Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 grudnia 2025 08:58
  • Data zakończenia: 8 grudnia 2025 09:16

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który rodzaj linii transmisyjnej zapewnia przesył sygnału telewizyjnego, wyróżniający się najwyższą odpornością na negatywne skutki warunków atmosferycznych?

A. Kablowa koncentryczna
B. Światłowodowa
C. Symetryczna kablowa
D. Radiowa
Sygnał telewizyjny przesyłany za pomocą światłowodów charakteryzuje się wyjątkową odpornością na zakłócenia, w tym te związane z niekorzystnymi warunkami atmosferycznymi. Wynika to z faktu, że światłowody wykorzystują światło do przesyłania informacji, co sprawia, że są one niewrażliwe na czynniki takie jak deszcz, śnieg czy burze. Światłowodowe linie transmisyjne zapewniają niskie tłumienie sygnału oraz wysoką przepustowość, co umożliwia przesyłanie sygnałów o dużej jakości, w tym sygnałów HD i 4K. Ponadto, światłowody nie emitują fal radiowych, co wyklucza ich zakłócanie przez inne źródła sygnału. Przykładem zastosowania technologii światłowodowej jest modernizacja sieci telewizyjnych w miastach, gdzie światłowody zastępują tradycyjne kable, co zapewnia nieprzerwaną jakość sygnału nawet w trudnych warunkach atmosferycznych. Wykorzystanie światłowodów w telekomunikacji jest zgodne z międzynarodowymi standardami, takimi jak ITU-T G.652, które określają parametry techniczne dla światłowodów jedno- i wielomodowych, zapewniając ich skuteczność w transmisji danych.

Pytanie 2

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Zasilacz napięcia.
B. Transformator separujący.
C. Przemiennik częstotliwości.
D. Ogranicznik poboru mocy.
Zasilacz napięcia, który przedstawiono na rysunku, to urządzenie służące do przekształcania napięcia przemiennego (AC) na napięcie stałe (DC). Model 'RPS-30-24' posiada parametry wejściowe od 100 do 240VAC oraz wyjściowe 24V i 1.5A. Tego typu zasilacze są powszechnie stosowane w różnych aplikacjach elektronicznych, takich jak zasilanie komponentów komputerowych, urządzeń audio, oświetlenia LED oraz systemów automatyki domowej. W praktyce, zasilacze napięcia są projektowane zgodnie z normami IEC 60950 oraz IEC 62368, co zapewnia bezpieczeństwo użytkowania oraz wysoką niezawodność. Warto zwrócić uwagę na ich efektywność energetyczną i zabezpieczenia, takie jak ochrona przed przeciążeniem czy zwarciem, co jest kluczowe dla długotrwałego użytkowania urządzeń elektronicznych. Zrozumienie działania zasilaczy napięcia oraz ich zastosowania jest fundamentalne dla specjalistów w dziedzinie elektrotechniki i automatyki.

Pytanie 3

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
B. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
C. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
D. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
Odpowiedzi wskazujące na inne funkcje zwrotnicy antenowej są błędne i wynikają z nieporozumień dotyczących jej rzeczywistego zastosowania. Rozdzielanie sygnału telewizyjnego na kilka odbiorników nie jest zadaniem zwrotnicy, lecz rozdzielacza sygnału, który ma na celu dostarczenie tego samego sygnału do wielu urządzeń. Z kolei przesuwanie pasma częstotliwości sygnału telewizji satelitarnej jest funkcjonalnością, która dotyczy konwerterów LNB, a nie zwrotnic. Umożliwienie podłączenia anteny z wyjściem symetrycznym do asymetrycznego wejścia w odbiorniku telewizyjnym jest również błędnym stwierdzeniem, ponieważ do tego celu stosuje się transformator impedancji, a nie zwrotnicę. Takie nieporozumienia mogą prowadzić do nieefektywnego projektu instalacji antenowej, co skutkuje nie tylko pogorszeniem jakości sygnału, ale również problemami z kompatybilnością urządzeń. Dlatego ważne jest, aby zrozumieć specyfikę tych elementów systemu antenowego oraz zasady ich poprawnej pracy, co pozwala na stworzenie wydajnej i niezawodnej instalacji. W praktyce, dobór odpowiednich komponentów oraz ich prawidłowe zastosowanie zgodnie z normami branżowymi jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 4

