 0,5 I_N jako dolna granica jest kluczowy, aby zapewnić reaktywność urządzenia. Z kolei zakres od 0,5 I_N do 1,2 I_N również nie jest akceptowalny, ponieważ 1,2 I_N nie mieści się w standardowych granicach pracy wyłącznika, co może prowadzić do fałszywych alarmów lub nawet uszkodzenia urządzenia. Odpowiedzi te bazują na niepełnym zrozumieniu zasad działania wyłączników różnicowoprądowych, które mają za zadanie wyłączać zasilanie tylko w przypadku wykrycia niebezpiecznego prądu różnicowego. Warto również zauważyć, że pomijanie zasady, iż wyłącznik powinien być w stanie zareagować na prąd różnicowy w odpowiednim czasie, prowadzi do niebezpiecznych sytuacji w instalacjach elektrycznych. Dlatego tak ważne jest, aby stosować się do określonych norm i praktyk, aby zapewnić bezpieczeństwo zarówno użytkowników, jak i całej instalacji.

Pytanie 10

W celu oceny stanu technicznego instalacji elektrycznej łazienki dokonano jej oględzin i pomiarów.
Na podstawie wyników pomiarów zamieszczonych w tabeli określ uszkodzenie powstałe w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji:
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna
Wartość:232 V0 V51 V49 V0 V
A. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
B. Przebicie izolacji przewodu fazowego do metalowych rur.
C. Uszkodzone połączenia wyrównawcze miejscowe.
D. Zwarcie między przewodem neutralnym, a ochronnym.
Zwarcie między przewodem neutralnym a ochronnym, przebicie izolacji przewodu fazowego do metalowych rur, oraz uszkodzona izolacja przewodu neutralnego w pobliżu wanny to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, ale nie oddają rzeczywistej sytuacji opisanej w wyniku pomiarów. Przy zwarciu między przewodem neutralnym a ochronnym zwykle obserwuje się znaczny wzrost prądu, co prowadziłoby do zadziałania zabezpieczeń, jak bezpieczniki czy wyłączniki różnicowoprądowe. Jeśli jednak nie doszło do takiej reakcji, to znaczy, że problem nie dotyczy tego aspektu. Przebicie izolacji jest zjawiskiem, które także ujawniałoby się poprzez zjawisko porażenia prądem lub spadek izolacji, co nie zostało wskazane w wynikach pomiarów. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny, chociaż brzmi groźnie, nie jest bezpośrednio związana z pomiarami napięcia między przewodem ochronnym a metalowymi elementami instalacji. W praktyce oznaczałoby to, że metalowe elementy nie byłyby prawidłowo uziemione, co prowadziłoby do niebezpiecznego wzrostu potencjału. Kluczowe jest, aby pamiętać, że nieprawidłowe interpretacje wyników pomiarów mogą prowadzić do błędnych wniosków dotyczących stanu technicznego instalacji, co może mieć poważne konsekwencje dla bezpieczeństwa użytkowników. W przypadku pojawiania się nieprawidłowych wartości napięcia, najpierw należy zweryfikować stan połączeń wyrównawczych, ponieważ to one powinny zapewniać bezpieczeństwo w danym obszarze. Zachowanie ostrożności i dokładne zrozumienie wyników pomiarowych są kluczowe dla zapobiegania poważnym wypadkom.

Pytanie 11

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 25/4/100-A
B. 63/4/300-A
C. 40/2/030-A
D. 16/2/010-A
Wybór wyłącznika różnicowoprądowego do zabezpieczenia obwodu gniazd jednofazowych jest kluczowy dla zapewnienia bezpieczeństwa. Odpowiedzi zawierające oznaczenia 25/4/100-A, 63/4/300-A oraz 16/2/010-A są nieodpowiednie z kilku powodów. Oznaczenie 25/4/100-A wskazuje na nominalny prąd różnicowy 25 mA, co jest zbyt niską wartością dla obwodów gniazdowych, szczególnie w pracowni komputerowej, gdzie ryzyko porażenia prądem jest wyższe. Z kolei 63/4/300-A z nominalnym prądem różnicowym 300 mA może nie zapewnić wystarczającego poziomu ochrony, ponieważ tak wysoka wartość prądu różnicowego jest odpowiadająca bardziej obwodom przemysłowym, gdzie ryzyko jest mniejsze. Ostatnie oznaczenie 16/2/010-A, z nominalnym prądem 10 mA, jest niewystarczające dla takiej ilości urządzeń, co stwarza poważne zagrożenie, gdyż zastosowanie zbyt niskiego prądu różnicowego może prowadzić do częstych wyłączeń oraz problemów z użytkowaniem sprzętu komputerowego. Prawidłowy dobór wyłącznika powinien uwzględniać zarówno aspekty techniczne, jak i specyfikę użytkowania w danym środowisku, co jest kluczowe dla zapewnienia funkcjonalności oraz bezpieczeństwa.

