Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 21 lutego 2026 18:48
  • Data zakończenia: 21 lutego 2026 18:56

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką usługę powinno się aktywować na ruterze, aby każda stacja robocza mogła wymieniać pakiety z siecią Internet, gdy dostępnych jest 5 adresów publicznych oraz 18 stacji roboczych?

A. NAT
B. WWW
C. VPN
D. FTP
Wybór usług FTP, WWW czy VPN do zapewnienia wymiany pakietów z Internetem jest błędny, ponieważ każda z tych technologii pełni inną rolę w zarządzaniu komunikacją sieciową. FTP, czyli protokół transferu plików, jest używany głównie do przesyłania plików między komputerami w sieci, a nie do udostępniania dostępu do Internetu. Użytkownicy mogą mylić FTP z pojęciem udostępniania zasobów, ale jego funkcjonalność jest ograniczona do transferu plików, co czyni go nieodpowiednim rozwiązaniem w kontekście dostępu do Internetu dla wielu stacji roboczych. WWW odnosi się do usługi World Wide Web, która jest infrastrukturą do przeglądania stron internetowych. Choć jest kluczowa dla komunikacji w sieci, sama w sobie nie umożliwia zarządzania adresami IP i nie jest używana do udostępniania dostępu do Internetu dla stacji roboczych. Z kolei VPN, czyli wirtualna sieć prywatna, jest technologią służącą do szyfrowania połączeń i zapewnienia bezpiecznego dostępu do sieci, ale nie rozwiązuje problemu ograniczonej liczby publicznych adresów IP. Wybór tych usług może prowadzić do nieporozumień dotyczących ich funkcjonalności – użytkownicy mogą sądzić, że są one w stanie zapewnić dostęp do Internetu w sposób, w jaki robi to NAT, co jest mylne. Rzeczywistość jest taka, że NAT jest kluczowym komponentem w architekturze sieciowej, który umożliwia efektywne wykorzystanie dostępnych publicznych adresów IP, co jest szczególnie istotne w środowiskach o dużej liczbie urządzeń.

Pytanie 2

W hierarchicznym modelu sieci komputery użytkowników stanowią część warstwy

A. szkieletowej
B. dostępu
C. dystrybucji
D. rdzenia
W modelu hierarchicznym sieci komputerowej, warstwa dostępu jest kluczowym elementem odpowiedzialnym za bezpośrednie połączenie z urządzeniami końcowymi, takimi jak komputery użytkowników, drukarki i inne urządzenia peryferyjne. To właśnie w tej warstwie dochodzi do fizycznego podłączenia oraz zarządzania dostępem do zasobów sieciowych. Przykładem zastosowania warstwy dostępu są technologie Ethernet, Wi-Fi oraz różnorodne przełączniki sieciowe, które pełnią rolę punktów dostępowych. W praktyce, warstwa dostępu implementuje różne mechanizmy zabezpieczeń, takie jak kontrola dostępu do sieci (NAC), co pozwala na zarządzanie, które urządzenia mogą korzystać z zasobów sieciowych. Dobrą praktyką w projektowaniu sieci jest segmentacja ruchu w warstwie dostępu, co zwiększa bezpieczeństwo i wydajność całej sieci. Zastosowanie standardów, takich jak IEEE 802.11 dla bezprzewodowych sieci lokalnych, zapewnia większą interoperacyjność i efektywność działań w tej warstwie.

Pytanie 3

Komunikat, który pojawia się po uruchomieniu narzędzia do naprawy systemu Windows, może sugerować

Ilustracja do pytania
A. wykrycie błędnej adresacji IP
B. konieczność zrobienia kopii zapasowej systemu
C. uszkodzenie sterowników
D. uszkodzenie plików startowych systemu
Komunikat wskazujący na użycie narzędzia do naprawy systemu Windows, często oznacza problem z plikami startowymi systemu. Pliki te są niezbędne do uruchomienia systemu operacyjnego, a ich uszkodzenie może prowadzić do sytuacji, gdzie system nie jest w stanie się poprawnie uruchomić. Narzędzie Startup Repair jest zaprojektowane do automatycznego wykrywania i naprawiania takich problemów. Jest ono częścią środowiska odzyskiwania systemu Windows, które pomaga przywrócić funkcjonalność systemu bez konieczności instalacji od nowa, co jest zgodne z dobrymi praktykami w zakresie utrzymania systemów IT. Przyczyn uszkodzenia plików startowych może być wiele, w tym nagłe wyłączenia prądu, ataki złośliwego oprogramowania lub błędy w systemie plików. Regularne wykonywanie kopii zapasowych i korzystanie z narzędzi ochronnych może zminimalizować ryzyko takich problemów. Wiedza o tym jak działa i kiedy używać narzędzia Startup Repair jest kluczowa dla każdego specjalisty IT, umożliwiając szybkie przywracanie działania systemów komputerowych i minimalizowanie przestojów.

Pytanie 4

Jakim spójnikiem określa się iloczyn logiczny?

A. XOR
B. OR
C. AND
D. NOT
Wybór innych spójników niż AND może wynikać z nieporozumienia dotyczącego ich funkcji w logice. Na przykład, spójnik XOR (exclusive OR) zwraca wartość prawdy tylko wtedy, gdy dokładnie jedna z operandy jest prawdziwa. W kontekście iloczynu logicznego, jego użycie byłoby nieodpowiednie, ponieważ nie oddaje zasady, że obie wartości muszą być prawdziwe. Podobnie, spójnik NOT neguje wartość logiczną, co również nie odpowiada definicji iloczynu logicznego, który łączy dwie wartości. Spójnik OR (inclusive OR) z kolei zwraca wartość prawdy, jeśli przynajmniej jedna z wartości jest prawdziwa, co również jest różne od działania AND. Te błędne odpowiedzi mogą być wynikiem mylenia operacji logicznych oraz ich zastosowań w praktycznych problemach. W kontekście programowania, ważne jest, aby zrozumieć, że różne spójniki mają różne zastosowania, które powinny być starannie dobierane w zależności od kontekstu. Niezrozumienie, jak działa każdy z tych operatorów, może prowadzić do niepoprawnego rozwiązywania problemów oraz błędów w kodzie, co z kolei wpływa na efektywność i jakość oprogramowania. Warto więc regularnie przeglądać dokumentacje oraz standardy zachowań operatorów logicznych w wybranym języku programowania, aby uniknąć tego rodzaju pomyłek.

Pytanie 5

Na skutek użycia polecenia ipconfig uzyskano konfigurację przedstawioną na ilustracji. Jaki jest adres IP stacji roboczej, która została poddana testom?

Sufiks DNS konkretnego połączenia :
Opis. . . . . . . . . . . . . . . : Realtek RTL8168C(P)/8111C(P)
                                    PCI-E Gigabit Ethernet NIC
Adres fizyczny. . . . . . . . . . : 00-1F-D0-A5-0B-57
DHCP włączone . . . . . . . . . . : Tak
Autokonfiguracja włączona . . . . : Tak
Adres IP. . . . . . . . . . . . . : 192.168.0.11
Maska podsieci. . . . . . . . . . : 255.255.255.0
Brama domyślna. . . . . . . . . . : 192.168.0.1
Serwer DHCP . . . . . . . . . . . : 192.168.0.1
Serwery DNS . . . . . . . . . . . : 62.21.99.95
A. 62.21.99.95
B. 192.168.0.1
C. 255.255.255.0
D. 192.168.0.11
Adres IP 192.168.0.11 jest prawidłowy ponieważ przedstawia lokalny adres przyznawany urządzeniom w sieci prywatnej używającej przestrzeni adresowej 192.168.0.0/24. Ten zakres adresów jest powszechnie stosowany w sieciach domowych i biurowych zgodnie z normą RFC 1918 co zapobiega konflikcie z publicznymi adresami IP w Internecie. Konfiguracja IP przedstawiona na rysunku pokazuje że stacja robocza jest poprawnie skonfigurowana w ramach tej podsieci a router prawdopodobnie działa jako brama domyślna o adresie 192.168.0.1. Adresy IP w tej przestrzeni adresowej są przypisywane przez serwery DHCP lub konfigurowane ręcznie co umożliwia łatwe zarządzanie urządzeniami w sieci. Adres IP 192.168.0.11 wskazuje na urządzenie wewnętrzne co oznacza że inne urządzenia w tej samej sieci mogą się z nim komunikować bez potrzeby translacji adresów. Zrozumienie konfiguracji adresów IP jest kluczowe dla utrzymania wydajnej i bezpiecznej sieci komputerowej a wybór odpowiednich zakresów adresów jest podstawą dobrych praktyk w branży IT.