Fotografia przedstawia panel czołowy bramofonu

Ilustracja do pytania
A. 3-rzędowego z 16 przyciskami wywołania.
B. 2-rzędowego z 16 przyciskami wywołania.
C. 3-rzędowego z 14 przyciskami wywołania.
D. 2-rzędowego z 14 przyciskami wywołania.
Panel czołowy bramofonu, który został przedstawiony na zdjęciu, jest zaprojektowany w klasycznym układzie z trzema rzędami przycisków, co jest zgodne z dobrymi praktykami w projektowaniu systemów komunikacyjnych. Każdy z rzędów zawiera cztery przyciski, a dodatkowe cztery przyciski umieszczone po lewej stronie panelu tworzą łącznie piętnaście przycisków wywołania. Takie rozwiązanie umożliwia łatwą nawigację oraz szybką identyfikację i wywołanie konkretnego abonenta. W praktyce, tego rodzaju panele są powszechnie stosowane w budynkach mieszkalnych oraz biurowych, co potwierdza ich popularność oraz funkcjonalność. Dobrze zaprojektowane systemy komunikacyjne powinny uwzględniać takie aspekty jak liczba przycisków, łatwość obsługi oraz ergonomię, co sprawia, że analiza wizualna panelu czołowego jest niezwykle istotna w kontekście oceny jego wydajności. Wiedza na temat struktury paneli bramofonowych pozwala na skuteczniejsze projektowanie i dobór odpowiednich rozwiązań dla różnych potrzeb użytkowników.

Pytanie 5

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
B. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
C. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
D. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
Przyczyny zmniejszającego się czasu działania urządzenia pod zasilaniem UPS są często mylnie interpretowane. Utrata pojemności kondensatorów w zasilaczu nie jest typowym zjawiskiem, które bezpośrednio wpływa na czas podtrzymania. Kondensatory w UPS mają za zadanie wspierać stabilność napięcia i nie są głównym źródłem energii w przypadku awarii zasilania. Ich degradacja może wpływać na jakość dostarczanej energii, ale nie na czas działania urządzenia. Kolejny błąd to teza o błędnym podłączeniu UPS. Prawidłowo podłączony zasilacz awaryjny działa zgodnie z założeniami, a problemy z czasem podtrzymania są ściśle związane z akumulatorami. Uszkodzenie zabezpieczenia przeciążeniowego także nie ma bezpośredniego wpływu na czas działania, a raczej na bezpieczeństwo samego urządzenia. Zrozumienie, że podstawowym elementem odpowiedzialnym za czas działania jest akumulator, a nie inne komponenty, jest kluczowe dla prawidłowej diagnostyki. Właściwe zarządzanie i konserwacja akumulatorów w UPS to fundamentalne aspekty zapewnienia stabilności zasilania i unikania nieprzewidzianych przestojów w działaniu sprzętu. Regularne inspekcje systemów zasilania awaryjnego zgodnie z zaleceniami producentów są niezbędne, aby prawidłowo ocenić stan akumulatorów oraz ich wpływ na funkcjonalność całego systemu.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Na jaki zakres należy ustawić miernik napięcia, aby poprawnie zmierzyć z największą dokładnością napięcie akumulatora przedstawionego na rysunku?

Ilustracja do pytania
A. 20 V DC
B. 200 V AC
C. 20 V AC
D. 200 V DC
Wybór za szerokiego zakresu pomiarowego to chyba najczęstsza pułapka, w którą można wpaść, bo może to skutkować nieprecyzyjnymi wynikami i błędnymi wnioskami. Jak ustawisz miernik na 200 V AC, to jest dramat, bo akumulatory działają na napięciu stałym (DC), a nie zmiennym (AC). Użycie AC przy pomiarze napięcia akumulatora to jak strzelanie z armaty do wróbli – nic dobrego z tego nie wyjdzie. A nawet jeśli ustawisz 200 V DC, to nie ma sensu, bo ten zakres jest znacznie wyższy niż to, co masz w akumulatorze, przez co dokładność pomiaru spadnie. Często widzę, że ludzie wybierają zbyt szeroki zakres, co wprowadza zamieszanie w wynikach. Dlatego ważne jest, żeby dobrze dobierać zakres pomiarowy, bo to jest klucz do uzyskania rzetelnych wyników. Znajomość zasad działania mierników i umiejętność ich odpowiedniego użycia to podstawy, które każdy technik powinien znać.