Pytanie 12

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 13

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody aluminiowe
B. Przewody do instalacji wewnętrznych
C. Przewody o podwyższonej odporności na UV
D. Przewody z miedzi beztlenowej
Wybór odpowiednich przewodów do instalacji zewnętrznych jest kluczowy, aby zapewnić ich trwałość i bezpieczeństwo. Przewody aluminiowe, choć lżejsze i tańsze, są mniej odporne na korozję i mają niższą przewodność elektryczną w porównaniu do przewodów miedzianych. Aluminiowe przewody mogą być stosowane w niektórych przypadkach, ale wymagają szczególnej uwagi podczas montażu, aby zminimalizować ryzyko utleniania się i utraty połączeń. Przewody z miedzi beztlenowej charakteryzują się wysoką przewodnością i są często stosowane w audiofilskich zastosowaniach, gdzie zależy nam na minimalizacji strat sygnału. Jednak w kontekście instalacji zewnętrznych ich odporność na czynniki atmosferyczne nie różni się znacząco od standardowych przewodów miedzianych. Przewody do instalacji wewnętrznych są projektowane z myślą o innych warunkach eksploatacyjnych. Nie są one przystosowane do odporności na promieniowanie UV, zmiany temperatury czy wilgotności. Użycie takich przewodów na zewnątrz może prowadzić do ich szybkiej degradacji, co z kolei zwiększa ryzyko awarii systemu. Dlatego ważne jest, aby zawsze stosować przewody odpowiednie do specyficznych warunków środowiskowych, w jakich będą eksploatowane.

Pytanie 14

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików
B. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
C. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków
D. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
Propozycje, które zakładają pozostawienie odłącznika w stanie otwartym bez blokady bądź zabezpieczenie go jedną kłódką, są niewłaściwe i niezgodne z dobrymi praktykami bezpieczeństwa. Zostawienie odłącznika w stanie otwartym bez odpowiedniej blokady, nawet z tablicą ostrzegawczą, nie zapewnia rzeczywistej ochrony przed niekontrolowanym włączeniem napięcia. Tego typu ostrzeżenia mogą być ignorowane lub niedostrzegane przez innych pracowników, co stwarza realne zagrożenie. Ponadto, blokowanie odłącznika jedną kłódką, nawet jeśli jest to kłódka założona przez jedną z grup, nie zabezpiecza przed tym, że druga grupa mogłaby nieświadomie włączyć urządzenie. Na przykład, gdy elektryk zakłada jedną kłódkę, hydraulicy mogą nie być świadomi, że napięcie zostało wyłączone, co prowadzi do sytuacji, gdzie praca jest wykonywana w warunkach wysokiego ryzyka. Takie podejście do zabezpieczeń jest sprzeczne z zasadą wspólnej odpowiedzialności oraz współpracy pomiędzy zespołami, co jest kluczowe w kontekście bezpieczeństwa pracy. Dlatego ważne jest, aby stosować standardy takie jak LOTO, które zapewniają, że przed rozpoczęciem prac każda grupa musi zablokować zasilanie, co wymaga współpracy i komunikacji między wszystkimi zaangażowanymi stronami.

Pytanie 15

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
C. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 16

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 13 A
B. 16 A
C. 20 A
D. 10 A
Wybór zbyt wysokiej wartości znamionowego prądu wyłącznika nadprądowego może prowadzić do niewłaściwego zabezpieczenia obwodu. Jeżeli na przykład zdecydujemy się na wyłącznik o wartości 16 A, 20 A lub 13 A, może to doprowadzić do sytuacji, w której obwód nie będzie odpowiednio chroniony przed przeciążeniem. Wyłącznik nadprądowy ma na celu ochronę obwodu przed nadmiernym prądem, który może wystąpić w wyniku zwarcia lub przeciążenia. Zbyt wysoka wartość znamionowa wyłącznika może skutkować tym, że nie zadziała on, gdy prąd przekroczy bezpieczny poziom, co może prowadzić do uszkodzenia urządzeń lub nawet pożaru. Z drugiej strony, wybór wyłącznika o wartościach poniżej 10 A mógłby prowadzić do częstych wyłączeń w obwodzie, co jest niepożądane w normalnym użytkowaniu. W praktyce, dostosowanie wartości wyłącznika do mocy obciążenia oraz uwzględnienie marginesów bezpieczeństwa jest kluczowe. Ponadto, w kontekście dobrych praktyk, zaleca się konsultację z elektrykiem podczas doboru odpowiednich zabezpieczeń, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej, zgodnie z normami obowiązującymi w danym kraju.