Pytanie 6

Który adres IP jest przypisany do klasy A?

A. 134.16.0.1
B. 119.0.0.1
C. 169.255.2.1
D. 192.0.2.1
Adres IP 119.0.0.1 należy do klasy A, co wynika z definicji klas adresowych w protokole IP. Klasa A obejmuje adresy od 1.0.0.0 do 126.255.255.255, a pierwszy oktet musi mieścić się w przedziale od 1 do 126. W przypadku adresu 119.0.0.1 pierwszy oktet to 119, co potwierdza jego przynależność do klasy A. Adresy klasy A są przeznaczone dla dużych organizacji, które potrzebują wielu adresów IP w jednej sieci. Klasa ta pozwala na przydzielenie ogromnej liczby adresów – ponad 16 milionów (2^24) dla każdej sieci, co jest korzystne dla dużych instytucji, takich jak korporacje czy uniwersytety. Ponadto w kontekście routingu, adresy klasy A są używane dla dużych sieci, co ułatwia zarządzanie i organizację struktury adresowej. W praktycznych zastosowaniach, w przypadku organizacji wymagających dużych zasobów adresowych, klasy A są często wykorzystywane do rozbudowy infrastruktury sieciowej, co jest zgodne z dobrymi praktykami w zakresie planowania adresacji IP.

Pytanie 7

Symbol umieszczony na urządzeniach, który stanowi certyfikat potwierdzający zgodność w zakresie emisji promieniowania, ergonomii, efektywności energetycznej i ekologicznych norm, został przedstawiony na ilustracji

Ilustracja do pytania
A. C
B. B
C. D
D. A
Rozważając inne możliwe odpowiedzi ważne jest zrozumienie czym są przedstawione symbole i dlaczego nie spełniają wymagań opisanych w pytaniu Oznaczenie z symbolem C zazwyczaj odnosi się do certyfikacji związanej z bezpieczeństwem elektrycznym i kompatybilnością elektromagnetyczną ale nie obejmuje tak szerokiego zakresu jak TCO dotyczącego ergonomii i ekologii Symbol B często jest używany w kontekście znaków jakości lub zgodności ale jego specyfikacja nie obejmuje wszystkich aspektów poruszonych w pytaniu dotyczących emisji promieniowania czy ekologii Z kolei symbol D oznacza certyfikat TÜV SÜD który jest znakiem jakości i bezpieczeństwa technicznego służącym do oznaczania produktów które przeszły testy niezależnej jednostki certyfikującej TÜV Mimo że TÜV SÜD ma szerokie zastosowanie w certyfikacji to jednak skupia się bardziej na bezpieczeństwie i niezawodności technicznej niż na pełnej zgodności z wymogami ergonomicznymi czy ekologicznymi jakie definiuje TCO Ważne jest aby przy wyborze certyfikacji dla produktów elektronicznych dokładnie rozważyć które aspekty są kluczowe dla danego zastosowania oraz jakie standardy najlepiej odpowiadają tym potrzebom To zrozumienie pozwoli unikać typowych błędów takich jak wybór certyfikatu który nie spełnia wszystkich oczekiwanych kryteriów co może prowadzić do nieporozumień i niepełnego zabezpieczenia interesów użytkowników w zakresie ochrony zdrowia oraz środowiska naturalnego

Pytanie 8

Oprogramowanie, które jest przypisane do konkretnego komputera lub jego komponentu i nie pozwala na reinstalację na nowszym sprzęcie zakupionym przez tego samego użytkownika, nosi nazwę

A. MOLP
B. MPL
C. CPL
D. OEM
Odpowiedź OEM (Original Equipment Manufacturer) jest prawidłowa, ponieważ odnosi się do oprogramowania, które jest licencjonowane na konkretne urządzenie, często w zestawie z jego komponentami. Licencje OEM są często przypisane do konkretnego komputera i nie mogą być przenoszone na inny sprzęt. Przykładowo, gdy kupujesz komputer z preinstalowanym systemem operacyjnym, najczęściej jest on objęty licencją OEM. Oznacza to, że w przypadku zakupu nowego komputera, nie możesz ponownie zainstalować tego samego systemu na nowym urządzeniu bez nabycia nowej licencji. W praktyce oznacza to, że użytkownicy powinni być świadomi, że zakup oprogramowania OEM jest zazwyczaj tańszy, ale wiąże się z ograniczeniami w przenoszeniu licencji. Dobrą praktyką jest, aby przed zakupem oprogramowania, zwłaszcza systemów operacyjnych, zrozumieć warunki licencjonowania, co pozwoli uniknąć nieprzyjemnych niespodzianek w przyszłości.

Pytanie 9

W systemie SI jednostką do mierzenia napięcia jest

A. wat
B. wolt
C. herc
D. amper
Amper (A) to jednostka miary natężenia prądu elektrycznego, a nie napięcia. Ustalając natężenie prądu, mierzysz ilość ładunku elektrycznego przepływającego przez przewodnik w jednostce czasu, co jest kluczowe w obwodach elektrycznych, ale zupełnie nie odnosi się do różnicy potencjałów między punktami. Z kolei wat (W) jest jednostką mocy, która jest określana jako iloczyn napięcia i natężenia prądu. Oznacza to, że zwiększając napięcie przy stałym natężeniu prądu, zwiększamy moc dostarczaną do urządzenia. W kontekście błędów myślowych, można zauważyć, że wiele osób myli jednostki, nie rozumiejąc ich fundamentalnych różnic. Użycie herca (Hz) jako jednostki miary napięcia również jest nietrafione, ponieważ herc mierzy częstotliwość, a nie napięcie. Częstotliwość odnosi się do liczby cykli, które występują w jednostce czasu, co jest istotne w kontekście sygnałów AC (prąd zmienny). W praktyce, te różnice są kluczowe dla analizy układów elektrycznych oraz projektowania systemów, gdzie poprawne zrozumienie jednostek i ich zastosowania ma kluczowe znaczenie dla bezpieczeństwa i efektywności energetycznej.

Pytanie 10

Jaka jest maksymalna liczba komputerów, które mogą być zaadresowane w podsieci z adresem 192.168.1.0/25?

A. 126
B. 254
C. 510
D. 62
Podane odpowiedzi, takie jak 62, 254 oraz 510, bazują na błędnej interpretacji zasad adresowania IP w kontekście maski podsieci. Odpowiedź 62 może wynikać z mylnego obliczenia, które uwzględnia tylko część dostępnych adresów, najprawdopodobniej z przyjęciem nieprawidłowej maski. Taka liczba adresów nie uwzględnia w pełni możliwości podsieci /25. Z kolei odpowiedź 254 często odnosi się do podsieci /24, gdzie zarezerwowane są dwa adresy, ale przy masce /25, ta liczba jest zawężona. Z kolei 510 przekracza techniczne możliwości podsieci, ponieważ nie ma tylu dostępnych adresów w konfiguracji /25. Typowym błędem w analizie liczby dostępnych adresów jest pominięcie faktu, że dwa adresy są zawsze rezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co często prowadzi do nieporozumień. Przy projektowaniu sieci ważne jest zrozumienie, że efektywne zarządzanie adresami IP wymaga precyzyjnej znajomości zasad dotyczących podsieci. Ignorowanie tych zasad może prowadzić do problemów z zarządzaniem siecią, takich jak konflikty adresów, niemożność poprawnego routingu lub zbyt mała liczba dostępnych adresów dla urządzeń w danej podsieci.