Pytanie 8

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. SINGLE
B. DUAL
C. X - Y
D. ADD
Wybór trybu X - Y w oscyloskopie dwukanałowym jest kluczowy dla analizy sygnałów za pomocą krzywych Lissajous. W tym trybie sygnał z kanału CH-A jest przedstawiany na osi Y, a sygnał z kanału CH-B na osi X, co pozwala na bezpośrednie porównanie obu sygnałów. Krzywe Lissajous są wykorzystywane do wizualizacji relacji częstotliwości i fazy między dwoma sygnałami. Jeżeli częstotliwości obu sygnałów są zbliżone, na ekranie oscyloskopu pojawi się charakterystyczny kształt krzywej, którego geometria pozwala na określenie stosunku częstotliwości sygnałów. Na przykład, jeśli sygnał badany w CH-A ma częstotliwość 2 razy większą niż sygnał w CH-B, to na oscyloskopie zobaczymy kształt przypominający elipsę. To podejście jest powszechnie stosowane w praktyce inżynieryjnej, szczególnie w dziedzinach takich jak telekomunikacja i elektronika, gdzie precyzyjna analiza sygnałów jest niezbędna. Poprawna interpretacja krzywych Lissajous wymaga znajomości relacji między częstotliwościami oraz umiejętności ich analizy, co jest istotnym aspektem pracy z oscyloskopem.

Pytanie 9

Pracownik obsługujący urządzenie posiadające na obudowie przedstawiony znak musi chronić

Ilustracja do pytania
A. słuch.
B. drogi oddechowe.
C. kończyny górne.
D. oczy.
Odpowiedź "oczy" jest prawidłowa, ponieważ znak przedstawiony na obudowie urządzenia wskazuje na ryzyko związane z promieniowaniem optycznym, takim jak światło laserowe, które może być niebezpieczne dla zdrowia oczu. Pracownicy obsługujący takie urządzenia muszą stosować odpowiednie środki ochrony indywidualnej, w tym okulary ochronne z filtrem przeciwwartościowym, aby zminimalizować ryzyko uszkodzeń wzroku. Warto również zaznaczyć, że normy takie jak PN-EN 207 dotyczące ochrony przed promieniowaniem laserowym wskazują na konieczność stosowania odpowiednich filtrów w zależności od mocy i długości fali lasera. Pomijanie ochrony wzroku w obecności takich znaków jest poważnym zaniedbaniem, które może prowadzić do długotrwałych uszkodzeń wzroku lub utraty widzenia. Z tego powodu, w środowiskach z potencjalnym zagrożeniem dla oczu, przestrzeganie zasad BHP oraz stosowanie odpowiednich środków ochrony osobistej powinno być priorytetem. Pracownicy powinni być regularnie szkoleni w zakresie identyfikacji zagrożeń związanych z pracą z urządzeniami emitującymi promieniowanie optyczne oraz w zakresie stosowania właściwych środków ochrony.

Pytanie 10

Przedstawiony interfejs umożliwiający przesyłanie sygnałów: video, RGB, S-Video nazywa się

Ilustracja do pytania
A. HDMI
B. S-Video
C. DVI-A
D. EURO SCART
Odpowiedź EURO SCART jest prawidłowa, ponieważ ten interfejs jest zaprojektowany do przesyłania sygnałów audio i video, w tym RGB oraz S-Video, co czyni go wszechstronnym rozwiązaniem w systemach multimedialnych. EURO SCART, znany także jako SCART, to złącze, które stało się standardem w Europie, umożliwiającym łatwe podłączanie różnych urządzeń, takich jak odtwarzacze DVD, telewizory i konsole do gier. W odróżnieniu od innych typów złącz, EURO SCART pozwala na jednoczesne przesyłanie sygnałów wideo oraz audio, co znacząco upraszcza konfigurację sprzętu. Dzięki szerokiemu wykorzystaniu w branży telewizyjnej i audio-wideo, SCART zyskał popularność jako wspólne złącze, co ułatwia integrację różnych urządzeń. Warto również zauważyć, że pomimo pojawienia się nowoczesnych standardów, takich jak HDMI, SCART wciąż jest używane w wielu starszych systemach, co czyni je istotnym elementem w kontekście retro technologii i urządzeń analogowych.

