Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 08:56
  • Data zakończenia: 17 grudnia 2025 08:59

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zbyt mocny nacisk szczotek na komutator
B. umiejscowienie szczotek poza obszarem neutralnym
C. zaśmiecenie komutatora pyłem węglowym
D. brak kontaktu szczotek z komutatorem
Zbyt silny docisk szczotek do komutatora może prowadzić do nadmiernego zużycia zarówno szczotek, jak i samego komutatora. Chociaż teoretycznie można by sądzić, że mocniejszy docisk poprawi przewodnictwo, w praktyce może prowadzić do powstania większych oporów oraz przegrzewania się silnika. Ustawienie szczotek poza strefą neutralną również jest problematyczne, ponieważ strefa ta jest obszarem, w którym nie ma indukcji elektromotorycznej, co skutkuje zmniejszoną efektywnością. Nieprawidłowe ustawienie prowadzi do drgań i nierównomiernego działania silnika. Zabrudzenie komutatora pyłem węglowym stanowi kolejny problem, ponieważ zanieczyszczenia mogą zakłócać przewodzenie prądu. Użytkownicy powinni być świadomi, że wszelkie te problemy są wynikiem niewłaściwej konserwacji lub użytkowania silnika. Typowe błędy myślowe to nadmierne uproszczenie problemu do jednego czynnika, bez uwzględnienia kompleksowości działania silnika. Dbanie o silnik wymaga holistycznego podejścia, które obejmuje regularne przeglądy, czyszczenie oraz wymianę zużytych elementów.")

Pytanie 2

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AFL 6 120
B. AAFLwsXSn 50
C. YAKY 4×10
D. AsXS 4×70
Przewody AsXS 4×70, AAFLwsXSn 50 oraz AFL 6 120, mimo że są to przewody o dużych przekrojach i różnych zastosowaniach, nie spełniają wymagań dla wykonania przyłącza elektrycznego ziemnego dla budynku jednorodzinnego z linią napowietrzną 230/400 V. Przewód AsXS 4×70, mimo że ma wyższy przekrój, jest typowym przewodem stosowanym w instalacjach przemysłowych, co czyni go zbyt dużym i niepraktycznym w kontekście przyłącza do jednorodzinnego budynku. Wybór przewodu o tak dużym przekroju może prowadzić do nieefektywnie wysokich kosztów oraz problemów z montażem. Przewód AAFLwsXSn 50, z kolei, jest przewodem aluminiowym, ale jego przekrój i specyfika zastosowania nie są zgodne z wymaganiami dla bezpiecznego przyłącza ziemnego. Użycie przewodu o takiej budowie mogłoby prowadzić do problemów z uziemieniem oraz zwiększoną podatnością na uszkodzenia mechaniczne. Natomiast AFL 6 120, choć jest przewodem dostosowanym do dużych obciążeń, to jego konstrukcja i przeznaczenie w szczególności w instalacjach energetycznych sprawiają, że nie jest on zalecany do przyłącza dla budynku jednorodzinnego. Wybór niewłaściwego przewodu może prowadzić nie tylko do problemów technicznych, ale również do naruszenia przepisów prawa budowlanego oraz norm bezpieczeństwa, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa użytkowników budynku.