Pytanie 17

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 12 V
B. 50 V
C. 25 V
D. 60 V
Istniejące nieprawidłowe odpowiedzi związane z wartością skuteczną napięcia dotykowego dotykają kluczowych aspektów bezpieczeństwa elektrycznego, które są niezwykle istotne w kontekście ochrony życia i zdrowia ludzi. Odpowiedzi sugerujące ilości mniejsze niż 50 V, jak 12 V, 25 V czy 60 V, mogą wprowadzać w błąd co do rzeczywistego ryzyka związanego z narażeniem na działanie prądu przemiennego. Po pierwsze, 12 V to napięcie, które w większości przypadków uznawane jest za bezpieczne, ale w praktyce, zwłaszcza w warunkach wilgotnych, nawet niskie napięcia mogą stanowić zagrożenie, jeśli nie są odpowiednio zabezpieczone. 25 V również nie jest wystarczająco zabezpieczone, biorąc pod uwagę, że normy bezpieczeństwa w różnych aplikacjach zazwyczaj uwzględniają wyższe wartości. Co więcej, 60 V, choć bliskie rzeczywistego niebezpieczeństwa, przekracza zalecaną wartość 50 V, co wyraźnie narusza zasady ochrony przeciwporażeniowej. Warto również podkreślić, że w przypadku napięć przekraczających 50 V, znaczenie ma nie tylko ich wartość, ale również czas ekspozycji oraz warunki otoczenia. Błędem jest zakładanie, że napięcie poniżej 50 V jest zawsze bezpieczne, co ignoruje złożoność interakcji między prądem a organizmem ludzkim. Z tego powodu kluczowe jest przestrzeganie standardów, takich jak IEC 60479, które stanowią fundament dla bezpiecznego projektowania instalacji elektrycznych.

Pytanie 18

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 830 Ω
B. Około 1 660 Ω
C. 4 000 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 19

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. 2 000 Ω
C. Około 1660 Ω
D. Około 830 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 20

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 21

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. wzrost prędkości obrotowej silnika
B. unieruchomienie silnika
C. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
D. spadek prędkości obrotowej silnika
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 22

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C40
C. S303 C25
D. S303 C32
Wybór niewłaściwego wyłącznika nadprądowego dla obwodu zasilania silnika klatkowego może wynikać z niepełnego zrozumienia obliczeń prądowych lub zasad doboru zabezpieczeń. Na przykład, odpowiedź S303 C25 może wydawać się atrakcyjna z uwagi na to, że wartość 25 A jest zbliżona do obliczonego prądu roboczego; jednak to podejście ignoruje istotny aspekt związany z ochroną przed przeciążeniem. W praktyce, wyłącznik nadprądowy powinien mieć wartość znamionową co najmniej 125% prądu roboczego silnika, aby skutecznie zareagować na chwilowe przeciążenia, które są normalne w pracy silników indukcyjnych. Z kolei wybór S303 C20 obniża margines bezpieczeństwa, co może prowadzić do niepożądanych wyłączeń w przypadku większych obciążeń. Odpowiedź S303 C40 jest również niewłaściwa, ponieważ wyłącznik ten ma zbyt dużą wartość znamionową, co może prowadzić do braku ochrony przed przeciążeniem, a także zwiększa ryzyko uszkodzenia silnika w przypadku zwarcia. Kluczowe przy doborze wyłącznika jest więc zrozumienie nie tylko aktualnych parametrów obciążenia, ale także zachowań dynamicznych urządzeń elektrycznych, co składa się na prawidłowe zabezpieczenie instalacji elektrycznej zgodnie z normami i najlepszymi praktykami branżowymi.