Pytanie 11

Ilustracja pokazuje panel ustawień bezprzewodowego urządzenia dostępowego, który umożliwia

Ilustracja do pytania
A. konfigurację serwera DHCP
B. przypisanie adresów MAC do kart sieciowych
C. ustawienie nazwy hosta
D. określenie maski podsieci
Nadanie nazwy hosta nie jest funkcją realizowaną przez serwer DHCP. Nazwa hosta jest częścią konfiguracji urządzenia, ale nie jest zautomatyzowana przez DHCP. Jest to proces manualny, który polega na przypisaniu łatwej do zidentyfikowania etykiety do urządzenia w sieci. Przydzielanie adresów MAC nie jest możliwe przez DHCP, ponieważ adres MAC jest unikalnym identyfikatorem sprzętowym przypisanym fabrycznie do kart sieciowych i nie podlega zmianie w drodze konfiguracji sieciowej. Z kolei przypisanie maski podsieci jest konfigurowane w ramach ustawień sieciowych, ale nie jest to zadanie realizowane samodzielnie przez interfejs DHCP. Maska podsieci jest wykorzystywana do podziału adresu IP na części identyfikujące sieć i hosty, jednak jej konfiguracja jest częścią bardziej złożonego procesu planowania sieci. Warto zauważyć, że błędne myślenie o funkcjonalności DHCP często wynika z niepełnej wiedzy o jego roli. DHCP skupia się na dynamicznym przydziale adresów IP i nie zarządza bezpośrednio adresami MAC ani nazwami hostów. Zrozumienie tych różnic jest kluczowe dla prawidłowej konfiguracji sieci i unikania potencjalnych problemów związanych z zarządzaniem adresacją IP w sieci

Pytanie 12

Zjawisko przekazywania tokena (ang. token) występuje w sieci o fizycznej strukturze

A. pierścienia
B. gwiazdy
C. siatki
D. magistrali
Wybór topologii magistrali, gwiazdy lub siatki w kontekście przekazywania żetonu jest błędny z kilku powodów, które warto omówić. W topologii magistrali wszystkie urządzenia są podłączone do wspólnego kabla, co prowadzi do współdzielenia medium transmisyjnego. W takiej strukturze nie istnieje żeton, który pozwalałby na kontrolowanie dostępu do medium – każdy węzeł ma równy dostęp do pasma, co może prowadzić do kolizji, gdy wiele urządzeń próbuje nadawać jednocześnie. Brak zarządzania dostępem skutkuje problemami z jakością transmisji. W przypadku topologii gwiazdy urządzenia są połączone do centralnego punktu, zwykle przełącznika, który zarządza ruchem danych. To podejście eliminuje kolizje na poziomie fizycznym, ale również nie wykorzystuje mechanizmu żetonów. To powoduje, że komunikacja opiera się na zasadzie przesyłania danych w formie ramek, co odbiega od idei żetonu. Z kolei w siatce, gdzie wiele połączeń między węzłami oferuje dużą redundancję i elastyczność, nie można mówić o przekazywaniu żetonu, gdyż komunikacja odbywa się poprzez wiele ścieżek jednocześnie. Typowe błędy myślowe w tym przypadku polegają na utożsamianiu różnych mechanizmów kontroli dostępu w sieciach z ideą żetonu, co wprowadza w błąd. Kluczowe jest zrozumienie, że w każdej z tych topologii istnieją zasady rządzące komunikacją, które znacząco różnią się od koncepcji przekazywania żetonu w pierścieniu.

Pytanie 13

Zgodnie z normą PN-EN 50174, maksymalna długość kabla poziomego kategorii 6 pomiędzy punktem abonenckim a punktem dystrybucji w panelu krosowym wynosi

A. 100 m
B. 110 m
C. 90 m
D. 150 m
Odpowiedzi 100 m, 110 m oraz 150 m są niepoprawne z kilku kluczowych powodów. Wybór długości 100 m może wydawać się logiczny, ponieważ często jest to długość używana w aplikacjach sieciowych, jednak nie uwzględnia ona specyficznych wymagań dla kabli kategorii 6, które do przesyłania danych wymagają ściśle określonego limitu długości dla optymalnej wydajności. Przesymulowanie długości kabla w warunkach rzeczywistych pokazuje, że przekroczenie 90 m skutkuje wzrostem opóźnień i spadkiem wydajności, co jest nie do zaakceptowania w środowiskach o wysokich wymaganiach dotyczących przepustowości. Wybór długości 110 m oraz 150 m jeszcze bardziej narusza zasady określone w normie. Tego rodzaju długości mogą być stosowane w specyficznych aplikacjach, ale nie w kontekście standardowej instalacji kabelowej dla systemów LAN. Dodatkowo, w praktyce inżynieryjnej błędne podejście do długości kabli poziomych może prowadzić do poważnych problemów z niezawodnością sieci, w tym zwiększonej liczby błędów przesyłania danych oraz problemami z obsługą klienta. Zrozumienie i przestrzeganie norm takich jak PN-EN 50174 jest kluczowe dla projektantów i instalatorów systemów telekomunikacyjnych, aby zapewnić ich wydajność oraz zgodność z najlepszymi praktykami branżowymi.

Pytanie 14

Aby serwer mógł przesyłać dane w zakresach częstotliwości 2,4 GHz oraz 5 GHz, konieczne jest zainstalowanie w nim karty sieciowej działającej w standardzie

A. 802.11n
B. 802.11b
C. 802.11g
D. 802.11a
Wybór standardów 802.11a, 802.11b oraz 802.11g do obsługi transmisji na pasmach 2,4 GHz i 5 GHz jest niewłaściwy. Standard 802.11a działa wyłącznie w paśmie 5 GHz, co ogranicza jego zastosowanie w środowiskach, gdzie pasmo 2,4 GHz jest równie istotne, na przykład w domowych sieciach Wi-Fi. Podobnie standard 802.11b jest przypisany wyłącznie do pasma 2,4 GHz, co uniemożliwia korzystanie z pasma 5 GHz i ogranicza prędkość transferu danych do maksymalnie 11 Mbps. Standard 802.11g, choć obsługuje pasmo 2,4 GHz i oferuje wyższe prędkości (do 54 Mbps), nadal nie jest w stanie wykorzystać obu pasm jednocześnie. Zastosowanie tych starszych standardów może prowadzić do wąskich gardeł w sieci, zwłaszcza w środowiskach z dużą liczbą użytkowników i urządzeń. W dobie wzrastającej liczby urządzeń IoT oraz wymagań dotyczących szybkości i jakości połączenia, wybór technologii 802.11n, która pozwala na efektywne wykorzystanie zarówno 2,4 GHz, jak i 5 GHz, staje się kluczowy. Niezrozumienie różnic pomiędzy tymi standardami może prowadzić do nieefektywnego projektowania sieci oraz frustracji użytkowników z powodu niskiej wydajności połączeń bezprzewodowych.

Pytanie 15

Zarządzaniem czasem procesora dla różnych zadań zajmuje się

A. chipset.
B. system operacyjny.
C. pamięć RAM.
D. cache procesora.
Przydzielanie czasu procesora nie jest zadaniem chipsetu, pamięci RAM ani cache procesora. Chipset, będący złożonym układem scalonym, pełni rolę pośrednika między procesorem a innymi komponentami systemu, ale nie zajmuje się bezpośrednim zarządzaniem czasem procesora. Pamięć RAM, z kolei, służy jako miejsce przechowywania danych i programów, które są aktualnie używane przez procesor, a nie jako mechanizm zarządzający ich przydziałem. Cache procesora, będący szybkim rodzajem pamięci, ma na celu zwiększenie wydajności poprzez przechowywanie najczęściej używanych danych, jednak nie jest odpowiedzialny za alokację czasu procesora. Powoduje to częste nieporozumienia związane z rolą tych komponentów, co może prowadzić do błędnych wniosków o ich funkcjonalności. Zrozumienie, że to system operacyjny zarządza przydzielaniem czasu procesora, jest kluczowe dla prawidłowego pojęcia architektury komputerowej. Często mylone jest również pojęcie wielozadaniowości, co prowadzi do niezrozumienia, jak system operacyjny organizuje procesy i zasoby. Przykładowo, użytkownicy mogą błędnie sądzić, że to sprzęt odpowiada za efektywność działania aplikacji, podczas gdy w rzeczywistości kluczowym elementem jest oprogramowanie, które zarządza tymi zasobami.