Pytanie 3

W celu oceny stanu technicznego instalacji elektrycznej łazienki dokonano jej oględzin i pomiarów.
Na podstawie wyników pomiarów zamieszczonych w tabeli określ uszkodzenie powstałe w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji:
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna
Wartość:232 V0 V51 V49 V0 V
A. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
B. Przebicie izolacji przewodu fazowego do metalowych rur.
C. Uszkodzone połączenia wyrównawcze miejscowe.
D. Zwarcie między przewodem neutralnym, a ochronnym.
Uszkodzone połączenia wyrównawcze miejscowe to poprawna odpowiedź, ponieważ wartości napięcia zmierzone na metalowych rurach wynoszące 51 V i 49 V wskazują na problem z zabezpieczeniem elektrycznym w łazience. Zgodnie z normami bezpieczeństwa, takie jak PN-IEC 60364, wszelkie metalowe elementy instalacji elektrycznej muszą być połączone z przewodem ochronnym PE, aby zapobiec wystąpieniu niebezpiecznych różnic potencjałów. W przypadku prawidłowych połączeń wyrównawczych, napięcie na metalowych elementach powinno wynosić 0 V. Praktyka ta ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym użytkowników, zwłaszcza w obszarach narażonych na wilgoć, jak łazienki. Warto również pamiętać, że regularne przeglądy i pomiary instalacji są kluczowe dla wykrywania potencjalnych usterek, co jest zgodne z zasadami utrzymania bezpieczeństwa w budynkach mieszkalnych. Dobrze zrealizowane połączenia wyrównawcze są ważnym krokiem w zapewnieniu funkcjonalności i bezpieczeństwa instalacji elektrycznej.

Pytanie 4

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Wzrasta napięcie na końcówkach uzwojenia wtórnego
B. Zmaleje napięcie na końcówkach uzwojenia wtórnego
C. Zredukuje się moc pobierana z transformatora
D. Zwiększy się efektywność transformatora
Zrozumienie wpływu zmiany uzwojenia transformatora na jego parametry pracy wymaga przemyślenia kilku kluczowych aspektów. Zmiana uzwojenia pierwotnego na druty o większym przekroju nie prowadzi do zmniejszenia mocy pobieranej z transformatora, ponieważ moc pobierana przez transformator zależy głównie od obciążenia podłączonego do uzwojenia wtórnego oraz od napięcia i prądu w uzwojeniu pierwotnym. Zmiana przekroju drutu nie wpływa na zjawisko obciążenia, a zatem moc pozostaje na poziomie wymaganym przez odbiornik. Odpowiedź dotycząca zmniejszenia napięcia na zaciskach uzwojenia wtórnego jest także błędna, ponieważ napięcie wtórne w transformatorze zależy od stosunku liczby zwojów uzwojenia pierwotnego do wtórnego, a nie od przekroju drutów. Zwiększenie przekroju drutu może prowadzić do mniejszych strat w uzwojeniu, ale nie zmienia samego napięcia. W przypadku zwiększenia przekroju drutów, nie jest możliwe zwiększenie napięcia na zaciskach uzwojenia wtórnego, ponieważ napięcie jest determinowane przez stosunek zwojów, a nie przez ich przekrój. Zrozumienie tych zasad jest kluczowe w kontekście projektowania i eksploatacji transformatorów, aby nie wprowadzać zamieszania w doborze parametrów technicznych i ich wpływu na efektywność energetyczną.

Pytanie 5

Zmierzone parametry rezystancji cewki stycznika umiejscowionej w obwodzie sterującym silnikiem wynoszą 0 Ω. Na tej podstawie można wnioskować, że