Pytanie 23

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 2,3 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 8,0 Ω
Wybór wartości impedancji pętli zwarcia wyższej niż 2,3 Ω w kontekście zapewnienia skutecznej ochrony przeciwporażeniowej jest nieprawidłowy z kilku powodów. Po pierwsze, każda wartość impedancji, która przekracza tę wartość, skutkuje niższym prądem zwarciowym, co wydłuża czas wyłączenia zasilania przez wyłącznik nadprądowy. Dla przykładu, przy impedancji 4,6 Ω prąd zwarciowy wynosi jedynie około 87 A, co może spowodować, że wyłącznik C10 nie zareaguje wystarczająco szybko, co zwiększa ryzyko porażenia. Ponadto, wartość 7,7 Ω oraz 8,0 Ω stawia instalację w strefie ryzyka, gdyż czas wyłączenia może przekroczyć bezpieczne limity określone w normach, co jest sprzeczne z zasadami ochrony elektrycznej. Wartości te są również niezgodne z zaleceniami wynikającymi z dyrektyw unijnych i krajowych przepisów prawa budowlanego, które nakładają obowiązek przeprowadzenia analizy ryzyka oraz projektowania instalacji zgodnie z zasadami bezpieczeństwa. W praktyce, projektanci i wykonawcy powinni zawsze dążyć do zminimalizowania impedancji pętli zwarcia, aby zapewnić maksymalną ochronę użytkowników. Nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji, zarówno dla użytkowników, jak i dla samej instalacji elektrycznej.

Pytanie 24

W instalacji jednofazowej o częstotliwości 50 Hz oraz napięciu znamionowym 230 V, wartość napięcia pomiędzy przewodem fazowym a przewodem neutralnym nie powinna wynosić

A. mniej niż 230 V
B. więcej niż 253 V
C. więcej niż 243 V
D. mniej niż 213 V
Zobaczmy teraz inne odpowiedzi. Niektóre z nich mogą być mylące i ludzie mogą je wybrać przez niezrozumienie tolerancji napięcia w instalacjach jednofazowych. Na przykład, stwierdzenie, że napięcie nie powinno być mniejsze niż 213 V, to błąd, bo jednak dopuszczalne odchylenie w dół to 207 V. Możliwe, że ktoś pomyślał, że napięcie nie może być poniżej nominalnej wartości, a to nie jest zgodne z normami. Inną odpowiedzią jest twierdzenie, że nie może być mniejsze niż 230 V. To też nieprawda, bo normy mówią, że napięcie czasem może spadać poniżej tej wartości, szczególnie przy obciążeniach. Wybór opcji, że nie powinno być większe niż 243 V, też jest błędny, bo norma PN-EN 50160 dopuszcza wartość do 253 V. Te błędy mogą wynikać z niewiedzy o normach dotyczących napięcia, a to ważne, żeby pamiętać o tych standardach, bo zapewniają bezpieczeństwo i efektywność instalacji.

Pytanie 25

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Żółto-zielony
B. Zielony
C. Czarny
D. Jasnoniebieski
Oznaczenie przewodów w instalacjach elektrycznych jest kluczowym aspektem, który ma bezpośredni wpływ na bezpieczeństwo użytkowania instalacji. Wybór barwy zielonej dla przewodu uziemiającego jest błędny, ponieważ zarezerwowane jest to dla przewodów ochronnych, jednak nie jest zalecane do oznaczania przewodów uziemiających. Zielony kolor mógłby prowadzić do nieporozumień i pomyłek w instalacjach, gdzie ważne jest, aby przewody były właściwie identyfikowane. Przewód czarny, z drugiej strony, jest najczęściej używany w systemach jako przewód fazowy, co również czyni go niewłaściwym wyborem dla uziemienia, gdyż może wprowadzać w błąd podczas wykonywania prac serwisowych. Jasnoniebieski kolor oznacza przewody neutralne, co także kłóci się z wymaganiami dotyczącymi uziemienia. Pomieszanie oznaczeń jest typowym błędem, który może wystąpić, gdy nie ma pełnego zrozumienia norm i standardów dotyczących kolorów przewodów w instalacjach elektrycznych. W przypadku punktów gwiazdowych transformatorów SN/nn, istotne jest, aby przewody uziemiające były wyraźnie oznaczone w sposób jednoznaczny i zgodny z normami, co umożliwia ich łatwą identyfikację i minimalizuje ryzyko porażenia prądem w sytuacjach awaryjnych.