Pytanie 11

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu odcinek przewodu
B. Przylutować obok komponentu drugi element tego samego typu
C. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
D. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 12

Przedstawiony na rysunku element łączący dwa światłowody oraz pozwalający na trwałe ustawienie włókien względem siebie tak, aby sygnał przechodził między ich czołami przy zachowaniu minimalnego tłumienia, to

Ilustracja do pytania
A. spaw optyczny.
B. splot elektryczny.
C. spaw mechaniczny.
D. splot magnetyczny.
Odpowiedzi sugerujące splot magnetyczny oraz splot elektryczny są nieprawidłowe, ponieważ koncepcje te nie są związane z łączeniem światłowodów. Splot magnetyczny odnosi się do zastosowań w technologii magnetycznej, a splot elektryczny dotyczy przewodów elektrycznych, a nie włókien optycznych. W kontekście technologii światłowodowej, istotne jest, aby zrozumieć, że właściwe łączenie włókien optycznych wymaga precyzyjnych metod, które gwarantują minimalne straty sygnału. Z kolei pojawiający się spaw optyczny, choć jest rzeczywiście stosowany do łączenia włókien, jest bardziej zaawansowany technicznie i kosztowny w porównaniu do spawu mechanicznego. Wybór spawu optycznego w wielu przypadkach jest uzasadniony jedynie w sytuacjach, gdzie niezwykle istotne są parametry transmisji oraz niskie tłumienie. Błąd w wyborze metody łączenia może prowadzić do znacznych problemów w działaniu sieci światłowodowej, takich jak zwiększone straty sygnału oraz niestabilność połączenia. Dlatego kluczowe jest korzystanie z metod odpowiednich dla danego zastosowania, a spaw mechaniczny jest najbardziej efektywnym rozwiązaniem dla wielu standardowych aplikacji w telekomunikacji.

Pytanie 13

Wdrożenie kompleksowego pakietu programowo-usługowego, składającego się z programów radiowych i telewizyjnych, odbieranych za pośrednictwem satelity oraz naziemnie, a także wprowadzanych lokalnie, jest zadaniem

A. głównej stacji czołowej
B. magistrali optycznej
C. węzła optycznego
D. regionalnej stacji czołowej
Główna stacja czołowa jest kluczowym elementem systemu nadawczego, odpowiedzialnym za wprowadzanie i dystrybucję szerokiego pakietu programów radiowych i telewizyjnych. Jej zadaniem jest odbieranie sygnałów z różnych źródeł, takich jak satelity czy stacje naziemne, a następnie przetwarzanie ich i przesyłanie do lokalnych stacji nadawczych. To właśnie główna stacja czołowa zapewnia centralizację zarządzania treściami oraz kontrolowanie jakości sygnału. Przykładem zastosowania tej technologii mogą być duże platformy telewizyjne, które łączą wiele kanałów i programów w jedną ofertę dla widzów. Dzięki standardom, takim jak DVB-T (Digital Video Broadcasting - Terrestrial) i DVB-S (Digital Video Broadcasting - Satellite), możliwe jest efektywne zarządzanie i dystrybucja treści, co zwiększa dostępność programów na różnych obszarach geograficznych oraz poprawia doświadczenie użytkowników. Warto zaznaczyć, że główne stacje czołowe są również kluczowe w kontekście konwergencji mediów, gdzie różne formy treści są integrowane w jedną platformę, umożliwiając użytkownikom łatwiejszy dostęp do różnorodnych formatów mediów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Symetrycznego
B. Koncentrycznego
C. Skrętki ekranowanej
D. Skrętki nieekranowanej
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 16

U osoby, która została porażona prądem elektrycznym, występuje zatrzymanie akcji serca oraz brak oddechu. W trakcie udzielania pierwszej pomocy należy wykonać masaż serca oraz sztuczne oddychanie w następującym tempie