A. przewód neutralny jest odłączony
B. cewka stycznika jest uszkodzona
C. przewód fazowy jest odłączony
D. cewka stycznika działa prawidłowo
Prawidłowe zrozumienie funkcji cewki stycznika i interpretacji wyników pomiarów rezystancji jest kluczowe w diagnostyce układów elektronicznych. Twierdzenie, że przewód neutralny jest odłączony, nie ma związku z pomiarem rezystancji cewki. W przypadku odłączenia przewodu neutralnego, cewka nie mogłaby być zasilana, ale pomiar rezystancji nie będzie wynosił 0 Ω, lecz wykazywałby nieskończoność, ponieważ nie byłoby obwodu zamkniętego. Analogicznie, stwierdzenie, że przewód fazowy jest odłączony, jest również nieprawidłowe. Odłączenie przewodu fazowego skutkuje brakiem zasilania, co także nie przejawia się w pomiarze rezystancji, a raczej w braku reakcji cewki. Odpowiedź twierdząca, że cewka stycznika jest sprawna, jest sprzeczna z zasadami elektrycznymi, ponieważ rezystancja wynosząca 0 Ω wskazuje na zwarcie, co jednoznacznie sugeruje usterkę. Ważne jest, aby przed rozpoczęciem diagnostyki zrozumieć, że analizowane pomiary muszą być interpretowane w kontekście całego układu oraz jego zasad działania. Niezrozumienie tych zasad może prowadzić do błędnych diagnoz, co w efekcie obniża skuteczność prac konserwacyjnych i zwiększa ryzyko awarii sprzętu elektrycznego.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Napięcia w poszczególnych fazach
B. Prądu, który jest pobierany przez odbiornik
C. Rezystancji izolacji przewodów
D. Ciągłości przewodów ochronnych
Typowe pomiary eksploatacyjne instalacji oświetleniowej, takie jak prąd pobierany przez odbiornik, ciągłość przewodów ochronnych oraz napięcie w poszczególnych fazach, są jak najbardziej możliwe do wykonania za pomocą mierników uniwersalnych. Mierniki te są niezbędne w codziennym użytkowaniu i wykonywaniu prac serwisowych. Prąd pobierany przez odbiornik można zmierzyć, podłączając miernik w szereg z obwodem, co pozwala na bezpośrednią ocenę jego wartości. Pomiar ciągłości przewodów ochronnych polega na sprawdzeniu, czy przewód ochronny jest prawidłowo połączony, a miernik uniwersalny doskonale sprawdza się w tej roli, zapewniając niską rezystancję w przypadku, gdy przewód jest w dobrym stanie. Napięcie w poszczególnych fazach można zmierzyć, ustawiając miernik w tryb pomiaru napięcia, co jest standardową praktyką w analizie instalacji elektrycznych. W wielu przypadkach, zwłaszcza w instalacjach przemysłowych, pomiar tych parametrów jest niezbędny do zapewnienia prawidłowego działania systemów oraz ich zgodności z normami. Dlatego zrozumienie, jak używać mierników uniwersalnych w tych kontekstach, jest podstawą pracy w dziedzinie elektryki i jest kluczowe dla każdego technika czy inżyniera. Błędne zrozumienie zastosowań tych urządzeń może prowadzić do niewłaściwych wniosków na temat ich funkcjonalności i możliwości, dlatego ważne jest, aby znać ograniczenia poszczególnych narzędzi pomiarowych oraz odpowiednio je dobierać do konkretnego zadania.

Pytanie 8

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Realizowanie przeglądów niewymagających demontażu
B. Przeprowadzanie oględzin wymagających demontażu
C. Włączanie i wyłączanie urządzeń
D. Monitorowanie urządzeń w trakcie pracy
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 9

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 1,1
B. 2,2
C. 0,8
D. 1,4
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z silników może pracować przy obciążeniu długotrwałym w układzie połączeń pokazanym na rysunku?

A.5,5 kW400/690 V
Δ/Y
IP55S22920 obr/min
B.1,5 kW400/690 V
Δ/Y
IP45S11430 obr/min
C.5,5 kW230/400 V
Δ/Y
IP55S12920 obr/min
D.1,5 kW230/400 V
Δ/Y
IP45S21430 obr/min
Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór silnika, który nie jest przystosowany do pracy w konfiguracji gwiazda przy napięciu 400 V, może prowadzić do wielu problemów związanych z jego funkcjonowaniem oraz bezpieczeństwem. Niektóre silniki, które są oznaczone innymi wartościami napięcia, mogą nie być w stanie efektywnie pracować przy obciążeniu długotrwałym, co skutkuje ich przegrzewaniem lub nawet uszkodzeniem. Na przykład, silnik, który nie jest przystosowany do napięcia 400/690 V, może być zaprojektowany do pracy w wyższych napięciach, co w sytuacjach, gdy jest podłączony do sieci 400 V, nie tylko zmienia parametry pracy silnika, ale również może prowadzić do jego niewłaściwego działania. Tego typu błędy mogą wynikać z nieznajomości zasad działania silników elektrycznych oraz ich właściwości, takich jak napięcie znamionowe, które jest kluczowe dla zapewnienia prawidłowej pracy w układzie trójfazowym. Często zapomina się, że dobór silnika powinien być zgodny z wymaganiami aplikacji, a także powinien uwzględniać standardy branżowe, takie jak normy IEC dotyczące silników elektrycznych. Dlatego ważne jest, aby dokładnie analizować schematy połączeń oraz właściwości techniczne urządzeń, aby uniknąć kosztownych błędów w doborze sprzętu.