Pytanie 26

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wykręcić żarówki
B. otworzyć łączniki instalacyjne i wkręcić żarówki
C. zamknąć łączniki instalacyjne i wkręcić żarówki
D. otworzyć łączniki instalacyjne i wykręcić żarówki
Otwieranie łączników i wkręcanie żarówek nie jest mądrym pomysłem, bo może to prowadzić do sporych niebezpieczeństw podczas pomiarów rezystancji izolacji. Jak otworzysz łączniki, to instalacja może się niechcący włączyć, co stwarza ryzyko porażenia prądem lub uszkodzenia sprzętu. Wkręcanie żarówek w tym przypadku to zły ruch, bo może to prowadzić do nieplanowanych połączeń elektrycznych, które mogą być niebezpieczne i generować nieoczekiwane napięcia. Pamiętaj, że przy pomiarach izolacji istotne jest, by cała instalacja była odłączona od zasilania. Zgodnie z normą PN-IEC 60079, podstawową zasadą bezpieczeństwa jest unikanie pracy na sprzęcie pod napięciem. Z tego powodu odpowiedzi sugerujące otwieranie łączników są po prostu niezgodne z najlepszymi praktykami. Zawsze, gdy robisz pomiary elektryczne, kluczowe jest, aby podjąć wszelkie środki ostrożności i odpowiednio przygotować instalację, żeby zminimalizować ryzyko niebezpieczeństw.

Pytanie 27

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 44
B. IP 22
C. IP 66
D. IP 00
Wybór IP 22 jest kiepskim pomysłem. Oznacza to, że osprzęt ma tylko częściową ochronę przed ciałami stałymi większymi niż 12,5 mm i w ogóle nie broni przed wodą. To za mało na łazienki czy kuchnie, gdzie wilgoć jest na porządku dziennym. Tam ważne, by sprzęt był chroniony przed wodą i zanieczyszczeniami, dlatego IP 44 to minimum, które powinno się wybrać. A IP 00? To już totalna porażka, bo w elektryce oznacza brak ochrony, co stwarza zagrożenie zarówno dla sprzętu, jak i ludzi. Z kolei IP 66, mimo że teoretycznie świetnie chroni przed wodą i pyłem, to w domowych warunkach może być zbyteczne i nieopłacalne. Ważne jest, by dobierać stopnie ochrony do konkretnego miejsca i warunków użytkowania. Wiedza na ten temat umożliwia podejmowanie lepszych decyzji co do osprzętu, co jest kluczowe dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 28

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Tłumicę
B. Hydronetkę
C. Gaśnicę proszkową
D. Gaśnicę płynową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 29

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. pięć lat
B. jeden rok
C. pół roku
D. dwa lata
Wybór odpowiedzi "dwa lata", "pół roku" lub "pięć lat" wynika z niepełnego zrozumienia przepisów dotyczących ochrony przeciwporażeniowej w specyficznych warunkach. Okres dwóch lat jest zbyt długi w kontekście pomieszczeń, gdzie ryzyko uszkodzeń instalacji elektrycznych jest znacznie wyższe z powodu obecności substancji żrących lub innych czynników zewnętrznych. W takich środowiskach, gdzie instalacje są narażone na korozję, kontrola powinna być przeprowadzana co najmniej raz w roku, aby zminimalizować ryzyko awarii. Z drugiej strony, okres pół roku, mimo że krótszy, może być niewystarczający w kontekście zmieniającego się stanu technicznego instalacji w trudnych warunkach eksploatacji. Wybór pięcioletniego okresu kontroli jest rażąco nieodpowiedni, ponieważ nie uwzględnia specyfiki miejsc, gdzie komponenty elektryczne mogą szybko ulegać degradacji. Każdy z tych błędnych wyborów nie uwzględnia także przepisów prawa budowlanego oraz norm branżowych, które jasno wskazują na wymóg rocznych kontroli jako standard bezpieczeństwa. Niezrozumienie tych regulacji oraz potencjalnych konsekwencji związanych z rzadkimi kontrolami może prowadzić do poważnych incydentów, które mogą być kosztowne zarówno w aspekcie finansowym, jak i bezpieczeństwa ludzi. Dlatego kluczowe jest dokładne zapoznanie się z przepisami oraz standardami pracy w danym środowisku, aby podejmować świadome decyzje dotyczące bezpieczeństwa instalacji elektrycznych.

