Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 stycznia 2026 08:18
  • Data zakończenia: 7 stycznia 2026 08:52

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Rtęciowe.
C. Wolframowe.
D. Diodowe.
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 2

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Żarowych.
B. Elektroluminescencyjnych.
C. Rtęciowych.
D. Indukcyjnych.
Rozważając inne typy źródeł światła, które zostały wymienione w odpowiedziach, można dostrzec szereg fundamentalnych różnic w działaniu i zastosowaniach. Lampy rtęciowe, często używane w oświetleniu ulicznym, opierają się na zjawisku wyładowania elektrycznego w parze rtęci, co skutkuje nieefektywnym wykorzystaniem energii i szkodliwym wpływem na środowisko ze względu na obecność rtęci. Z kolei lampy indukcyjne, które również nie są poprawną odpowiedzią, działają na zasadzie indukcji elektromagnetycznej, ale wymagają wysokiego napięcia i są mniej popularne w zastosowaniach domowych. Lampy żarowe, znane z powszechnego użycia, emitują światło poprzez podgrzewanie włókna, co prowadzi do wysokiej emisji ciepła i niskiej efektywności energetycznej. W praktyce, użytkownicy często mylą te technologie z LED, nie zdając sobie sprawy z ich ograniczeń. Błędem jest postrzeganie tych źródeł jako nowoczesnych i energooszczędnych, co prowadzi do nieprawidłowych wyborów w obszarze oświetlenia. Przykładowo, wybierając lampy żarowe zamiast LED, popełniamy istotny błąd, który przekłada się na wyższe koszty eksploatacji oraz negatywny wpływ na środowisko. Zrozumienie różnic między tymi rodzajami oświetlenia jest kluczowe dla podejmowania świadomych decyzji w zakresie inwestycji w technologie oświetleniowe.

Pytanie 3

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Liczba odbiorników zasilanych z instalacji
B. Warunki atmosferyczne, którym podlega instalacja
C. Typ instalacji
D. Funkcja budynku
Warunki zewnętrzne, przeznaczenie budynku oraz rodzaj instalacji mają istotny wpływ na częstotliwość sprawdzeń okresowych instalacji elektrycznej. Użytkownicy często mylą te aspekty z liczbą zainstalowanych odbiorników, co jest błędnym podejściem. Warunki zewnętrzne, takie jak wilgotność, temperatura czy zanieczyszczenia, mogą znacznie wpłynąć na stan techniczny instalacji. Na przykład, w obiektach narażonych na wysoką wilgotność, takich jak baseny czy obiekty przemysłowe, instalacje elektryczne powinny być poddawane bardziej skrupulatnym inspekcjom. Przeznaczenie budynku także odgrywa kluczową rolę; budynki użyteczności publicznej muszą spełniać wyższe standardy bezpieczeństwa, co wiąże się z koniecznością częstszych przeglądów. Rodzaj instalacji również wpływa na wymagania dotyczące częstotliwości badań. Na przykład, instalacje wykonane w trudnych warunkach, takie jak w przemyśle chemicznym, wymagają regularnych sprawdzeń z uwagi na ryzyko uszkodzenia. Powszechne jest myślenie, że im więcej odbiorników, tym większe ryzyko, co w rzeczywistości nie jest głównym czynnikiem determinującym potrzebę przeglądów. Kluczowe jest zrozumienie, że bezpieczeństwo elektryczne powinno opierać się na analizie ryzyka, a nie tylko na liczbie odbiorników w instalacji.

Pytanie 4

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
B. Sprawdzenie kolejności faz sieci zasilającej
C. Weryfikacja działania przycisku testowego
D. Weryfikacja poprawności podłączenia do sieci
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 5

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 6

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aM
B. gG
C. gR
D. aL
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 7

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 8

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 3-5 krotności prądu znamionowego
B. 20-30 krotności prądu znamionowego
C. 1-20 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 9

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Rysunek oznaczony literą B. przedstawia pierścienie ślizgowe, które pełnią kluczową rolę w silnikach elektrycznych. Są to elementy, które umożliwiają przekazywanie prądu elektrycznego do wirnika, co jest niezbędne do jego prawidłowego funkcjonowania. Pierścienie te są wykonane z materiałów o wysokiej przewodności elektrycznej oraz odporności na zużycie, co pozwala im działać w warunkach dynamicznych, gdzie występują znaczne siły mechaniczne i elektryczne. W zastosowaniach przemysłowych, pierścienie ślizgowe są wykorzystywane w takich urządzeniach jak silniki asynchroniczne, generatory oraz różnego rodzaju maszyny wirujące. Użycie pierścieni ślizgowych jest zgodne z normami międzynarodowymi, takimi jak IEC 60034, które określają wymogi dla silników elektrycznych. Dzięki zastosowaniu tych elementów, zapewniona jest nie tylko efektywność działania, ale także bezpieczeństwo operacyjne urządzeń, co jest szczególnie istotne w przemyśle energetycznym i automatyce przemysłowej.