A. 5 oddechów przy 5 uciskach na serce
B. 2 oddechy przy 30 uciskach na serce
C. 5 oddechów przy 30 uciskach na serce
D. 2 oddechy przy 5 uciskach na serce
Odpowiedź '2 oddechy na 30 ucisków na serce' jest zgodna z aktualnymi wytycznymi dotyczącymi resuscytacji krążeniowo-oddechowej (RKO) w przypadku dorosłych. Zgodnie z wytycznymi American Heart Association oraz Europejskiej Rady Resuscytacji, stosuje się stosunek 30 ucisków klatki piersiowej do 2 oddechów ratunkowych. Uciskanie serca ma na celu zapewnienie krążenia krwi w organizmie, a sztuczne oddychanie dostarcza tlen do płuc osoby poszkodowanej. Taki schemat działania jest niezbędny, aby zminimalizować ryzyko uszkodzenia mózgu i innych organów spowodowanego brakiem tlenu. Przykładem praktycznym może być sytuacja, w której świadek zdarzenia musi szybko zareagować, aby podjąć RKO, co znacząco zwiększa szanse na przeżycie osoby poszkodowanej. Warto również pamiętać o tym, że po wykonaniu 30 ucisków, należy upewnić się, że drogi oddechowe są drożne przed podaniem oddechów ratunkowych, co jest kluczowe dla skuteczności resuscytacji.

Pytanie 17

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. spawarka
B. który służy do lutowania
C. zaciśniacz
D. zgrzewarka
Spawarka światłowodowa jest kluczowym narzędziem w procesie łączenia włókien optycznych, które są niezbędne w nowoczesnych systemach komunikacyjnych. Dzięki zastosowaniu technologii spawania, można precyzyjnie łączyć włókna, minimalizując straty sygnału i zapewniając wysoką jakość połączenia. Proces spawania polega na sklejaniu końcówek włókien w wysokotemperaturowym łuku elektrycznym, co umożliwia uzyskanie niemal idealnego połączenia, które jest odporne na wpływy zewnętrzne. W praktyce, spawarki umożliwiają szybkie i efektywne łączenie włókien, co jest szczególnie istotne w kontekście budowy sieci telekomunikacyjnych czy instalacji światłowodowych w budynkach. Warto również zwrócić uwagę na normy, jak np. IEC 61300-3-34, które definiują wymagania dotyczące metod łączenia włókien, potwierdzając znaczenie spawania jako najczęściej rekomendowanej metody w branży. Dodatkowo, umiejętność obsługi spawarki światłowodowej jest niezbędna w zawodach związanych z instalacją i konserwacją sieci optycznych.

Pytanie 18

Jakie środki dodatkowej ochrony przed porażeniem elektrycznym powinny być stosowane podczas instalacji sieci komputerowej przy użyciu narzędzi działających na prąd?

A. używanie obudów lub osłon
B. zabezpieczenie różnicowoprądowe
C. izolowanie elementów aktywnych
D. umieszczenie elementów aktywnych poza zasięgiem dłoni
Ochrona przed porażeniem to ważna sprawa, a mamy różne metody, jak izolowanie części czynnych czy różnicowoprądowe zabezpieczenia. Izolowanie tych części ma na celu zminimalizowanie kontaktu z elementami pod napięciem, ale pamiętajmy, że jeśli izolacja się uszkodzi, to i tak jest ryzyko. Stosowanie obudów lub osłon też ma sens, ale to nie wystarczy, jeśli nie dodamy do tego jakiegoś systemu zabezpieczeń, jak te różnicowoprądowe. Umieszczanie części czynnych z dala od ludzi może być skuteczne, ale nie zawsze da się to zrobić, zwłaszcza gdy coś musi obsługiwać operator. Dlatego myślenie tylko o fizycznym oddzieleniu elementów elektrycznych od ludzi to trochę mylące podejście. W praktyce, żeby dobrze chronić się przed porażeniem, musimy połączyć różne metody, bo każda ma swoje ograniczenia. I właśnie te różnicowoprądowe zabezpieczenia są kluczowe, bo szybko reagują na niebezpieczne sytuacje i zwiększają bezpieczeństwo. Bez tego można wpaść w niebezpieczne sytuacje, których lepiej unikać.