Pytanie 30

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NH aM
B. WT-00 gF
C. WT/NH DC
D. WT-2 gTr
Wkładka topikowa WT/NH aM jest odpowiednia do zabezpieczania silników indukcyjnych przed skutkami zwarć, ponieważ charakteryzuje się dużą zdolnością do przerwania prądu oraz odpowiednim czasem zadziałania. W porównaniu do innych wkładek, aM (motor) zapewnia lepszą ochronę w przypadku prądów rozruchowych, które mogą być znacznie wyższe od normalnych wartości roboczych. W praktyce, takie wkładki są stosowane w układach zasilających silników elektrycznych, które podczas rozruchu mogą generować prądy nawet 5-7 razy większe od nominalnych. Dzięki właściwościom aM, wkładki te pozwalają na dłuższe tolerowanie tych wysokich prądów, co znacząco zwiększa bezpieczeństwo i nie powoduje niepotrzebnych wyłączeń. Dodatkowo, zgodnie z normą IEC 60269, wkładki aM są przystosowane do ochrony silników przed przeciążeniem, co czyni je idealnym wyborem w aplikacjach przemysłowych. Warto zaznaczyć, że stosowanie wkładek zabezpieczających powinno odbywać się zgodnie z zaleceniami producentów urządzeń oraz normami bezpieczeństwa, co zwiększa ich efektywność i niezawodność.

Pytanie 31

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 1 rok
B. 5 lat
C. 2 lata
D. 3 lata
Odpowiedzi, które sugerują krótsze okresy przeglądów, jak 2 czy 3 lata, mogą wydawać się sensowne, bo to bardziej na bezpieczeństwo, ale w rzeczywistości to raczej nieodpowiednie podejście. Zbyt częste przeglądy mogą wiązać się z niepotrzebnymi kosztami dla właścicieli budynków i obciążać służby techniczne, które mogą być zajęte innymi sprawami. Dodatkowo, krótsze okresy mogą wprowadzać w błąd i powodować nieuzasadniony niepokój wśród mieszkańców. Ważne jest, żeby przeglądy robić zgodnie z wytycznymi, które uwzględniają rzeczywiste potrzeby i stan techniczny instalacji. Dobrze jest też robić audyty techniczne, żeby wcześniej wykrywać ewentualne problemy. A co do odpowiedzi, która mówi o 1 roku, to jest zupełnie nietrafiona, bo w tak krótkim czasie nie ma szans na zauważenie efektów użytkowania i degradacji. Dbanie o bezpieczeństwo w budynkach wielorodzinnych powinno opierać się na rozsądnych zasadach, które biorą pod uwagę nie tylko koszty, ale i utrzymanie wysokich standardów bezpieczeństwa.

Pytanie 32

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Włączanie i wyłączanie urządzeń
B. Przeprowadzanie oględzin wymagających demontażu
C. Realizowanie przeglądów niewymagających demontażu
D. Monitorowanie urządzeń w trakcie pracy
Uruchamianie i zatrzymywanie urządzeń, wykonywanie przeglądów niewymagających demontażu oraz nadzorowanie urządzeń w czasie pracy to działania, które są integralną częścią procesu eksploatacji urządzeń elektrycznych. Nieprawidłowe postrzeganie tych czynności jako zadań eksploatacyjnych może prowadzić do nieefektywnego zarządzania urządzeniami oraz potencjalnych zagrożeń dla bezpieczeństwa. Uruchamianie i zatrzymywanie urządzeń powinno być wykonywane z zachowaniem szczególnej ostrożności, zgodnie z procedurami operacyjnymi, aby zminimalizować ryzyko awarii lub uszkodzeń. W przypadku przeglądów niewymagających demontażu, pracownicy powinni znać zasady inspekcji wizualnej, które pomagają w wykrywaniu potencjalnych usterek, co jest kluczowe dla zapewnienia ciągłości operacyjnej. Nadzorowanie urządzeń w czasie pracy ma na celu monitorowanie ich stanu technicznego oraz identyfikację wszelkich nieprawidłowości, które mogą prowadzić do awarii. Warto przy tym pamiętać, że zbyt często myli się eksploatację z konserwacją, co prowadzi do błędnych decyzji. Różnice te są istotne, ponieważ wymagana jest różna wiedza i umiejętności do efektywnego wykonania każdego z tych zadań. Zrozumienie tych różnic pozwala na lepsze wykorzystanie zasobów oraz podnosi standardy bezpieczeństwa w zakładzie.

