Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 listopada 2025 12:24
  • Data zakończenia: 3 listopada 2025 12:47

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Termin "adres MAC" odnosi się do adresu

A. serwera DHCP.
B. bramy domowej.
C. karty sieciowej przypisanego przez producenta urządzenia.
D. komputera przydzielonego przez serwer DHCP.
Bramka domyślna, będąca elementem sieci komputerowej, pełni funkcję punktu dostępu do innych sieci. Bramka nie ma przypisanego adresu MAC, gdyż pełni rolę pośrednika pomiędzy różnymi protokołami. Adresy komputerów, przypisywane przez serwer DHCP, są dynamicznymi adresami IP, a nie adresami MAC. Serwer DHCP, czyli Dynamic Host Configuration Protocol, odpowiada za automatyczne przydzielanie adresów IP do urządzeń w sieci, co pozwala na ich łatwiejsze zarządzanie, ale nie ma to związku z adresami MAC. Często mylone pojęcia wynikają z nieporozumienia dotyczącego roli różnych elementów sieci. W rzeczywistości, adres MAC jest stałym identyfikatorem, który jest wbudowany w sprzęt, podczas gdy adres IP, przydzielany przez DHCP, może się zmieniać w zależności od dostępności w danej sieci. Tego rodzaju błędne wnioski mogą prowadzić do nieprawidłowego zarządzania siecią oraz mogą utrudniać diagnostykę problemów z połączeniami. Właściwe zrozumienie różnicy pomiędzy tymi pojęciami jest kluczowe dla efektywnego administrowania infrastrukturą sieciową oraz dla zapewnienia bezpieczeństwa i stabilności działania sieci.

Pytanie 2

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, konwertera, transpondera
B. elewacji, konwertera, azymutu
C. elewacji, konwertera, transpondera
D. azymutu, elewacji, transpondera
Prawidłowe wyznaczenie kierunku ustawienia anteny satelitarnej wymaga znajomości trzech fundamentalnych kątów: elewacji, azymutu oraz kąta konwertera. Niektóre z odpowiedzi zawierają błędne pojęcia lub niewłaściwe zestawienia kątów, co prowadzi do nieporozumień. Na przykład, kąt elewacji jest niezbędny, ponieważ pozwala określić, pod jakim kątem antena ma być skierowana w górę, co jest kluczowe dla odbioru sygnału z satelitów. Kąt azymutu z kolei wskazuje kierunek poziomy, w którym antena powinna być ustawiona, aby móc odebrać sygnał. Zdarza się, że odpowiedzi sugerują użycie kąta transpondera, co jest niepoprawne, ponieważ transponder to element satelity, który przetwarza sygnał, a nie parametr ustawienia anteny. Często występującym błędem jest mylenie funkcji konwertera z innymi kątami, co prowadzi do niepoprawnych wniosków. Konwerter LNB jest kluczowym elementem, który określa, jak sygnał z satelity jest odbierany i przetwarzany, dlatego jego odpowiednie ustawienie jest niezwykle istotne. Właściwe zrozumienie tych kątów i ich zastosowania jest kluczowe dla uzyskania optymalnej jakości sygnału. Niezrozumienie tych aspektów może skutkować problemami z odbiorem, co w praktyce oznacza niedziałającą antenę lub niską jakość sygnału.

Pytanie 3

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. limiter
B. komparator głośnikowy
C. equalizer
D. zwrotnica głośnikowa
Zwrotnica głośnikowa jest kluczowym elementem systemów audio, odpowiedzialnym za rozdzielanie sygnałów audio na różne pasma częstotliwości. Działa na zasadzie filtracji, co pozwala na kierowanie tonów niskich, średnich i wysokich do odpowiednich głośników. Dzięki temu, subwoofer odbiera tylko dźwięki niskich częstotliwości, głośniki średniozakresowe zajmują się tonami średnimi, a tweeter obsługuje dźwięki wysokie. To rozdzielenie pozwala na uzyskanie lepszej jakości dźwięku oraz zwiększa efektywność poszczególnych głośników, co jest szczególnie istotne w profesjonalnych systemach nagłośnieniowych oraz hi-fi. Dobrze zaprojektowana zwrotnica minimalizuje zniekształcenia dźwięku oraz maksymalizuje wydajność głośników, co jest zgodne z branżowymi standardami audio. W praktyce, zwrotnice są często wykorzystywane w koncertach, w studiach nagraniowych oraz w domowych systemach audio, co świadczy o ich wszechstronności i niezbędności w dziedzinie dźwięku.