Pytanie 19

Przewód przedstawiony na fotografii jest stosowany w instalacjach

Ilustracja do pytania
A. kontroli dostępu.
B. antenowych.
C. sieci przemysłowych.
D. domofonowych.
Odpowiedź "antennowych" jest poprawna, ponieważ przewód przedstawiony na fotografii to koncentryczny kabel antenowy, który jest kluczowy w systemach transmisji sygnałów telewizyjnych oraz radiowych. Tego typu kabel charakteryzuje się strukturalnym układem, w którym wewnętrzny przewodnik otoczony jest dielektrykiem oraz zewnętrznym oplotem, co pozwala na efektywne przesyłanie sygnałów przy minimalnych stratach. W praktyce, kable koncentryczne są wykorzystywane w instalacjach telewizyjnych do podłączenia anten do odbiorników, a także w systemach CCTV. Zgodne z normami branżowymi, takie jak standardy IEC 61196, ważne jest, aby kable te spełniały określone parametry, takie jak tłumienie, impedancja oraz odporność na zakłócenia, co ma kluczowe znaczenie dla jakości odbieranego sygnału. W efekcie, ich zastosowanie w domach, biurach oraz obiektach przemysłowych jest niezwykle powszechne, co podkreśla ich znaczenie w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Które zdjęcie przedstawia konwerter TWIN niebędacy monoblokiem?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Konwerter TWIN, który nie jest monoblokiem, charakteryzuje się posiadaniem dwóch niezależnych wyjść, co umożliwia podłączenie dwóch osobnych odbiorników. W przypadku monobloków, jedno wyjście służy do zasilania obu głowic, co ogranicza ich elastyczność w użytkowaniu. Wybierając konwerter TWIN, użytkownik zyskuje możliwość jednoczesnego odbioru sygnału z dwóch różnych satelitów lub różnych transponderów, co jest szczególnie przydatne w instalacjach, które wymagają dostępu do różnorodnych programów telewizyjnych. Na przykład, w przypadku osób, które korzystają z oferty wielu dostawców telewizyjnych, konwerter TWIN umożliwia odbiór sygnału z różnych źródeł bez konieczności stosowania dodatkowych urządzeń. Ważne jest także, aby konwerter był zgodny z najnowszymi standardami DVB, co zapewnia lepszą jakość odbioru i większą niezawodność systemu. Wybór odpowiedniego konwertera ma kluczowe znaczenie dla optymalizacji działania całego systemu antenowego.

Pytanie 22

THT to metoda

A. realizacji instalacji podtynkowej
B. montowania elementów elektronicznych na płytkach drukowanych
C. prowadzenia przewodów przez otwory w ścianach
D. umieszczania kabli w rurkach instalacyjnych
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 23

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Filtr.
B. Konwerter.
C. Wzmacniacz.
D. Symetryzator.
Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia urządzenie oznaczone jako "Broadband Amplifier", co tłumaczy się na język polski jako "szerokopasmowy wzmacniacz". Wzmacniacze są kluczowymi komponentami w systemach komunikacyjnych i audio, ponieważ mają na celu zwiększenie amplitudy sygnału, co jest niezbędne do prawidłowego przesyłania informacji na dłuższe odległości. Wzmacniacze są wykorzystywane w różnych aplikacjach, od prostych układów audio po skomplikowane systemy telekomunikacyjne. Zgodnie z najlepszymi praktykami, szerokopasmowe wzmacniacze są projektowane w taki sposób, aby oferować stały zysk w szerokim zakresie częstotliwości, co czyni je idealnymi do zastosowań w systemach telewizyjnych czy radiowych. Standardy takie jak IEC 60268 definiują wymagania dotyczące wydajności wzmacniaczy audio, co potwierdza znaczenie ich roli w profesjonalnych zastosowaniach. Zrozumienie funkcji wzmacniaczy jest kluczowe dla inżynierów i techników w dziedzinach związanych z elektroniką i telekomunikacją, ponieważ pozwala na projektowanie bardziej efektywnych i niezawodnych systemów komunikacyjnych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
B. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 28

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 2:30
B. 30:2
C. 15:2
D. 2:15
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.

Pytanie 29

Aby połączyć przewody systemu domofonowego w kostce połączeniowej, należy wykorzystać