Pytanie 13

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Odłącznik instalacyjny.
B. Wyłącznik małej mocy.
C. Rozłącznik izolacyjny z widoczną przerwą.
D. Łącznik silnikowy bez zabezpieczeń termicznych.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 14

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 500 mA
B. 100 mA
C. 1 000 mA
D. 30 mA
Wybór wyłączników różnicowoprądowych o wyższych wartościach znamionowego prądu różnicowego, takich jak 1 000 mA, 500 mA czy 100 mA, nie jest odpowiedni dla ochrony przed porażeniem prądem w instalacjach zasilających gniazda wtyczkowe do 32 A. Wyłączniki o tych wartościach są zaprojektowane głównie do ochrony przed pożarami, a nie bezpośrednio przed porażeniem elektrycznym. W przypadku wyłącznika 1 000 mA, jego czas reakcji na różnice prądowe jest zbyt długi, aby skutecznie chronić ludzi przed porażeniem. Nawet 500 mA czy 100 mA są niewystarczające w kontekście ochrony osób, ponieważ mogą nie zareagować na niewielkie różnice prądowe, które są wystarczające, aby wywołać poważne zagrożenie dla zdrowia. Powszechny błąd to mylenie celów ochrony przed porażeniem z ochroną przed pożarem, co prowadzi do nieodpowiednich wyborów urządzeń zabezpieczających. Zastosowanie wyłącznika o prądzie różnicowym 30 mA jest standardem branżowym, który wynika z konieczności zapewnienia maksymalnego poziomu bezpieczeństwa w codziennym użytkowaniu urządzeń elektrycznych. Warto również pamiętać, że normy bezpieczeństwa, takie jak PN-EN 61008, wyraźnie wskazują na konieczność stosowania mniejszych wartości RCD w miejscach narażonych na kontakt z wodą i wilgocią, co jest kluczowe dla zapobiegania wypadkom.

Pytanie 15

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. zamontowaniu w oprawach nowych źródeł światła
C. zadziałaniu bezpiecznika
D. rozbudowaniu instalacji
Przeprowadzenie pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia jako odpowiedź na inne sytuacje, takie jak zadziałanie bezpiecznika czy wyłącznika różnicowoprądowego, nie jest zgodne z najlepszymi praktykami w zakresie eksploatacji i bezpieczeństwa instalacji elektrycznych. Zadziałanie bezpiecznika zazwyczaj oznacza, że wystąpił jakiś problem w obwodzie, jednak nie daje to pełnego obrazu stanu całej instalacji. Pomiar kontrolny w tym przypadku nie jest konieczny, ponieważ może to prowadzić do fałszywego poczucia bezpieczeństwa, a problem może wynikać z wadliwej instalacji lub nieodpowiedniej ochrony. Z kolei zadziałanie wyłącznika różnicowoprądowego wskazuje na wykrycie upływu prądu, co sugeruje, że instalacja ma niedoskonałości, ale ponownie nie wymaga to przeprowadzania pełnych pomiarów, które są istotne po zmianach w instalacji. Natomiast zamontowanie nowych źródeł światła, choć również może być istotne, nie powinno być traktowane jako wyzwalacz do przeprowadzenia kompleksowych pomiarów, jeśli nie wiąże się z dalszymi zmianami w obwodzie elektrycznym. Dlatego też, kluczowe jest zrozumienie, że pomiary kontrolne powinny być przeprowadzane głównie w kontekście istotnych modyfikacji instalacji, a nie sporadycznych zdarzeń eksploatacyjnych.