Pytanie 10

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 6,7 A
B. 3,2 A
C. 3,9 A
D. 2,2 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 11

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Oczkowego.
B. Ampulowego.
C. Płaskiego.
D. Nasadowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 12

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. C.
B. A.
C. D.
D. B.
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 13

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 2500 V
B. 250 V
C. 1000 V
D. 500 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 14

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Co pięć lat
B. Co najmniej raz na rok
C. Tylko przed uruchomieniem nowych maszyn
D. Po każdej naprawie maszyn
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 15

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. wymiany gniazd zasilających
C. montażu nowych punktów świetlnych
D. czyszczenia urządzeń w rozdzielniach
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 16

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H03VV-F
B. H07V-U
C. NAYY-O
D. NYM-J
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 17

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,40 V)
B. 230 V (±1,50 V)
C. 230 V (±1,20 V)
D. 230 V (±1,30 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 18

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Waromierza
B. Woltomierza
C. Reflektometru
D. Watomierza
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 19

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
B. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
C. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 20

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.

Pytanie 21

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. Na dnie basenu o głębokości 4 m.
B. W pomieszczeniu zagrożonym wybuchem.
C. W pomieszczeniach z łatwopalnymi oparami.
D. Na zewnątrz, do oświetlenia placu budowy.
Oprawa oświetleniowa z oznaczeniem IP65 jest odpowiednia do instalacji na zewnątrz, w tym na placu budowy, ze względu na jej odporność na kurz oraz strumienie wody. Oznaczenie IP65 wskazuje, że urządzenie jest całkowicie chronione przed dostępem kurzu (klasa 6) oraz że wytrzymuje strumienie wody z dowolnego kierunku (klasa 5). Takie właściwości są kluczowe w warunkach budowlanych, gdzie sprzęt narażony jest na trudne warunki atmosferyczne i konieczność zapewnienia odpowiedniego oświetlenia dla bezpieczeństwa pracowników i jakości wykonywanych robót. W praktyce oprawy oświetleniowe IP65 są często stosowane w przestrzeniach zewnętrznych, takich jak place budowy, parkingi, czy obiekty sportowe. Dobrą praktyką jest również zapewnienie, aby instalacja odbywała się zgodnie z przepisami lokalnymi i normami, takimi jak PN-EN 60598 dotycząca oświetlenia. Warto również zwrócić uwagę na odpowiednie akcesoria montażowe oraz dodatkowe zabezpieczenia, aby zapewnić długotrwałe i bezpieczne użytkowanie oświetlenia w trudnych warunkach.

Pytanie 22

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę topikową bezpiecznika.
B. Wkładkę kalibrową.
C. Gniazdo zapłonnika.
D. Oprawkę źródła światła.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 23

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. W rozdzielnicy mieszkaniowej.
B. Bezpośrednio przed licznikami.
C. W złączu.
D. W rozdzielnicy głównej.
Zabezpieczenia nadprądowe o najwyższej wartości prądu powinny być montowane w złączu elektrycznym. To takie kluczowe miejsce, gdzie instalacja odbiorcza spotyka się z siecią elektroenergetyczną. Dzięki temu cała instalacja jest lepiej chroniona przed przeciążeniami i zwarciami. Instalując te zabezpieczenia w złączu, nie tylko broni się przewody zasilające, ale i wszystkie obwody odbiorcze. Z tego co wiem, jest to zgodne z normami, jak PN-IEC 60364, które mówią, że trzeba je stosować w złączu. W praktyce, jak już dojdzie do przeciążenia, to zabezpieczenie w złączu zadziała najszybciej, co może uratować droższe elementy instalacji. Weźmy na przykład budynki mieszkalne – tam często montuje się te zabezpieczenia w złączu, żeby cała instalacja była bezpieczniejsza dla użytkowników.

Pytanie 24

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
B. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
C. Wyłączyć wszystkie wyłączniki nadprądowe.
D. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
Wyłączenie wyłącznika różnicowoprądowego P312 B25A przed wymianą uszkodzonego wyłącznika nadprądowego B16 jest prawidłowym działaniem, ponieważ pozwala na zachowanie zasilania innych obwodów. Wyłącznik P312 B25A zabezpiecza obwody, w których znajdują się wyłączniki nadprądowe B6, B16 i B6, a więc jego wyłączenie pozwala na bezpieczną wymianę wyłącznika B16 bez pozbawiania zasilania płyty grzewczej i piekarnika, które są zasilane z innych obwodów. Praktyka ta jest zgodna z zaleceniami dotyczącymi bezpieczeństwa pracy w instalacjach elektrycznych, które nakazują minimalizowanie wyłączeń zasilania tam, gdzie to możliwe. Warto również pamiętać o dokumentacji instalacji elektrycznej, która powinna zawierać schematy, umożliwiające szybką identyfikację obwodów i ich zabezpieczeń. Dobrą praktyką jest również przeprowadzenie próby pomiarowej, aby upewnić się, że zasilanie zostało odłączone przed przystąpieniem do jakichkolwiek prac.