A. młotek
B. pilnik
C. wkrętak
D. wiertarkę
Użycie wkrętaka do podłączenia przewodów w kostce podłączeniowej systemu domofonowego jest najlepszym wyborem, ponieważ wkrętak umożliwia precyzyjne i pewne dokręcenie śrub, co jest kluczowe dla zapewnienia trwałego i stabilnego połączenia. Dobrze zaciśnięte przewody w kostce minimalizują ryzyko przypadkowego rozłączenia i zwiększają bezpieczeństwo całego systemu. Na przykład, w przypadku domofonów, które mogą być narażone na działanie warunków atmosferycznych, solidne połączenie przewodów jest niezbędne do utrzymania prawidłowego funkcjonowania. W branży elektrycznej oraz w instalacjach niskonapięciowych stosowanie wkrętaka jest standardem, który zapewnia zgodność z normami, takimi jak PN-IEC 60364, które określają zasady prawidłowego podłączania elementów elektronicznych. Praktycznie rzecz biorąc, użycie wkrętaka odpowiedniego do typu śrub w kostce podłączeniowej zwiększa efektywność pracy oraz bezpieczeństwo instalacji.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Który rodzaj kabla przedstawiono na rysunku?

Ilustracja do pytania
A. Skrętkę nieekranowaną.
B. Koncentryczny.
C. Skrętkę ekranowaną.
D. Światłowodowy.
Kabel koncentryczny, który widzisz na obrazku, ma dość prostą budowę. W środku mamy centralny przewodnik, na zewnątrz jest izolator, a na końcu kolejny przewodnik, który działa jak ekran. Dzięki temu zbudowanemu w ten sposób układowi, możemy skutecznie przesyłać różne sygnały, np. w telekomunikacji czy telewizji kablowej. Przewodnikiem w środku jest zazwyczaj miedź, co zapewnia świetne przewodnictwo. Zewnętrzny ekran, zrobiony najczęściej z miedzi albo aluminium, dobrze chroni sygnał przed zakłóceniami elektromagnetycznymi. Kable koncentryczne mogą być wykorzystywane nie tylko do tradycyjnej telewizji, ale też do Internetu czy systemów monitoringu CCTV. Warto wiedzieć, że te kable często spełniają normy RG-6 lub RG-59, co świadczy o ich jakości. W branży IT, umiejętność rozróżniania tych kabli to bardzo ważna skill, dlatego dobrze jest znać ich właściwości, gdy projektujemy sieci.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. DIN
B. HDMI
C. SCART
D. BNC
Złącza BNC (Bayonet Neill-Concelman) są powszechnie stosowane w systemach telewizji dozorowej ze względu na ich prostotę, niezawodność oraz doskonałe właściwości sygnałowe. Złącza te są zaprojektowane do pracy z kablami koncentrycznymi, co czyni je idealnym rozwiązaniem w aplikacjach wymagających przesyłania sygnałów wideo. W systemach CCTV, BNC umożliwia szybkie i łatwe podłączenie kamer do rejestratorów, a także zapewnia stabilne połączenie, które minimalizuje straty sygnału. W praktyce, złącza BNC są również szeroko stosowane w profesjonalnych systemach telekomunikacyjnych oraz w transmisji sygnałów wideo w studiach telewizyjnych. Dzięki swojej konstrukcji, złącza BNC pozwalają na łatwe wypinanie i wpinaliwaniu, co jest istotne w kontekście serwisowania i rozbudowy systemów monitorujących. Ponadto, standardy branżowe, takie jak SMPTE 292M, wspierają użycie złącz BNC w aplikacjach wideo, co podkreśla ich znaczenie i niezawodność w tej dziedzinie.

Pytanie 34

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
B. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
C. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 35

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. EUROSCART
B. DIN 5
C. S-VHS
D. JACK
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 36

W analizie parametrów anteny reflektometry używa się do pomiaru

A. impedancji na wejściu
B. temperatury szumów
C. rezystancji promieniującej
D. współczynnika odbicia
W odpowiedzi na pytanie, współczynnik odbicia jest kluczowym parametrem, który pozwala na ocenę efektywności działania anteny. Mierzenie współczynnika odbicia, zazwyczaj oznaczanego jako S11, pozwala na ocenę, jak dużo energii z sygnału wejściowego jest odbijane z powrotem do źródła. W praktyce, im mniejszy współczynnik odbicia, tym lepsza dopasowanie impedancji anteny do linii przesyłowej, co prowadzi do minimalnych strat sygnału. Istotnym standardem w tej dziedzinie jest pomiar w warunkach rzeczywistych, zgodny z normą IEEE 472-1987, która określa metody oceny i pomiarów anten. Przykładowo, poprawna regulacja anteny na podstawie wyników pomiarów S11 może znacząco poprawić jakość sygnału w systemach komunikacji radiowej, telewizyjnej czy mobilnej. Dbanie o odpowiednie wartości współczynnika odbicia jest niezbędne dla zapewnienia optymalnej efektywności i minimalizacji zakłóceń w systemach radiowych.