Pytanie 16

Kod BREAK interpretowany przez system elektroniczny klawiatury wskazuje na

A. aktywację funkcji czyszczącej bufor
B. konieczność ustawienia wartości opóźnienia powtarzania znaków
C. zwolnienie klawisza
D. usterkę kontrolera klawiatury
Wybór odpowiedzi, która mówi o awarii kontrolera klawiatury lub funkcji czyszczącej bufor, pokazuje, że możesz nie do końca rozumieć podstawowe zasady działania klawiatury. Tak naprawdę awaria kontrolera klawiatury to problem sprzętowy i nie ma to nic wspólnego z kodem BREAK. Ten kod nie ma też nic wspólnego z buforem, bo to dotyczy pamięci i danych, a nie tego, co robisz na klawiaturze. Co więcej, opóźnienie powtarzania znaków to inna sprawa, chodzi o to, jak szybko znów możesz nacisnąć ten sam klawisz. Więc te wszystkie odpowiedzi, które wybrałeś, mylą podstawowe zasady używania klawiatury. Ważne jest, by zrozumieć, że kod BREAK to sygnał, który mówi o tym, że klawisz był zwolniony, a nie o awariach czy ustawieniach systemowych. Dobrze ogarnąć tę różnicę, żeby nie popełniać błędów w programowaniu i projektowaniu systemów.

Pytanie 17

Trollowanie w Internecie polega na

A. prowokowaniu kłótni na forum internetowym.
B. używaniu emotikonów w treści wiadomości.
C. wysyłaniu wiadomości e-mail bez tematu i podpisu.
D. przepełnianiu skrzynki mailowej odbiorcy wiadomościami zawierającymi reklamy.
Wiele osób myli różne formy niepożądanych zachowań w sieci, wrzucając wszystko do jednego worka. Tymczasem trollowanie ma dość konkretną definicję i warto ją odróżniać od spamu czy po prostu nieeleganckiej korespondencji. Przepełnianie skrzynki mailowej reklamami to klasyczny spam, a nie trolling. Spam jest zautomatyzowany, masowy, najczęściej nastawiony na zysk finansowy albo phishing. W standardach bezpieczeństwa i dobrych praktykach administracji systemami pocztowymi traktuje się go jako zagrożenie techniczne: filtruje, blokuje, ogranicza, korzystając z list RBL, SPF, DKIM, DMARC. Trollowanie natomiast dotyczy głównie warstwy społecznej i komunikacyjnej – odbywa się tam, gdzie jest dyskusja: fora, komentarze, czaty, media społecznościowe. Używanie emotikonów w treści wiadomości samo w sobie nie ma nic wspólnego z trollowaniem. Emotikony są po prostu elementem języka internetowego, pomagają wyrazić emocje, złagodzić wypowiedź albo ją ubarwić. Oczywiście troll też może używać emotek, ale to nie one definiują zachowanie, tylko intencja i sposób prowadzenia rozmowy. To trochę tak, jakby twierdzić, że ktoś jest agresywny, bo używa wykrzykników – kompletnie nietrafione uproszczenie. Wysyłanie wiadomości e‑mail bez tematu i podpisu to po prostu brak kultury korespondencji i niezgodność z dobrymi praktykami komunikacji biznesowej. W firmach i instytucjach uczy się, żeby zawsze podawać temat, podpis, najlepiej też stopkę z danymi kontaktowymi. Jest to ważne dla przejrzystości, archiwizacji, a także bezpieczeństwa, bo łatwiej zweryfikować nadawcę. Ale to nadal nie jest trolling. Typowym błędem myślowym jest wrzucanie wszystkich „irytujących” zachowań online do jednej kategorii. Z punktu widzenia bezpieczeństwa cyfrowego i higieny pracy w sieci trzeba odróżniać spam, phishing, trolling, hejt i zwykłe nieprofesjonalne zachowanie. Dopiero wtedy można dobrać właściwe narzędzia: filtry antyspamowe, systemy zgłaszania nadużyć, moderację treści albo po prostu szkolenia z netykiety i komunikacji. Trollowanie to świadome wywoływanie kłótni i konfliktów w miejscach dyskusji, a nie sam fakt, że ktoś pisze maile bez tematu czy wrzuca reklamy.

Pytanie 18

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
B. dodaniem drugiego dysku twardego.
C. wybraniem pliku z obrazem dysku.
D. konfigurowaniem adresu karty sieciowej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 19

Jakie urządzenie należy zastosować do pomiaru mocy zużywanej przez komputer?

A. tester zasilaczy
B. watomierz
C. woltomierz
D. amperomierz
No więc, woltomierz, amperomierz i tester zasilaczy to różne przyrządy, ale niestety nie wystarczą do dokładnego pomiaru mocy, którą bierze komputer. Woltomierz pokazuje tylko napięcie, a to nie mówi nic o zużyciu energii samo w sobie. Amperomierz z kolei mierzy tylko natężenie prądu, a żeby uzyskać pełny obraz mocy, trzeba brać pod uwagę również napięcie i współczynnik mocy, który pokazuje, jak efektywnie energia jest wykorzystywana. Tester zasilaczy, mimo że potrafi sprawdzić stan zasilania, też nie da pełnego obrazu mocy. Dlatego wiele osób myśli, że pomiar jednego z tych parametrów jest wystarczający do oceny mocy, ale to nieprawda. Musisz mieć watomierz, który łączy te wszystkie dane, żeby dostać pełny obraz wydajności energetycznej. Zrozumienie tej różnicy jest naprawdę ważne, zwłaszcza dla osób zajmujących się elektroniką czy chcących mądrze gospodarować energią w komputerach.

Pytanie 20

Jakie znaczenie ma zaprezentowany symbol graficzny?

Ilustracja do pytania
A. przetwornik cyfrowo-analogowy
B. przetwornik analogowo-cyfrowy
C. filtr dolnoprzepustowy
D. generator dźwięku
Symbol A/D oznacza przetwornik analogowo-cyfrowy który jest kluczowym elementem w systemach cyfrowych umożliwiającym przekształcanie sygnałów analogowych na postać cyfrową. Jest to niezbędne w urządzeniach takich jak komputery czy smartfony które operują na danych cyfrowych. Przetwornik A/D mierzy wartość napięcia sygnału analogowego i przypisuje mu odpowiadającą mu wartość cyfrową co pozwala na dalsze przetwarzanie i analizę danych. Przykładem zastosowania jest digitalizacja dźwięku w systemach audio gdzie sygnał z mikrofonu przekształcany jest na sygnał cyfrowy aby można było go zapisać edytować lub przesłać. Przetworniki A/D są również używane w automatyce przemysłowej do monitorowania sygnałów z czujników co pozwala na dokładną kontrolę procesów produkcyjnych. Standardy takie jak IEEE 1241 określają metody testowania przetworników A/D co jest istotne dla zapewnienia ich dokładności i niezawodności w zastosowaniach krytycznych. Dobór odpowiedniego przetwornika A/D zależy od wymagań aplikacji takich jak rozdzielczość szybkość próbkowania i tolerancja błędów. Wybierając przetwornik należy również brać pod uwagę koszty i wymagania energetyczne co jest szczególnie ważne w urządzeniach mobilnych.

Pytanie 21

Monolityczne jądro (kernel) występuje w którym systemie?

A. Linux
B. QNX
C. Mac OS
D. Windows
Systemy operacyjne takie jak Windows, Mac OS i QNX mają różne architektury jądra, które nie są monolityczne. Windows, na przykład, wykorzystuje jądro hybrydowe, które łączy elementy zarówno jądra monolitycznego, jak i mikrojądra. Taka konstrukcja pozwala na większą elastyczność w zarządzaniu zasobami systemowymi, ale także wprowadza złożoność, która może prowadzić do problemów z wydajnością. Użytkownicy mogą mylnie zakładać, że jądro hybrydowe działa jak monolityczne, co jest nieprawidłowe, gdyż w rzeczywistości operacje są zorganizowane w bardziej złożony sposób, aby zapewnić lepsze przetwarzanie zadań, co wiąże się z większym narzutem czasowym ze względu na komunikację pomiędzy różnymi komponentami. Mac OS, bazujący na jądrze XNU, również łączy różne podejścia, co czyni go systemem bardziej skomplikowanym pod względem architektury. Z kolei QNX, będący systemem czasu rzeczywistego, opiera się na architekturze mikrojądra, co różni go od monolitycznych rozwiązań. Problemy z identyfikowaniem typu jądra mogą wynikać z mylnego przekonania, że wszystkie systemy operacyjne operują na tej samej zasadzie, co prowadzi do nieporozumień. W kontekście nauki o systemach operacyjnych ważne jest zrozumienie, jak różne architektury wpływają na wydajność, bezpieczeństwo i stabilność systemów, co jest kluczowe w praktycznych zastosowaniach informatycznych.