Pytanie 25

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. łazience i pokoju 2
B. pokoju 1 i pokoju 2
C. kuchni i pokoju 2
D. łazience i pokoju 1
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 26

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 27

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±3,2 mA
B. ±0,3 mA
C. ±2,0 mA
D. ±0,5 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 28

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły c i a są zwarte ze sobą.
C. Żyły a i b są przerwane.
D. Żyły a i b są zwarte ze sobą.
Wynik, który wskazuje, że żyły a i b są zwarte ze sobą, jest prawidłowy. Podczas pierwszej serii pomiarów, gdy końce żył były zwarte, odczytana rezystancja wynosiła niskie wartości, co sugeruje, że żyły są sprawne. Natomiast w drugiej serii, gdy żyły były rozwarte, rezystancja pomiędzy żyłami a i b była zaskakująco bliska wartości z pierwszej serii, co oznacza, że mogły być one zwarte. Wartości rezystancji pomiędzy żyłami a i c oraz b i c wynoszą nieskończoność, co potwierdza, że te żyły nie są ze sobą połączone. W praktyce, zrozumienie pomiarów rezystancji jest kluczowe w diagnostyce urządzeń elektrycznych i systemów kablowych. Używając odpowiednich narzędzi, takich jak mierniki rezystancji, technicy mogą szybko zidentyfikować problemy z izolacją kabli czy przerwy w obwodach. Zachowanie takich standardów jak IEC 60364 dotyczących instalacji elektrycznych jest niezbędne, aby zapewnić bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 29

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,69
B. 0,57
C. 0,82
D. 0,99
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 30

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 31

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Schemat C jest poprawny, ponieważ umożliwia prawidłowe podłączenie miernika parametrów RCD, co jest kluczowe do wykonania pomiarów prądu wyzwolenia oraz czasu zadziałania wyłącznika różnicowoprądowego. W tym schemacie miernik jest podłączony do przewodów fazowego (L) i neutralnego (N), a także do przewodu ochronnego (PE). Taki sposób połączenia pozwala na symulację warunków, które występują w sytuacji awaryjnej, kiedy to prąd upływu przekracza wartość progową wyłącznika. Przykładowo, w przypadku wystąpienia prądu różnicowego, wyłącznik RCD powinien zadziałać i odciąć zasilanie, co zapobiega porażeniu prądem. Podłączenie miernika według schematu C jest zgodne z normami PN-HD 60364 oraz z dobrą praktyką w elektrotechnice, co zapewnia bezpieczeństwo oraz efektywność przeprowadzanych pomiarów. Prawidłowe pomiary pozwalają na monitorowanie stanu instalacji elektrycznych oraz ich bezpieczeństwa, co ma kluczowe znaczenie w kontekście ochrony przed porażeniem prądem elektrycznym.

Pytanie 32

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 33

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Uszkodzony obwód zasilający piekarnik
B. Słaby styk w lampie
C. Nadpalony styk wyłącznika światła
D. Zbyt mały przekrój przewodów zasilających pomieszczenie
Nadpalony styk wyłącznika oświetlenia, słaby styk w oprawie oświetleniowej oraz uszkodzony obwód zasilający piekarnik to potencjalne, ale mniej prawdopodobne przyczyny przygasania żarówki podczas pracy piekarnika. Nadpalony styk wyłącznika oświetlenia może rzeczywiście powodować problemy z przewodnictwem, co może prowadzić do spadków napięcia, ale zazwyczaj objawiają się one w sposób bardziej intensywny, np. poprzez migotanie światła lub całkowite wyłączenie oświetlenia. Słaby styk w oprawie oświetleniowej również może skutkować problemami, jednak najczęściej objawia się to w postaci niestabilnego działania konkretnej żarówki, a nie ogólnym przygasaniem. Uszkodzony obwód zasilający piekarnik może sprawiać, że urządzenie nie działa prawidłowo, ale w przypadku dobrze funkcjonujących piekarników, zjawisko przygasania żarówek jest bardziej powiązane z przeciążeniem obwodu. Typowe błędy myślowe prowadzące do błędnych wniosków obejmują skupienie się na problemach lokalnych, zamiast analizować cały obwód zasilający. W praktyce, diagnozując problemy z instalacją elektryczną, konieczne jest zrozumienie interakcji między urządzeniami i ich wpływu na infrastrukturę elektryczną, co z kolei wymaga znajomości przepisów i standardów dotyczących instalacji elektrycznych.