Pytanie 16

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Wzrost spadku napięcia na przewodach
B. Zwiększenie temperatury przewodu
C. Obniżenie rezystancji pętli zwarciowej
D. Obniżenie obciążalności prądowej
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 17

Jaką wartość prądu znamionowego powinien mieć bezpiecznik chroniący uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeśli jest przeznaczony do pracy z obciążeniem rezystancyjnym o maksymalnej mocy 100 W?

A. 0,5 A
B. 0,8 A
C. 1,0 A
D. 0,4 A
Wybór niewłaściwej wartości prądu znamionowego bezpiecznika do zabezpieczenia uzwojenia pierwotnego transformatora bezpieczeństwa może prowadzić do niebezpieczeństwa przegrzania i uszkodzenia zarówno transformatora, jak i podłączonego obciążenia. Odpowiedzi 0,4 A, 0,8 A oraz 1,0 A są błędne z różnych powodów. Wartość 0,4 A jest zbyt niska, aby zapewnić odpowiednie zabezpieczenie; w przypadku obciążenia wynoszącego 100 W, prąd przy 230 V wynosi 0,435 A, a stosowanie bezpiecznika o nominale mniejszym od obliczonego naraża układ na ryzyko uszkodzenia przy normalnej pracy. Odpowiedź 0,8 A jest z kolei zbyt wysoka, co może prowadzić do sytuacji, w której bezpiecznik nie zadziała w przypadku rzeczywistych przeciążeń, ponieważ w sytuacji awaryjnej nie zabezpieczy on obwodu przed nadmiernym prądem. Analogicznie, 1,0 A również jest nieodpowiednie, ponieważ przekracza maksymalny prąd uzwojenia pierwotnego, co zwiększa ryzyko uszkodzenia. Ponadto, przy obliczeniach nie uwzględniono jakie kolizje mogą wystąpić w układzie z uwagi na różne warunki obciążenia, co jest kluczowe w praktycznych zastosowaniach elektrycznych. Przy wyborze wartości bezpiecznika istotne jest także uwzględnienie marginesów tolerancji, jakie stosują odpowiednie normy, takie jak PN-EN 60269. Prawidłowy dobór bezpiecznika jest zatem kluczowy dla zapewnienia efektywności oraz bezpieczeństwa działania całego systemu elektrycznego.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Sprawdzenie stopnia nagrzewania obudowy
B. Ocena stanu pierścieni ślizgowych i komutatora
C. Weryfikacja stabilności połączeń elementów napędowych
D. Kontrola stanu szczotek oraz szczotkotrzymaczy
Wszystkie pozostałe odpowiedzi odnoszą się do czynności kontrolnych, które mogą być istotne, ale nie są możliwe do wykonania w czasie rzeczywistym podczas pracy silnika elektrycznego. Sprawdzenie pewności połączeń elementów z napędem, chociaż ważne, zazwyczaj wiąże się z zatrzymaniem pracy silnika, aby przeprowadzić dokładną inspekcję. W trakcie pracy, niewłaściwe podejście do tego typu kontroli może prowadzić do ryzyka awarii lub nawet wypadków. Sprawdzenie stanu szczotek i szczotkotrzymaczy także wymaga wyłączenia silnika. W przypadku silników prądu stałego, szczotki są krytycznymi elementami, a ich zużycie wymaga regularnej inspekcji, ale tego rodzaju kontrola nie jest możliwa podczas ich pracy. Podobnie, kontrola stanu pierścieni ślizgowych i komutatora, chociaż istotna, również wymaga wyłączenia zasilania oraz demontażu niektórych komponentów. Takie czynności kontrolne najlepiej przeprowadzać podczas przeglądów okresowych, co pozwala na dokładniejsze zidentyfikowanie potencjalnych problemów. Kluczowym błędem jest założenie, że wszystkie te kontrole można przeprowadzić na gorąco, co nie tylko jest niezgodne z procedurami bezpieczeństwa, ale także może prowadzić do błędnych wniosków o stanie technicznym urządzenia. Rzeczywiste zarządzanie stanem silnika elektrycznego wymaga zastosowania metod monitorowania, które są bezpieczne i skuteczne w czasie aktywnej pracy urządzeń.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po modernizacji instalacji
B. Po zadziałaniu zabezpieczeń
C. Po naprawie zabezpieczeń
D. Po przeciążeniu urządzenia
Pytania dotyczące pomiarów kontrolnych w instalacjach elektrycznych mogą być mylące, zwłaszcza gdy chodzi o praktyczne zastosowanie tych pomiarów. W przypadku odpowiedzi sugerujących, że pomiary są wymagane po naprawie zabezpieczeń, po zadziałaniu zabezpieczeń lub po przeciążeniu urządzenia, można dostrzec istotne błędy myślowe. Naprawa zabezpieczeń, chociaż ważna, nie zawsze implikuje, że cała instalacja wymaga natychmiastowego sprawdzenia. Zabezpieczenia są projektowane w taki sposób, aby chronić instalację przed sytuacjami awaryjnymi, a ich naprawa zazwyczaj nie wiąże się z modyfikacjami instalacji, które mogłyby wpłynąć na jej bezpieczeństwo. Z kolei zadziałanie zabezpieczeń jest jedynie objawem problemu, a nie przyczyną, co oznacza, że niekoniecznie pociąga za sobą konieczność przeprowadzania pomiarów kontrolnych w całej instalacji. Co więcej, przeciążenie urządzenia jest sytuacją operacyjną, która również nie musi wskazywać na potrzebę ogólnych pomiarów kontrolnych, chyba że wiąże się z uszkodzeniem przewodów lub innych elementów instalacji. W praktyce, pomiary kontrolne są kluczowe po takich czynnościach jak modernizacja, gdzie zmiany mogą wprowadzić nowe zagrożenia. Właściwe podejście wskazuje, że przeprowadzanie pomiarów kontrolnych po modernizacji jest nie tylko zgodne z zasadami bezpieczeństwa, ale i z regulacjami prawnymi oraz normami, które mają na celu ochronę osób i mienia przed skutkami niewłaściwie funkcjonujących instalacji elektrycznych.