Pytanie 22

Przed dokonaniem zakupu komponentu komputera lub urządzenia peryferyjnego na platformach aukcyjnych, warto zweryfikować, czy nabywane urządzenie ma wymagany w Polsce certyfikat

A. CSA
B. EAC
C. FSC
D. CE
Wybór certyfikatu CSA, FSC czy EAC w kontekście zakupu podzespołów komputerowych może prowadzić do poważnych nieporozumień. Certyfikat CSA (Canadian Standards Association) jest używany głównie w Kanadzie i dotyczy bezpieczeństwa produktów elektrycznych i elektronicznych, ale nie jest wymagany ani uznawany w Polsce ani w Unii Europejskiej. Przekłada się to na ograniczoną użyteczność tego certyfikatu w kontekście europejskim, ponieważ nie zapewnia on zgodności z lokalnymi wymaganiami prawnymi. Z kolei certyfikat FSC (Forest Stewardship Council) odnosi się do zrównoważonego zarządzania lasami i jest związany z produktami papierniczymi, co jest zupełnie nieistotne w przypadku sprzętu komputerowego. Certyfikat EAC (Eurasian Conformity) dotyczy produktów wprowadzanych na rynek Euroazjatycki, ale nie jest on stosowany w krajach Unii Europejskiej, w tym w Polsce. Na tej podstawie, wybór tych certyfikatów w kontekście zakupu sprzętu komputerowego może prowadzić do fałszywego poczucia bezpieczeństwa oraz narażenia użytkownika na ryzyko zakupu towaru, który nie spełnia odpowiednich standardów jakości oraz bezpieczeństwa. Dlatego bardzo istotne jest, aby podczas zakupów zawsze kierować się certyfikatem CE, który jest uznawany w całej Unii Europejskiej i zapewnia, że produkt przeszedł odpowiednie testy oraz spełnia normy bezpieczeństwa.

Pytanie 23

Które z urządzeń nie powinno być serwisowane podczas korzystania z urządzeń antystatycznych?

A. Modem.
B. Dysk twardy.
C. Zasilacz.
D. Pamięć.
Wybór modemu, pamięci lub dysku twardego jako urządzenia, które można naprawiać podczas korzystania z urządzeń antystatycznych, jest błędny z kilku powodów. Modem, jako urządzenie do komunikacji sieciowej, nie wiąże się bezpośrednio z zagrożeniem porażeniem prądem, jednak niewłaściwe podejście w czasie naprawy może prowadzić do uszkodzeń wynikających z wyładowań elektrostatycznych. Pamięć, szczególnie RAM, to komponenty, które są niezwykle wrażliwe na ładunki elektrostatyczne; ich naprawa lub wymiana bez użycia odpowiednich środków ochrony antystatycznej może prowadzić do ich uszkodzenia. Użytkownicy często nie zdają sobie sprawy z tego, że elektrostatyka ma zdolność do uszkadzania chipów, co może skutkować całkowitą utratą danych lub koniecznością wymiany kosztownych komponentów. Dysk twardy z kolei, szczególnie w wersjach mechanicznych, jest podatny na uszkodzenia związane z wstrząsami oraz działaniem elektrostatycznym, co może prowadzić do utraty danych. W praktyce, błędne jest przekonanie, że każdy komponent można naprawiać w trakcie korzystania z antystatycznych środków ochrony. Kluczowe jest, aby przed przystąpieniem do jakiejkolwiek naprawy wyłączyć urządzenie oraz odłączyć je od zasilania, a następnie użyć odpowiednich praktyk antystatycznych, aby zminimalizować ryzyko uszkodzeń oraz zachować integralność podzespołów.

Pytanie 24

Aby uzyskać dostęp do adresu serwera DNS w ustawieniach karty sieciowej w systemie z rodziny Windows, należy wprowadzić polecenie

A. arp -a
B. ipconfig
C. ping
D. ipconfig /all
Wykorzystanie polecenia 'ping' do odczytania adresu serwera DNS jest mylne, ponieważ to narzędzie służy głównie do testowania łączności pomiędzy dwoma urządzeniami w sieci. Polecenie to wysyła pakiety ICMP Echo Request i oczekuje na ICMP Echo Reply, co pozwala sprawdzić, czy dane urządzenie jest osiągalne. Nie dostarcza jednak informacji o konfiguracji interfejsu sieciowego, co czyni je niewłaściwym narzędziem w tej sytuacji. Z kolei 'arp -a' jest poleceniem, które wyświetla tablicę ARP, czyli mapowanie adresów IP na adresy MAC aktywnych urządzeń w lokalnej sieci. Choć może być przydatne w określonych scenariuszach, nie dostarcza informacji o serwerach DNS i nie jest w stanie zastąpić 'ipconfig /all'. Warto również zauważyć, że 'ipconfig' bez dodatkowych opcji wyświetla jedynie podstawowe dane dotyczące adresów IP oraz masek podsieci, co nie wystarcza w kontekście pełnej konfiguracji, której wymaga odczytanie serwera DNS. Kluczowym błędem jest zatem zrozumienie funkcji, jakie pełnią te polecenia – każde z nich ma swoje specyficzne zastosowanie, a ich mylne użycie może prowadzić do dezorientacji i utrudnień w rozwiązywaniu problemów z siecią.

Pytanie 25

Można przywrócić pliki z kosza, korzystając z polecenia

A. Wykonaj ponownie
B. Powróć
C. Anuluj
D. Przywróć
Odpowiedź 'Przywróć' jest poprawna, ponieważ to właśnie to polecenie jest standardowym sposobem na przywracanie plików z kosza w systemach operacyjnych, takich jak Windows czy macOS. Po przeniesieniu pliku do kosza, system nie usuwa go całkowicie, lecz oznacza jako usunięty, co pozwala na jego późniejsze odzyskanie. W przypadku systemu Windows, aby przywrócić plik, wystarczy kliknąć na plik w koszu prawym przyciskiem myszy i wybrać opcję 'Przywróć'. Działa to również w przypadku zaznaczenia pliku i naciśnięcia klawisza 'Przywróć' na pasku narzędzi. Ta funkcjonalność jest zgodna z najlepszymi praktykami zarządzania danymi, które zalecają posiadanie mechanizmu odzyskiwania danych, aby minimalizować ryzyko trwałej utraty informacji. Należy pamiętać, że pliki w koszu pozostają tam do momentu, gdy kosz nie zostanie opróżniony. Warto także regularnie monitorować zawartość kosza, aby upewnić się, że ważne pliki są odpowiednio zabezpieczone.

Pytanie 26

Jakie są poszczególne elementy adresu globalnego IPv6 typu unicast pokazane na ilustracji?

IPv6
123
48 bitów16 bitów64 bity
A. 1 - globalny prefiks 2 - identyfikator interfejsu 3 - identyfikator podsieci
B. 1 - globalny prefiks 2 - identyfikator podsieci 3 - identyfikator interfejsu
C. 1 - identyfikator interfejsu 2 - globalny prefiks 3 - identyfikator podsieci
D. 1 - identyfikator podsieci 2 - globalny prefiks 3 - identyfikator interfejsu
Adres IPv6 unicast składa się z trzech głównych części: globalnego prefiksu identyfikatora podsieci oraz identyfikatora interfejsu. Globalny prefiks zajmuje 48 bitów i jest używany do określenia unikalności w skali globalnej podobnie do adresów IP w internecie. Identyfikator podsieci o długości 16 bitów umożliwia dalsze dzielenie sieci na mniejsze segmenty co jest istotne w zarządzaniu ruchem sieciowym i alokacji zasobów. Identyfikator interfejsu zajmujący 64 bity odpowiada za unikalne przypisanie adresu do konkretnego urządzenia w danej sieci. Taka struktura adresu IPv6 pozwala na ogromną skalowalność i elastyczność w projektowaniu sieci co jest kluczowe przy rosnącej liczbie urządzeń IoT i zapotrzebowaniu na większe pule adresowe. Standardy IPv6 zostały opracowane przez IETF i są opisane w RFC 4291 zapewniając zgodność i interoperacyjność pomiędzy różnymi dostawcami sprzętu i oprogramowania.