Pytanie 33

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zmniejszenie momentu rozruchowego.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie mocy silnika.
D. uszkodzenie silnika.
Silnik jednofazowy rzeczywiście wymaga kondensatora rozruchowego do prawidłowego startu. Kondensator ten wytwarza przesunięcie fazowe, co jest kluczowe dla generowania odpowiedniego momentu obrotowego. Kiedy silnik jest uruchamiany, kondensator rozruchowy tworzy pole magnetyczne, które pozwala na zainicjowanie ruchu wirnika. Bez tego kondensatora silnik nie jest w stanie wytworzyć wystarczającego momentu obrotowego, co prowadzi do problemów z uruchomieniem. W praktyce, takie silniki są powszechnie stosowane w domowych urządzeniach, takich jak wentylatory czy pompy, gdzie ich niezawodność jest kluczowa. W standardach branżowych, zgodnie z zasadami eksploatacji silników elektrycznych, konieczne jest stosowanie odpowiednich komponentów, aby zapewnić optymalne warunki pracy. Dlatego brak kondensatora rozruchowego skutkuje nie tylko trudnościami w uruchomieniu, ale także może prowadzić do uszkodzeń silnika w dłuższej perspektywie czasowej.

Pytanie 34

Jakie powinno być maksymalne wskazanie amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V o częstotliwości 50 Hz, zasilanej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, n = 70%, cosφ = 0,96?

A. 1A
B. 3A
C. 4A
D. 2A
Aby poprawnie określić zakres pomiarowy amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V, należy najpierw obliczyć prąd, jaki płynie przez jednofazowy silnik elektryczny o mocy 0,55 kW. Używając wzoru: I = P / (U * cosφ), gdzie I to natężenie prądu, P to moc (0,55 kW), U to napięcie (230 V), a cosφ to współczynnik mocy (0,96), obliczamy: I = 550 W / (230 V * 0,96) ≈ 2,5 A. Wartością, którą należy wziąć pod uwagę, jest również dodatkowy margines bezpieczeństwa dla amperomierza, co oznacza, że dobrze jest wybrać amperomierz o nieco większym zakresie pomiarowym. Dlatego odpowiedni zakres pomiarowy wynosi 4A, co pozwoli na komfortowe pomiary bez ryzyka uszkodzenia przy większych obciążeniach lub chwilowych przeciążeniach. Użycie amperomierza o odpowiednim zakresie to praktyka zgodna z zasadami bezpieczeństwa oraz normami branżowymi, co zapewnia rzetelność pomiarów i długowieczność urządzenia.

Pytanie 35

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Obniżenie obciążalności prądowej
B. Wzrost spadku napięcia na przewodach
C. Zwiększenie temperatury przewodu
D. Obniżenie rezystancji pętli zwarciowej
Kiedy analizujemy skutki wymiany przewodów, ważne jest zrozumienie, że nie wszystkie zmiany w instalacji prowadzą do negatywnych efektów. Stwierdzenie, że wymiana przewodów ADY na DY 2,5 mm² spowoduje zwiększenie nagrzewania się przewodu, jest błędne. Przewody DY, wykonane z materiałów o lepszej przewodności elektrycznej, mogą w rzeczywistości poprawić efektywność przewodzenia prądu, co skutkuje mniejszymi stratami energii w postaci ciepła. Zwiększenie spadku napięcia na przewodach również jest mylne; w rzeczywistości, bardziej efektywne przewody mogą zredukować spadki napięcia, co jest szczególnie istotne w długich instalacjach. Z kolei stwierdzenie, że obciążalność prądowa zwiększy się po wymianie, jest niepoprawne, gdyż nowe przewody mogą mieć lepsze właściwości izolacyjne i przewodzące, co w rzeczywistości zwiększa ich obciążalność. Typowe błędy myślowe prowadzące do takich konkluzji to zbytnie uogólnienie negatywnych skutków związanych z wymianą przewodów, a nie uwzględnienie ich specyfikacji technicznych oraz standardów branżowych, jak PN-IEC, które jasno określają wymagania dla instalacji elektrycznych. Kluczowe jest zrozumienie, że właściwy dobór i zastosowanie materiałów w instalacjach elektrycznych wpływa na ich bezpieczeństwo oraz efektywność działania.