Pytanie 23

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
B. Zastosować dodatkowe uziemienie
C. Zwiększyć częstotliwość napięcia zasilającego
D. Zmniejszyć prąd wzbudzenia
Zwiększenie częstotliwości napięcia zasilającego nie jest właściwym rozwiązaniem problemu obniżonej rezystancji izolacji w uzwojeniu stojana silnika elektrycznego. Tego rodzaju działanie mogłoby prowadzić do dodatkowego stresu termicznego i mechanicznego na uzwojeniach, co tylko pogorszyłoby sytuację. Nie jest to zgodne z dobrą praktyką inżynierską, ponieważ nie odnosi się bezpośrednio do poprawy rezystancji izolacji. Z kolei zmniejszenie prądu wzbudzenia dotyczy głównie maszyn synchronicznych, a nie bezpośrednio kwestii izolacji w silnikach elektrycznych. Choć mogłoby to mieć pewien wpływ na ogólne warunki pracy silnika, nie rozwiązuje podstawowego problemu związanego z izolacją. Zastosowanie dodatkowego uziemienia jako środek zaradczy w sytuacji obniżonej rezystancji izolacji jest również niewłaściwe. Uziemienie jest istotnym elementem ochrony przed porażeniem elektrycznym, ale nie wpływa bezpośrednio na poprawę stanu izolacji uzwojeń. Uziemienie ma na celu bezpieczne odprowadzanie prądów upływowych w przypadku awarii, a nie poprawę parametrów izolacji. Wszystkie te błędne podejścia wynikają z nieporozumień dotyczących prawidłowego postępowania przy problemach z rezystancją izolacji i mogą prowadzić do niepotrzebnych awarii oraz zagrożeń dla bezpieczeństwa.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 1 rok
B. 2 lata
C. 5 lat
D. 3 lata
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 26