Pytanie 27

Aby uniknąć utraty danych w aplikacji do ewidencji uczniów, po zakończonej pracy każdego dnia należy wykonać

A. aktualizację systemu
B. kopię zapasową danych programu
C. aktualizację systemu operacyjnego
D. bezpieczne zamknięcie systemu operacyjnego
Wykonywanie kopii zapasowej danych programu jest kluczowym elementem strategii zarządzania danymi w każdej organizacji. Polityka tworzenia kopii zapasowych powinna być zgodna z zasadami dobrego zarządzania danymi, które zalecają regularne archiwizowanie informacji, aby zminimalizować ryzyko utraty cennych danych. Kopie zapasowe powinny być przechowywane w bezpiecznym miejscu, oddzielonym od głównego systemu, co zabezpiecza je przed utratą na skutek awarii sprzętu czy cyberataków. Przykładowo, korzystając z oprogramowania do ewidencji uczniów, warto ustalić harmonogram automatycznego tworzenia kopii zapasowych na koniec każdego dnia, co zapewnia, że wszystkie zmiany wprowadzone w trakcie dnia będą zapisane. Dodatkowo, warto zapoznać się z różnymi metodami tworzenia kopii zapasowych, takimi jak pełne, różnicowe czy przyrostowe, aby dopasować je do potrzeb organizacji. Takie podejście zwiększa bezpieczeństwo danych i zapewnia ich dostępność w razie awarii.

Pytanie 28

Karta sieciowa przedstawiona na ilustracji ma zdolność przesyłania danych z maksymalną prędkością

Ilustracja do pytania
A. 300 Mb/s
B. 54 Mb/s
C. 108 Mb/s
D. 11 Mb/s
Wybór nieprawidłowych odpowiedzi często wynika z mylnego zrozumienia standardów bezprzewodowych. Standard 802.11b oferuje prędkość maksymalną 11 Mb/s co odpowiada początkowym wersjom Wi-Fi wprowadzonym na rynek gdy technologia bezprzewodowa dopiero zaczynała zdobywać popularność. Był to przełomowy krok w rozwoju sieci bezprzewodowych ale obecnie jego prędkość jest niewystarczająca do nowoczesnych zastosowań multimedialnych czy biznesowych. Z kolei prędkość 108 Mb/s jest często kojarzona z technologiami typu Super G które wykorzystywały podwójne kanały w standardzie 802.11g co pozwalało na podwojenie przepustowości. Jednakże nie jest to standard IEEE i nie każdy sprzęt obsługuje takie funkcje co ogranicza kompatybilność i praktyczne zastosowanie. Natomiast 300 Mb/s to wartość charakterystyczna dla standardu 802.11n który wprowadził wiele ulepszeń takich jak MIMO co pozwoliło na znaczne zwiększenie przepustowości i zasięgu sieci bezprzewodowych. Wybór tej wartości jako maksymalnej prędkości dla karty sieciowej 802.11g wskazuje na brak zrozumienia różnic między tymi standardami i ich możliwościami. Dlatego kluczowe jest właściwe identyfikowanie technologii i ich ograniczeń co jest niezbędne podczas planowania i wdrażania infrastruktury sieciowej.

Pytanie 29

Jaki instrument służy do określania długości oraz tłumienności kabli miedzianych?

A. Miernik mocy
B. Reflektometr TDR
C. Woltomierz
D. Omomierz
Woltomierz, omomierz oraz miernik mocy to przyrządy, które mają swoje specyficzne zastosowania, jednak nie są odpowiednie do pomiarów długości i tłumienności przewodów miedzianych. Woltomierz służy do mierzenia napięcia elektrycznego, co czyni go istotnym narzędziem w diagnostyce układów zasilających, ale nie jest w stanie ocenić parametrów geometrycznych przewodu ani jego strat sygnałowych. Omomierz, z kolei, umożliwia pomiar rezystancji, co jest przydatne w testowaniu przewodów pod kątem ciągłości i ewentualnych uszkodzeń, ale nie dostarcza informacji na temat długości przewodu ani jego tłumienności. Miernik mocy jest używany do oceny ilości energii przekazywanej przez sygnał, co również nie odpowiada na potrzeby pomiarów geometrii i strat sygnałowych. Często popełnianym błędem w rozumieniu zastosowań tych przyrządów jest mylenie ich funkcji z pomiarami specyficznymi dla telekomunikacji. Prawidłowe podejście do diagnostyki przewodów miedzianych powinno uwzględniać wykorzystanie reflektometrów TDR, które są zaprojektowane z myślą o tych konkretnych wymaganiach, zamiast stosować przyrządy, które mogą jedynie dostarczać fragmentaryczne informacje o stanie przewodów.

Pytanie 30

Jakie ustawienia dotyczące protokołu TCP/IP zostały zastosowane dla karty sieciowej, na podstawie rezultatu uruchomienia polecenia IPCONFIG /ALL w systemie Windows?

Karta bezprzewodowej sieci LAN Połączenie sieci bezprzewodowej:

   Sufiks DNS konkretnego połączenia :
   Opis. . . . . . . . . . . . . . . : Atheros AR5006EG Wireless Network Adapter
   Adres fizyczny. . . . . . . . . . : 00-15-AF-35-65-98
   DHCP włączone . . . . . . . . . . : Tak
   Autokonfiguracja włączona . . . . : Tak
   Adres IPv6 połączenia lokalnego . : fe80::8c5e:5e80:f376:fbax9(Preferowane)
   Adres IPv4. . . . . . . . . . . . : 192.168.1.102(Preferowane)
   Maska podsieci. . . . . . . . . . : 255.255.255.0
   Dzierżawa uzyskana. . . . . . . . : 16 lutego 2009 16:51:02
   Dzierżawa wygasa. . . . . . . . . : 17 lutego 2009 16:51:01
   Brama domyślna. . . . . . . . . . : 192.168.1.1
   Serwer DHCP . . . . . . . . . . . : 192.168.1.1
   Serwery DNS . . . . . . . . . . . : 194.204.159.1
                                       194.204.152.34
   NetBIOS przez Tcpip. . . . . . . : Włączony
A. Karta sieciowa otrzymała adres IP w sposób automatyczny
B. Karta sieciowa ma przypisany statyczny adres IP
C. Karta sieciowa nie posiada skonfigurowanego adresu serwera DNS
D. Karta sieciowa nie ma zdefiniowanego adresu bramy
Prawidłowa odpowiedź wskazuje, że karta sieciowa uzyskała adres IP automatycznie. W systemie Windows polecenie IPCONFIG /ALL pozwala na wyświetlenie szczegółowych informacji o konfiguracji sieciowej. W przedstawionym wyniku można zauważyć, że opcja DHCP jest włączona, co oznacza, że karta sieciowa pobiera swój adres IP z serwera DHCP automatycznie. DHCP (Dynamic Host Configuration Protocol) jest standardowym protokołem używanym do automatycznego przydzielania adresów IP oraz innych parametrów sieciowych, takich jak maska podsieci i brama domyślna, do urządzeń w sieci. Dzięki DHCP zarządzanie dużymi sieciami staje się bardziej efektywne, a błędy wynikające z ręcznego przypisywania adresów IP są zminimalizowane. Używanie DHCP jest szczególnie korzystne w środowiskach, gdzie urządzenia często się zmieniają, jak w biurach czy instytucjach edukacyjnych. Dzięki temu sieć jest bardziej elastyczna i mniej podatna na problemy związane z konfliktami adresów IP. Włączenie DHCP jest zgodne z dobrymi praktykami zarządzania siecią w większości współczesnych infrastruktur IT.

Pytanie 31

Użytkownicy należący do grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie operacyjnym Windows Server. Dysponują jedynie uprawnieniami do „Zarządzania dokumentami”. Co należy uczynić, aby wyeliminować opisany problem?