Pytanie 36

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji przewodu ochronnego
B. prądu upływu
C. symetrii uzwojeń
D. rezystancji uzwojeń stojana
Pomiar rezystancji uzwojeń stojana oraz rezystancji przewodu ochronnego nie dostarcza bezpośrednich informacji na temat stanu izolacji względem korpusu silnika. Rezystancja uzwojeń wskazuje na ich ogólny stan, ale nie uwzględnia ewentualnych uszkodzeń izolacji, które mogą występować w postaci przebicia. Tego rodzaju defekty mogą być niewidoczne podczas pomiarów rezystancji, co prowadzi do fałszywego poczucia bezpieczeństwa. Z kolei pomiar rezystancji przewodu ochronnego odnosi się do skuteczności uziemienia, które ma na celu ochronę przed porażeniem prądem elektrycznym, ale nie jest wskaźnikiem stanu izolacji wewnętrznej uzwojeń. Symetria uzwojeń, mimo że jest istotna dla prawidłowego działania silnika, nie ma bezpośredniego związku z izolacją. Problemy z symetrią mogą prowadzić do nierównomiernego rozkładu prądów w uzwojeniach, co z kolei może powodować przegrzewanie silnika, ale nie wykryje uszkodzeń izolacji. W branży elektrotechnicznej kluczowe jest zrozumienie, że różne metody pomiarowe mają swoje unikalne zastosowania i ograniczenia, a ich niewłaściwe stosowanie może prowadzić do niebezpieczeństwa oraz kosztownych napraw. Warto zwracać uwagę na odpowiednie procedury diagnostyczne, aby zapewnić bezpieczeństwo i efektywność działania maszyn elektrycznych.

Pytanie 37

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Falownik
B. Softstart
C. Autotransformator
D. Rozrusznik
Używanie softstartów do regulacji obrotów silnika indukcyjnego zwartego opiera się na błędnym założeniu, że ten typ urządzenia może zmieniać prędkość silnika. Softstarty służą głównie do ograniczenia prądu rozruchowego silników oraz do wygodnego uruchamiania i zatrzymywania silników. Działają poprzez stopniowe zwiększanie napięcia zasilającego, co pozwala na łagodny start, ale nie umożliwiają regulacji prędkości obrotowej w sposób płynny i ciągły. Tego typu urządzenia są przydatne w aplikacjach, gdzie wymagana jest ochrona silnika przed przeciążeniem, ale nie można ich stosować tam, gdzie potrzebna jest precyzyjna kontrola obrotów. Autotransformator, z kolei, zmienia napięcie zasilające, co wpływa na moment obrotowy silnika, jednak nie jest w stanie zapewnić pełnej kontroli nad jego prędkością. Takie podejście prowadzi do nieefektywności energetycznej oraz może być przyczyną uszkodzeń silnika przy dużych zmianach obciążenia. Rozruszniki, zwłaszcza te ręczne, w ogóle nie oferują regulacji obrotów; ich głównym zadaniem jest uruchomienie silnika. W kontekście nowoczesnej automatyki przemysłowej, zastosowanie niewłaściwych urządzeń lub metod może prowadzić do utraty wydajności systemu oraz zwiększenia kosztów operacyjnych, co podkreśla znaczenie wyboru odpowiednich technologii dla specyficznych aplikacji.

Pytanie 38

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TT
B. IT
C. TN-C
D. TN-S
Wybór układów TT, TN-S i IT jako potencjalnych odpowiedzi na pytanie może wynikać z niewłaściwego zrozumienia zasad ochrony przeciwporażeniowej oraz działania wyłączników różnicowoprądowych. W systemie TT, neutralny przewód jest oddzielony od przewodu ochronnego. W przypadku uszkodzenia, WRP może skutecznie wykryć prąd upływowy, co pozwala na szybką reakcję i odłączenie obwodu. Podobnie w układzie TN-S, gdzie przewody PE i N są oddzielone, WRP działa właściwie, zapewniając ochronę przed porażeniem elektrycznym. W systemie IT, brak uziemienia w przewodzie neutralnym sprawia, że WRP również może działać, jednakże wymaga to specyficznego nadzoru i dodatkowych mechanizmów zabezpieczeń. Osoby myślące, że WRP można stosować w każdym typie sieci, mogą nie rozumieć, że jego skuteczność zależy od prawidłowego uziemienia oraz separacji obwodów. Ostatecznie, kluczem do bezpieczeństwa w systemach elektrycznych jest nie tylko zastosowanie odpowiednich urządzeń zabezpieczających, ale również właściwe projektowanie i wykonawstwo instalacji elektrycznych zgodnie z aktualnymi normami i standardami, takimi jak PN-IEC 60364.

Pytanie 39

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. opisu doboru urządzeń zabezpieczających
C. spisu terminów oraz zakresów prób i badań kontrolnych
D. specyfikacji technicznej instalacji
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 40

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojenia U1-U2.
B. uzwojeń U1-U2 i V1-V2.
C. uzwojenia V1-V2.
D. uzwojeń U1-U2 i W1-W2.
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.