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 2 lata
B. 1 rok
C. 4 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. YLY 3x2,5 mm2
B. YDY 4x2,5 mm2
C. SM 3x2,5 mm2
D. OP 4x2,5 mm2
Wybór innych typów przewodów na zasilanie silnika trójfazowego, jak YDY 4x2,5 mm2, SM 3x2,5 mm2 czy YLY 3x2,5 mm2, może prowadzić do różnych problemów technicznych. Przewód YDY jest przeznaczony głównie do instalacji stałych, co ogranicza jego zastosowanie w odbiornikach ruchomych, w których przewód narażony jest na zginanie i ruch. Z kolei SM, będący przewodem w izolacji gumowej, nie jest odpowiednio chroniony przed czynnikami mechanicznymi, co czyni go mało trwałym w dynamicznych aplikacjach. Przewód YLY, mimo że jest elastyczny, nie ma wystarczającej ochrony przed uszkodzeniami mechanicznymi w porównaniu do przewodów OP. Typowe błędy myślowe przy wyborze przewodu mogą obejmować pomijanie specyfikacji odnośnie do warunków pracy, co prowadzi do użycia niewłaściwego materiału, który nie wytrzyma obciążeń mechanicznych lub elektrycznych. Kluczowe jest, aby wybierać przewody zgodnie z ich przeznaczeniem oraz przewidywanymi warunkami, co jest zgodne z dobrą praktyką branżową oraz normami elektrycznymi, aby zapobiegać awariom oraz zapewnić bezpieczeństwo użytkowania.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NHaM
B. WT-00 gF
C. WT-2gTr
D. WT/NH DC
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B16
B. B10
C. B20
D. B25
Wybór wyłącznika nadprądowego z wartością nominalną poniżej obciążenia roboczego, takiego jak B20, B16 czy B10, jest niewłaściwy z kilku powodów. Najważniejszym czynnikiem jest to, że każdy z tych wyłączników posiada wartości nominalne, które są zbyt niskie w stosunku do prądu obciążenia wynoszącego 21 A. Dla wyłącznika B20 maksymalne obciążenie wynosi 20 A, co oznacza, że przy nominalnym obciążeniu 21 A wyłącznik ten będzie stale się wyłączał, co prowadzi do nieprzewidzianych przerw w dostawie prądu. Z kolei wyłączniki B16 i B10 mają jeszcze mniejsze wartości nominalne, co sprawia, że ich zastosowanie w tej instalacji byłoby jeszcze bardziej problematyczne. Niewłaściwy wybór wyłącznika nie tylko prowadzi do nieustannego wyzwalania, ale także może skutkować niebezpieczeństwem uszkodzenia urządzeń elektrycznych z powodu niestabilności dostaw energii. Warto również zaznaczyć, że zgodnie z normami IEC 60947-2, wyłączniki nadprądowe powinny być dobrane w taki sposób, aby ich nominalna wartość była dostosowana do przewidywanego obciążenia oraz długotrwałej obciążalności instalacji. Niezastosowanie się do tych zasad może prowadzić do poważnych konsekwencji, w tym zagrożeń dla bezpieczeństwa użytkowników oraz uszkodzeń instalacji elektrycznej.

Pytanie 35

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 44
B. IP 67
C. IP 35
D. IP 55
Odpowiedzi IP 35, IP 55 i IP 67 nie są adekwatne do minimalnych wymagań ochrony sprzętu na placach budowy, co może prowadzić do nieodpowiednich wniosków dotyczących bezpieczeństwa i funkcjonalności instalacji. W przypadku IP 35, ochrona przed ciałami stałymi jest ograniczona do średnicy większej niż 2.5 mm, co może nie być wystarczające w warunkach budowlanych, gdzie drobne cząstki pyłu mogą powodować uszkodzenia. Odpowiedź IP 55 zapewnia lepszą ochronę, ponieważ chroni przed pyłem oraz strumieniami wody, jednak nie jest to minimalny stopień wymagany do codziennego użytku na budowie, co znaczy, że może być stosowany tylko w bardziej ekstremalnych warunkach. Z kolei IP 67 zapewnia wysoką odporność na pył i zanurzenie w wodzie, co czyni go idealnym w zastosowaniach, gdzie sprzęt może być narażony na trwałe działanie wody. Mimo to, nie jest konieczne w standardowych warunkach budowlanych, gdzie wystarczający będzie stopień IP 44. Używanie sprzętu o wyższym stopniu ochrony wiąże się z wyższymi kosztami oraz może być nieefektywne w sytuacjach, gdzie nie ma rzeczywistej potrzeby takiej ochrony. Prawidłowe zrozumienie klasyfikacji IP jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa oraz ekonomicznego zarządzania zasobami na placach budowy.