A. Dla grupy Administratorzy należy odebrać uprawnienia „Drukuj”
B. Dla grupy Pracownicy należy odebrać uprawnienia „Zarządzanie dokumentami”
C. Dla grupy Administratorzy należy odebrać uprawnienia „Zarządzanie dokumentami”
D. Dla grupy Pracownicy należy przyznać uprawnienia „Drukuj”
Usunięcie uprawnień „Drukuj” dla grupy Administratorzy nie rozwiąże problemu, ponieważ administratorzy generalnie mają pełne uprawnienia do zarządzania drukarkami, a ich uprawnienia nie są zwykle ograniczane. Przypisanie błędnych uprawnień może prowadzić do zaistnienia sytuacji, w której administracja staje się bardziej skomplikowana, ponieważ administracja wymaga odpowiednich narzędzi i zasobów. Z kolei usunięcie uprawnień „Zarządzanie dokumentami” dla grupy Pracownicy wprowadziłoby dodatkowe ograniczenia, które nie są konieczne do rozwiązania problemu. Pracownicy bez tych uprawnień nie mogliby zarządzać dokumentami, co może hamować ich wydajność. Kolejnym błędnym założeniem jest przekonanie, że usunięcie uprawnień z ról administracyjnych poprawi sytuację; w rzeczywistości, takim działaniem można jedynie pogorszyć zarządzanie dostępem w organizacji. Kluczowe jest zrozumienie, że uprawnienia muszą być precyzyjnie dostosowane do ról i zadań użytkowników w przedsiębiorstwie, co zapewnia efektywność oraz bezpieczeństwo pracy. Efektywna administracja uprawnieniami powinna opierać się na analizie potrzeb użytkowników oraz ich ról w organizacji, co jest zgodne z zasadami zarządzania bezpieczeństwem informacji.

Pytanie 32

Obudowa oraz wyświetlacz drukarki fotograficznej są bardzo zabrudzone. W celu ich oczyszczenia, należy zastosować

A. ściereczkę nasączoną IPA oraz smar
B. wilgotną ściereczkę oraz pianki do czyszczenia plastiku
C. suchą chusteczkę oraz patyczki do czyszczenia
D. mokrą chusteczkę oraz sprężone powietrze z rurką przedłużającą zasięg
Stosowanie mokrej chusteczki oraz sprężonego powietrza z rurką zwiększającą zasięg może wydawać się praktyczne, jednak takie podejście niesie ze sobą ryzyko uszkodzenia delikatnych elementów urządzenia. Mokre chusteczki, zwłaszcza te przeznaczone do innych zastosowań, mogą zawierać substancje chemiczne, które są nieodpowiednie do czyszczenia elektroniki i mogą pozostawić smugi lub uszkodzić powłokę wyświetlacza. Sprężone powietrze może być użyteczne do usuwania kurzu z trudno dostępnych miejsc, ale jego stosowanie na powierzchniach wrażliwych, jak wyświetlacze, może prowadzić do ich uszkodzenia poprzez nadmierne ciśnienie lub nawet wprowadzenie wilgoci. W przypadku ściereczki nasączonej IPA oraz środka smarującego również pojawia się problem, ponieważ izopropanol w nadmiarze może rozpuścić niektóre rodzaje powłok ochronnych na wyświetlaczach. Zastosowanie smaru na powierzchniach, które nie wymagają smarowania, prowadzi do zbierania kurzu i brudu, co w dłuższym czasie może wpłynąć na funkcjonalność urządzenia. Suche chusteczki i patyczki do czyszczenia mogą wydawać się bezpieczną opcją, ale mogą powodować zarysowania, zwłaszcza jeśli patyczki są zbyt sztywne. Typowe błędy w myśleniu przy wyborze metody czyszczenia to brak analizy materiałów, które używamy, oraz niewłaściwe dopasowanie środków do konkretnego typu urządzenia. Dobrą praktyką jest zawsze wybieranie produktów stworzonych z myślą o elektronice, co zapewnia skuteczne i bezpieczne czyszczenie.

Pytanie 33

Urządzeniem w zestawie komputerowym, które obsługuje zarówno dane wejściowe, jak i wyjściowe, jest

A. urządzenie do skanowania.
B. modem.
C. rysownik.
D. głośnik.
Modem jest urządzeniem, które pełni kluczową rolę w komunikacji komputerowej, przetwarzając zarówno dane wejściowe, jak i wyjściowe. Jego podstawową funkcją jest modulacja i demodulacja sygnałów, co umożliwia przesyłanie danych przez różnorodne media, takie jak linie telefoniczne, kable koncentryczne czy łącza światłowodowe. Przykładem zastosowania modemu może być połączenie z Internetem, gdzie modem przekształca sygnały cyfrowe z komputera na sygnały analogowe, które mogą być przesyłane przez infrastrukturę telekomunikacyjną. W praktyce, modem jest integralną częścią zestawu komputerowego, umożliwiającą komunikację z siecią, co jest zgodne z aktualnymi standardami, takimi jak DSL czy kablowe połączenia szerokopasmowe. W kontekście dobrych praktyk branżowych, dobór odpowiedniego modemu jest istotny dla zapewnienia optymalnej prędkości i stabilności połączenia, co w konsekwencji wpływa na wydajność i efektywność pracy zdalnej.

Pytanie 34

Symbol okablowania przedstawiony na diagramie odnosi się do kabla

Ilustracja do pytania
A. ethernetowego prostego
B. szeregowego
C. światłowodowego
D. ethernetowego krosowanego
Ethernetowy kabel krosowany, znany również jako kabel crossover, jest używany do łączenia urządzeń sieciowych o podobnym typie, takich jak przełączniki czy komputery. Jest niezbędny, gdy dwa urządzenia mają identyczne funkcje portów transmisyjnych i odbiorczych. W przypadku połączenia dwóch przełączników, kabel krosowany zapewnia, że sygnał przesyłany z jednego urządzenia trafia do odpowiedniego portu odbiorczego drugiego urządzenia. Kabel krosowany różni się od kabla prostego tym, że niektóre przewody wewnątrz kabla są zamienione miejscami; najczęściej piny 1 i 3 oraz 2 i 6. Taki układ umożliwia bezpośrednią komunikację między podobnymi urządzeniami bez potrzeby dodatkowych konfiguracji. Współczesne urządzenia sieciowe często obsługują automatyczne przełączanie MDI/MDI-X, co pozwala na użycie kabla prostego zamiast krosowanego, jednak znajomość zasady działania kabli krosowanych pozostaje ważna. Praktyczne zastosowanie kabli krosowanych obejmuje tymczasowe połączenia sieciowe, testy sieciowe oraz przypadki, gdy starsze urządzenia nie obsługują automatycznego przełączania.

Pytanie 35

Na ilustracji ukazany jest tylny panel stacji roboczej. Strzałką wskazano port

Ilustracja do pytania
A. DisplayPort
B. USB 3.0
C. eSATA
D. HDMI
Oznaczony port na rysunku to DisplayPort który jest szeroko stosowanym złączem cyfrowym w nowoczesnych komputerach i urządzeniach multimedialnych. DisplayPort został zaprojektowany przez VESA (Video Electronics Standards Association) jako standard do przesyłania sygnałów audio i wideo z komputera do monitora. Wyróżnia się wysoką przepustowością co umożliwia przesyłanie obrazu w rozdzielczościach 4K i wyższych oraz obsługę technologii HDR. DisplayPort wspiera również przesyłanie wielokanałowego dźwięku cyfrowego co czyni go idealnym rozwiązaniem dla zaawansowanych zastosowań multimedialnych. W kontekście praktycznym DisplayPort umożliwia podłączenie wielu monitorów do jednego źródła wideo dzięki technologii Daisy Chain co jest korzystne w środowiskach pracy wymagających rozszerzonego pulpitu. Dodatkowo złącze to jest kompatybilne z innymi interfejsami takimi jak HDMI dzięki adapterom co zwiększa jego uniwersalność. Warto zauważyć że w porównaniu z innymi portami wideo DisplayPort oferuje bardziej niezawodną blokadę mechaniczną zapobiegającą przypadkowemu odłączeniu kabla co jest szczególnie ważne w środowiskach korporacyjnych. Zrozumienie funkcjonalności i zastosowań DisplayPort jest kluczowe dla specjalistów IT i inżynierów systemowych którzy muszą zapewnić optymalną jakość obrazu i dźwięku w swoich projektach.