Pytanie 4

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie przewodu za pomocą tulejek zaciskowych
B. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
C. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
D. Zainstalowanie w miejscu uszkodzenia złączki typu F
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 5

Terminologie takie jak Fullband, Twin, Quad, Monoblock odnoszą się do

A. konwerterów satelitarnych
B. multiswitchów
C. filtrów
D. rozgałęźników antenowych
Wybór odpowiedzi dotyczącej multiswitchów, filtrów lub rozgałęźników antenowych wskazuje na pewne nieporozumienie związane z terminologią i funkcjami tych urządzeń. Multiswitch to urządzenie, które pozwala na podłączenie wielu tunerów do jednego źródła sygnału satelitarnego. Nie jest to jednak konwerter, a raczej element, który dystrybuuje sygnał z konwertera do kilku odbiorników. Filtry są używane w systemach antenowych do eliminacji niepożądanych częstotliwości, a ich rola jest zupełnie inna niż konwertera, który ma za zadanie przekształcenie sygnału. Rozgałęźniki antenowe działają na podobnej zasadzie jak multiswitch, pozwalając na podział sygnału z jednego źródła na kilka urządzeń, ale nie mają zdolności przekształcania sygnału, co jest kluczową funkcją konwerterów. Wybierając niewłaściwy termin, można mylić funkcjonalności urządzeń, co prowadzi do błędnych decyzji przy projektowaniu systemów satelitarnych. Ważne jest, aby dokładnie zrozumieć rolę każdego z tych komponentów, aby prawidłowo skonfigurować system i zapewnić jego prawidłowe działanie. W kontekście projektowania i instalacji systemów satelitarnych, ignorowanie specyfiki poszczególnych urządzeń może prowadzić do poważnych problemów związanych z jakością sygnału oraz zadowoleniem klienta.

Pytanie 6

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. linii sabotażowych
B. ustawienia czujek ruchu
C. stanu akumulatora
D. faktury zakupu
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 7

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 120 V
B. 40 V
C. 160 V
D. 80 V
W przypadku podanych odpowiedzi, wiele pomyłek wynika z niewłaściwego zrozumienia skali oraz sposobu przeliczania wartości. Na przykład, odpowiedź 80 V sugeruje, że użytkownik mógł błędnie uznać, że wskazówka wskazuje bezpośrednio wartość napięcia bez uwzględnienia skali. Możliwe, że rozumowanie opierało się na założeniu, że 80 działek to po prostu 80 V, co jest niezgodne z zasadami działania woltomierza, który wyskalowany jest w odniesieniu do maksymalnej wartości zakresu. Inną często spotykaną pomyłką jest odpowiedź 40 V, gdzie użytkownik mógł błędnie przypuszczać, że woltomierz działa na zasadzie prostego podziału zakresu, co prowadzi do pominięcia kluczowego elementu, jakim jest przeliczanie wartości działek na rzeczywiste napięcie. Odpowiedź 120 V również pokazuje nieporozumienie, w którym użytkownik mógł zakładać, że 80 działek to 2/3 z maksymalnych 200 V, co jednak nie jest poprawnym podejściem w kontekście wyliczania wartości na analogowej skali. Kluczowe jest, aby użytkownicy zrozumieli mechanizm działania analogowych woltomierzy oraz zasady przeliczania wartości, aby unikać błędnych interpretacji wyników pomiarów. W praktyce, dokładność pomiarów jest fundamentem bezpieczeństwa w instalacjach elektrycznych, dlatego znajomość zasad jego działania jest niezbędna.

Pytanie 8

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. podnapięciowy
B. czasowy
C. różnicowoprądowy
D. nadprądowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 9

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. wyładowań atmosferycznych
B. zaniku napięcia
C. przeciążenia instalacji elektrycznej
D. przepięć w sieci energetycznej
Wyłącznik nadmiarowoprądowy to istotny element systemu zabezpieczeń instalacji elektrycznych, którego głównym zadaniem jest ochrona przed skutkami przeciążenia. W sytuacji, gdy prąd płynący przez instalację przekracza dopuszczalne wartości, co zazwyczaj ma miejsce przy podłączeniu zbyt wielu urządzeń do jednego obwodu, wyłącznik ten automatycznie odłącza zasilanie. Dzięki temu chroni zarówno urządzenia elektroniczne, jak i samą instalację przed uszkodzeniami. W praktyce, zastosowanie wyłącznika nadmiarowoprądowego jest standardem w budynkach mieszkalnych i obiektach komercyjnych, ponieważ pozwala na zminimalizowanie ryzyka wystąpienia pożaru, który mógłby być spowodowany przegrzewaniem się przewodów. Ponadto, wyłączniki te są zgodne z normami PN-EN 60947-2, które definiują wymagania techniczne dla urządzeń rozdzielczych. Ważne jest, aby użytkownicy byli świadomi znaczenia tych urządzeń oraz regularnie kontrolowali ich sprawność, co jest kluczowe dla bezpieczeństwa ich instalacji elektrycznych.