Pytanie 37

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. pomiaru rezystancji przewodów
B. pomiaru poboru mocy przez zasilane odbiorniki
C. badania ciągłości przewodów ochronnych
D. próby działania urządzeń różnicowoprądowych
Wszystkie pozostałe opcje dotyczące zakresu okresowego sprawdzania instalacji zasilającej są istotne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń. Badanie ciągłości przewodów ochronnych ma kluczowe znaczenie, ponieważ zapewnia, że wszelkie potencjalne różnice w napięciach są skutecznie eliminowane, co zapobiega porażeniom prądem. Rezystancja przewodów, z kolei, jest istotnym parametrem, który wpływa na bezpieczeństwo i stabilność systemu elektrycznego. Jej pomiar w kontekście norm PN-EN 61557 pozwala na ocenę, czy przewody ochronne działają prawidłowo. Próba działania urządzeń różnicowoprądowych również ma ogromne znaczenie w kontekście zapobiegania wypadkom. Te urządzenia, zaprojektowane w celu ochrony przed porażeniem prądem, muszą być regularnie testowane, aby upewnić się, że działają poprawnie w sytuacjach awaryjnych. Konsekwentne pomijanie tych badań może prowadzić do niebezpiecznych sytuacji oraz zagrożeń dla zdrowia użytkowników. Dlatego tak ważne jest, aby zrozumieć, że każdy z tych elementów jest integralną częścią procesu zapewnienia bezpieczeństwa w instalacjach elektrycznych, a nie tylko luksusowym dodatkiem do oceny wydajności energetycznej. Mylne jest myślenie, że pomiar poboru mocy jest kluczowym elementem okresowych sprawdzeń, ponieważ jego celem jest bardziej analiza efektywności niż bezpieczeństwa instalacji.

Pytanie 38

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. SINGLE
B. X-Y
C. ADD
D. DUAL
Tryb X-Y w oscyloskopie to naprawdę ważna sprawa, jeśli chodzi o analizowanie krzywych Lissajous. Dzięki temu można wyświetlać dwa sygnały jednocześnie. Gdy podłączysz sygnał o znanej częstotliwości do CH-B, a ten badany do CH-A, to przestawienie oscyloskopu w tryb X-Y pozwala zobaczyć, jak te sygnały się mają do siebie. Krzywe Lissajous są super do określania, jak częstotliwości i fazy sygnałów się między sobą porównują. Na przykład, jak masz sygnał referencyjny o częstotliwości 1 kHz, a badany o 2 kHz, to krzywa Lissajous będzie miała taki charakterystyczny kształt, który mówi, że sygnał badany jest w jakichś relacjach z referencyjnym. Jak się pracuje w laboratorium elektroniki czy inżynierii, to te analizy są na porządku dziennym. Warto mieć to na uwadze podczas pracy z oscyloskopem.

Pytanie 39

Do montażu kabla systemu alarmowego na ścianie betonowej należy wykorzystać

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź B jest prawidłowa, ponieważ kołki rozporowe stanowią idealne rozwiązanie do montażu kabli na ścianach betonowych. Te elementy mocujące są zaprojektowane tak, aby rozprzestrzeniać obciążenie na większej powierzchni materiału budowlanego, co jest kluczowe w przypadku twardych i kruchych materiałów jak beton. Kołki rozporowe dostępne są w różnych rozmiarach i typach, co pozwala na dobranie odpowiedniego rozwiązania do konkretnego zastosowania. Na przykład, w przypadku montażu systemu alarmowego, użycie kołków rozporowych z tworzywa sztucznego lub metalu zapewnia nie tylko stabilność, ale także długotrwałość montażu, co jest istotne dla bezpieczeństwa i niezawodności systemu. Używanie kołków rozporowych zgodnych z normami budowlanymi, takimi jak PN-EN 14592, gwarantuje właściwe parametry wytrzymałościowe. Dodatkowo, stosując się do dobrych praktyk, warto także zadbać o odpowiednią średnicę i długość kołków, aby zapewnić ich skuteczność w danym podłożu, co przyczyni się do prawidłowego funkcjonowania systemu alarmowego przez długi czas.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.