Pytanie 36

Aby wymusić na użytkownikach lokalnych systemów z rodziny Windows Server regularną zmianę hasła oraz stosowanie haseł o odpowiedniej długości i spełniających wymagania dotyczące złożoności, należy ustawić

A. właściwości konta użytkownika w zarządzaniu systemem
B. konta użytkowników w Ustawieniach
C. zasady haseł w lokalnych zasadach zabezpieczeń
D. zasady blokady kont w politykach grup
Zarządzanie polityką haseł w Windows Server to temat z jednej strony ciekawy, a z drugiej dość skomplikowany. Można pomyśleć, że zasady blokady konta są kluczowe, ale w rzeczywistości nie do końca to wystarcza. Te zasady mają na celu raczej ochronę użytkowników po zbyt wielu nieudanych logowaniach, a nie wymuszanie, by hasła były bardziej skomplikowane. Co do zarządzania użytkownikami w Panelu Sterowania, to raczej podstawowa sprawa, która nie daje możliwości wprowadzenia bardziej zaawansowanych zasad. W związku z tym, właściwości konta w zarządzaniu komputerem dają tylko ograniczone opcje, co nie jest idealne, jeśli myślimy o większym bezpieczeństwie. W praktyce, złe podejście do polityki haseł może naprawdę narazić system na różne problemy, dlatego ważne jest, by administratorzy zdawali sobie sprawę, że muszą korzystać z odpowiednich narzędzi i metod, żeby skutecznie chronić dostęp do systemów.

Pytanie 37

W systemie Linux do obsługi tablic partycji można zastosować komendę

A. free
B. fdisk
C. iostat
D. lspci
Użycie poleceń takich jak 'free', 'lspci' oraz 'iostat' w kontekście zarządzania tablicami partycji prowadzi do nieporozumień związanych z ich rzeczywistym przeznaczeniem. 'free' jest narzędziem pokazującym ilość używanej i dostępnej pamięci RAM w systemie, co jest istotne w kontekście monitorowania wydajności pamięci, a nie zarządzania partycjami. Często użytkownicy mylą potrzeby związane z pamięcią z kwestiami zarządzania dyskami, co może prowadzić do błędnych decyzji w konfiguracji systemu. 'lspci', z kolei, jest wykorzystywane do wyświetlania listy urządzeń podłączonych do magistrali PCI, co nie ma żadnego związku z partycjami dyskowymi. Użytkownicy mogą czasami myśleć, że 'lspci' dostarcza informacji o dyskach, jednak jego zastosowanie jest zupełnie inne, ograniczające się do sprzętu podłączonego do systemu. Polecenie 'iostat' służy do monitorowania statystyk wejścia/wyjścia systemu, co, choć może być użyteczne przy analizy wydajności dysków, nie pozwala na modyfikację ich struktury. Tego rodzaju nieporozumienia mogą prowadzić do nieefektywnego zarządzania zasobami systemowymi oraz do utraty danych, jeżeli użytkownik spróbuje zastosować niewłaściwe narzędzie do zarządzania partycjami. Kluczowe jest, aby przed podjęciem działań na systemie zrozumieć rolę poszczególnych poleceń oraz ich zastosowanie w kontekście administracyjnym. Właściwe zrozumienie funkcji narzędzi pozwala na sprawniejsze i bezpieczniejsze zarządzanie systemem operacyjnym.

Pytanie 38

Wartości 1001 i 100 w pliku /etc/passwd wskazują na

student:x:1001:100:Jan Kowalski:/home/student:/bin/bash
A. identyfikatory użytkownika oraz grupy w systemie
B. liczbę dni od ostatniej zmiany hasła oraz liczbę dni do wygaszenia hasła
C. numer koloru tekstu i numer koloru tła w terminalu
D. liczbę udanych oraz nieudanych prób logowania
W pliku /etc/passwd każda linia zawiera informacje o użytkowniku takie jak nazwa użytkownika hasło identyfikator użytkownika (UID) identyfikator grupy (GID) pełna nazwa użytkownika katalog domowy oraz powłoka logowania. Częstym błędem jest mylenie tych identyfikatorów z innymi wartościami jak liczba dni od ostatniej zmiany hasła co dotyczy pliku /etc/shadow używanego do przechowywania informacji o hasłach. Identyfikacja liczby udanych i nieudanych prób logowania również nie jest poprawna ponieważ takie dane są rejestrowane w logach systemowych a nie w pliku /etc/passwd. Numer koloru czcionki i numer koloru tła są ustawieniami personalizacyjnymi terminala i nie mają związku z plikami systemowymi dotyczącymi użytkowników. Prawidłowe rozumienie struktury pliku /etc/passwd jest kluczowe dla zarządzania użytkownikami i grupami w systemach UNIX i Linux. Pozwala to na efektywne i bezpieczne zarządzanie dostępem co jest fundamentalne w administracji systemami operacyjnymi gdzie bezpieczeństwo i izolacja użytkowników są priorytetem. Poprawne zrozumienie tych mechanizmów pozwala na lepsze zabezpieczenie systemu oraz zapewnia zgodność z politykami bezpieczeństwa organizacji

Pytanie 39

Sieci lokalne o architekturze klient-serwer są definiowane przez to, że

A. wszystkie komputery w sieci są sobie równe
B. istnieje jeden dedykowany komputer, który udostępnia swoje zasoby w sieci
C. wszystkie komputery klienckie mają możliwość korzystania z zasobów innych komputerów
D. żaden komputer nie ma dominującej roli wobec innych
W architekturze sieci lokalnych istnieją różne modele organizacyjne, a jednomyślne traktowanie wszystkich komputerów jako równoprawnych nie jest adekwatne do opisu struktury klient-serwer. W modelu peer-to-peer, który jest alternatywą dla architektury klient-serwer, każdy komputer pełni zarówno rolę klienta, jak i serwera, co prowadzi do sytuacji, w której żaden z komputerów nie ma nadrzędnej pozycji. To podejście może być odpowiednie w małych i prostych sieciach, jednak nie sprawdza się w bardziej złożonych środowiskach, gdzie hierarchia i kontrola dostępu są kluczowe. Użytkownicy często mylą te dwa modele, co prowadzi do błędnego przekonania, że każda sieć oparta na współpracy pomiędzy komputerami jest siecią typu klient-serwer. Dodatkowo, stwierdzenie o ogólnym dostępie klientów do zasobów innych komputerów w sieci nie odnosi się do modelu klient-serwer, ponieważ w tym przypadku dostęp do zasobów jest ściśle regulowany przez serwer. Oznacza to, że klienci nie mają swobodnego dostępu do wszystkich zasobów, co jest kluczowym elementem zapewnienia bezpieczeństwa i integralności danych w sieci. Również rozważając kwestie wydajności, architektura klient-serwer jest zaprojektowana tak, aby centralizować zarządzanie i optymalizować wykorzystanie zasobów, co nie jest charakterystyczne dla sieci peer-to-peer, gdzie każdy komputer jest równorzędny i może prowadzić do większego rozproszenia obciążenia. Tego rodzaju nieporozumienia mogą skutkować niewłaściwym projektowaniem i zarządzaniem sieciami, co w dłuższej perspektywie może prowadzić do problemów z wydajnością i bezpieczeństwem danych.

Pytanie 40

Co robi polecenie Gpresult?

A. prezentuje wynikowy zbiór zasad dla użytkownika lub komputera
B. resetuje domyślne zasady grup dla kontrolera
C. modyfikuje konfigurację zasad grupy
D. pokazuje szczegóły dotyczące kontrolera
Wybór odpowiedzi dotyczącej aktualizacji ustawień zasad grupy, informacji o kontrolerze lub przywracania domyślnych zasad grup dla kontrolera jest niepoprawny, ponieważ każde z tych podejść nie odzwierciedla rzeczywistego działania polecenia Gpresult. Zasadniczo, aktualizacja zasad grupy odbywa się przez polecenie gpupdate, które wymusza synchronizację ustawień z kontrolerem domeny. Natomiast Gpresult nie zmienia żadnych ustawień; jego funkcja polega na prezentowaniu wyników, które już zostały zaaplikowane. Informacje o kontrolerze są dostępne przez inne komendy, takie jak nltest lub dsquery, które dostarczają szczegółowych danych dotyczących stanu i konfiguracji kontrolera domeny, ale nie są to funkcje Gpresult. Z kolei przywracanie domyślnych zasad grup dla kontrolera to proces, który wymaga zastosowania narzędzi administracyjnych do modyfikacji ustawień w Active Directory, a nie działania Gpresult. Typowym błędem myślowym przy wyborze takich odpowiedzi jest pomylenie narzędzi do zarządzania politykami z tymi, które tylko raportują ich stan. Kluczowe jest zrozumienie, że Gpresult to narzędzie diagnostyczne, a nie konfiguracyjne, co czyni jego rolę w zarządzaniu politykami grupowymi fundamentalnie inną.