Pytanie 36

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6001
D. 6301
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 37

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 28 mm i szerokości tarczy łożyskowej B = 8 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6301
B. 6200
C. 6001
D. 6700
Nieprawidłowy wybór łożysk, takich jak 6200, 6700 lub 6301, wiąże się z błędnymi założeniami dotyczącymi parametrów łożysk oraz ich zastosowania. Łożysko 6200 ma większą średnicę wewnętrzną wynoszącą 10 mm, co sprawia, że nie pasuje do wału o średnicy 12 mm. Podobnie, łożysko 6700, z wewnętrzną średnicą 10 mm, również nie spełnia wymagań. Również łożysko 6301, mające średnicę wewnętrzną 12 mm, ma zewnętrzną średnicę 37 mm, co przekracza podane ograniczenia. Wybór łożyska powinien opierać się na ścisłym porównaniu wymiarów wewnętrznych i zewnętrznych oraz szerokości, co jest podstawą w inżynierii mechanicznej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wyborów, obejmują ignorowanie specyfikacji technicznych oraz nieścisłości w zrozumieniu wymagań zastosowania łożysk. W przemyśle, znajomość wymagań dotyczących tolerancji i pasowania jest kluczowa dla uniknięcia uszkodzeń i zwiększenia efektywności operacyjnej. Warto zatem zawsze przeglądać katalogi producentów, aby upewnić się, że wybrane łożysko spełnia wszystkie wymagania konstrukcyjne i eksploatacyjne.

Pytanie 38

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. C.
B. B.
C. D.
D. A.
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Przy wymianie uszkodzonych rezystorów regulacyjnych silnika pracującego w układzie połączeń zamieszczonym na rysunku nie można dopuścić do

Ilustracja do pytania
A. powstania przerwy w obwodzie twornika.
B. zwarcia rezystora w obwodzie wzbudzenia.
C. zwarcia rezystora w obwodzie twornika.
D. powstania przerwy w obwodzie wzbudzenia.
Pomimo znalezienia się w kontekście wymiany rezystorów regulacyjnych, niektóre odpowiedzi nie odzwierciedlają istoty działania obwodów w silniku elektrycznym. Twierdzenie o zwarciu rezystora w obwodzie twornika może wydawać się uzasadnione, jednak należy zauważyć, że zwarcie może prowadzić do nadmiernych prądów, co z kolei może uszkodzić inne elementy obwodu, ale nie prowadzi bezpośrednio do zatrzymania silnika. Również powstanie przerwy w obwodzie twornika, choć problematyczne, nie jest tak krytyczne, jak przerwa w obwodzie wzbudzenia. Obwód twornika, w przeciwieństwie do obwodu wzbudzenia, ma pewną rezerwę operacyjną; w przypadku jego przerwy silnik może nadal pracować przez krótki czas, zanim dojdzie do całkowitego zatrzymania. Z kolei obwód wzbudzenia, odpowiedzialny za generowanie pola magnetycznego, jest fundamentem działania silnika, a jego przerwa skutkuje natychmiastowym brakiem tego pola, co prowadzi do zatrzymania silnika. W kontekście praktycznym, nieprawidłowe podejście do wymiany elementów w obwodzie wzbudzenia może skutkować poważnymi konsekwencjami, takimi jak uszkodzenie silnika lub całego systemu. Dlatego niezwykle ważne jest, aby podczas wymiany komponentów przywiązywać odpowiednią wagę do struktury obwodu i jego funkcji, stosując się do standardów branżowych, które podkreślają znaczenie ciągłości obwodu wzbudzenia.