Pytanie 34

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,50 Ω
B. 1,25 Ω
C. 2,75 Ω
D. 2,50 Ω
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 35

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 1.
B. Końcówki 2.
C. Końcówki 3.
D. Końcówki 4.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 36

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
C. Do formowania oczek na końcach żył jednodrutowych.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
Odpowiedź, że szczypce są przeznaczone do formowania oczek na końcach żył jednodrutowych, jest prawidłowa, ponieważ szczypce okrągłe zostały zaprojektowane z myślą o precyzyjnym formowaniu takich elementów w obszarze elektryki i mechaniki. Oczka na końcach żył są kluczowe, ponieważ umożliwiają solidne połączenie przewodów z zaciskami, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności instalacji. W praktyce, formowanie oczek to nie tylko kwestia estetyki, ale również funkcjonalności; dobrze uformowane oczka minimalizują ryzyko luźnych połączeń, które mogą prowadzić do przegrzewania się lub awarii. W inżynierii elektrycznej stosuje się różne standardy, takie jak IEC 60947-1, które regulują wymagania dotyczące połączeń elektrycznych. Warto również wspomnieć, że odpowiednie formowanie końców żył ma kluczowe znaczenie w kontekście odporności na wibracje i długotrwałą niezawodność połączeń.

Pytanie 37

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Neonowym wskaźnikiem napięcia
B. Wkrętakiem
C. Nożem monterskim
D. Kluczem płaskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 38

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 39

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. wodoszczelna.
B. nieodporna na wnikanie wody.
C. odporna na krople wody.
D. strugoszczelna.
Kiedy wybierzesz złotą odpowiedź, warto zwrócić uwagę na kilka istotnych rzeczy dotyczących ochrony opraw oświetleniowych przed wodą. Odpowiedzi, które mówią, że ta oprawa jest strugoszczelna czy odporna na krople wody, są błędne. Te terminy sugerują, że produkt ma jakieś zabezpieczenia, a w tym przypadku ich nie ma. Strugoszczelność oznacza, że urządzenie jest tak zaprojektowane, żeby chronić przed intensywnym deszczem, a oprawy odporne na krople wody są przystosowane do mniejszych ilości wilgoci, ale też muszą mieć uszczelnienia. Wodoszczelność to całkowita odporność na wodę i to też tutaj nie ma miejsca. Fajnie byłoby zrozumieć klasyfikację IP przy wyborze opraw, bo to ma duże znaczenie w praktyce. Nieznajomość tych kwestii może prowadzić do zastosowania złych produktów w złych warunkach, a to może zwiększyć ryzyko uszkodzenia, a nawet obniżyć efektywność energetyczną. Dlatego, zanim zdecydujesz, jaką oprawę wybrać, dobrze jest zrozumieć, w jakim środowisku będą używane i jakie normy powinny być spełnione.

Pytanie 40

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. techniczną.
B. zastosowania dodatkowego źródła.
C. spadku napięcia.
D. bezpośredniego pomiaru.
Wybór odpowiedzi 'techniczną' nie odnosi się do specyfiki pomiaru impedancji pętli zwarciowej. Ogólnie rzecz biorąc, termin ten może sugerować ujęcie oparte na technicznych aspektach pomiarów, jednak nie wskazuje na właściwą metodę. Odpowiedź 'bezpośredniego pomiaru' sugeruje, że pomiar impedancji można uzyskać poprzez bezpośrednie podłączenie miernika do obwodu, co nie jest właściwe w kontekście pomiaru pętli zwarciowej. W rzeczywistości, pomiar impedancji nie jest zwykle realizowany w sposób bezpośredni, ponieważ wymaga to wywołania warunków zwarcia, co wiąże się z ryzykiem dla bezpieczeństwa i wymaga zachowania szczególnych środków ostrożności. Odpowiedź 'zastosowania dodatkowego źródła' nie jest poprawna, ponieważ metoda spadku napięcia wykorzystuje istniejące napięcie w obwodzie do pomiaru, a dodatkowe źródło mogłoby wprowadzić błędy w odczycie. Typowym błędem myślowym w tym przypadku jest mylenie różnych metod pomiarowych oraz brak zrozumienia, że pomiar impedancji pętli zwarciowej wymaga specyficznych warunków, które są zgodne z normami i praktykami branżowymi. Właściwe zrozumienie metodologii pomiarowej jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.