Pytanie 10

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tyrystor
B. Tranzystor bipolarny
C. Dioda LED
D. Warikap
Tyrystor to ciekawy element półprzewodnikowy, który ma cztery warstwy, czyli taką strukturę n-p-n-p. Dzięki temu działa tak, jak działa, i dlatego jest używany w różnych sytuacjach, na przykład w prostownikach czy falownikach. Moim zdaniem, jego właściwości są naprawdę fajne, zwłaszcza w tych aplikacjach, gdzie trzeba kontrolować duże prądy. Tyrystory przewodzą prąd w jednym kierunku i po wyłączeniu nie potrzebują, żeby ktoś im dał impuls, by znowu przestały przewodzić. To bardzo przydatne w automatyce i systemach zasilania, bo można je stosować tam, gdzie szybka zmiana stanu jest niezbędna. Warto pamiętać, że w elektronice dobrze jest ich używać w urządzeniach, które muszą radzić sobie z wysokimi napięciami i prądami. W sumie, są naprawdę ważnym elementem nowoczesnych układów elektronicznych.

Pytanie 11

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. generatora
C. wzmacniacza
D. zasilacza
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.

Pytanie 12

Weryfikacja parametrów instalacji antenowej DVB-T wymaga dokonania

A. bitowej stopy błędów
B. rezystancji kabla
C. kąta elewacji oraz azymutu
D. izolacji kabla
Pomiar parametrów instalacji antenowej DVB-T nie opiera się na sprawdzaniu rezystancji kabla, kąta elewacji ani azymutu, czy izolacji kabla, ponieważ te aspekty nie są bezpośrednio związane z jakością odbioru sygnału. Rezystancja kabla, chociaż istotna dla oceny jego integralności, nie dostarcza informacji o tym, jak dobrze sygnał jest przesyłany i odbierany. Izolacja kabla może wpływać na zakłócenia, jednak nie wskazuje na jakość samego sygnału DVB-T. Kąt elewacji i azymutu są istotne w kontekście skierowania anteny w stronę nadajnika, ale ich pomiar nie dostarcza informacji o jakości i stabilności sygnału odbieranego przez urządzenia końcowe. Takie podejścia mogą prowadzić do mylnych ocen, ponieważ nie uwzględniają one najważniejszych parametrów wpływających na jakość transmisji, jakimi są sygnały błędów. Osoby koncentrujące się na tych aspektach mogą przeoczyć konieczność przeprowadzenia rzeczywistych testów odbioru, które ujawniają problemy z jakością sygnału, prowadząc do zainstalowania anteny w nieoptymalnej pozycji. Dlatego istotne jest, aby technicy instalacji antenowej koncentrowali się na pomiarze BER i innych parametrach związanych z jakością sygnału, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 13

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. zwiększyć poziom głośności w unifonie
B. podnieść napięcie zasilania elektrozaczepu
C. dostosować poziom głośności w zasilaczu
D. dostosować napięcie w kasecie rozmownej
Wybór opcji związanej z podwyższeniem poziomu głośności w unifonie nie jest wystarczająco skuteczny, ponieważ w sytuacjach, gdy dźwięk jest słabo słyszalny lub słychać piski, problem często leży w zasilaczu. Unifon, jako urządzenie odbierające sygnał, może być zbyt czuły lub nie mieć możliwości skutecznej regulacji, jeśli zasilacz nie dostarcza odpowiedniego sygnału. Ponadto, podwyższenie napięcia zasilania elektrozaczepu nie ma wpływu na jakość dźwięku w słuchawce, ponieważ elektrozaczep odpowiada tylko za otwieranie drzwi i nie wpływa na przekaz audio. Regulacja napięcia w kasecie rozmownej także nie rozwiązuje problemu, ponieważ nie jest odpowiedzialna za głośność, lecz za ogólną funkcjonalność urządzenia. Niekiedy użytkownicy błędnie myślą, że wszelkie problemy z dźwiękiem można rozwiązać poprzez dostosowanie ustawień w odbiorniku, zapominając o kluczowej roli, jaką odgrywa zasilacz w całym systemie. Z tego powodu, ważne jest, aby przy instalacji domofonów zwracać uwagę na wszystkie komponenty systemu oraz ich wzajemne oddziaływanie. Właściwe zrozumienie funkcji oraz zależności między poszczególnymi elementami jest niezbędne dla efektywnej diagnostyki i naprawy występujących problemów.

Pytanie 14

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. obmyć strumieniem zimnej wody.
B. oczyścić jałową gazą.
C. nałożyć maść.
D. nałożyć krem.
Spłukanie oparzonej dłoni strumieniem zimnej wody jest kluczowym krokiem w udzielaniu pierwszej pomocy osobom, które doznały oparzenia substancją żrącą. Ten proces powinien trwać co najmniej 10-20 minut, co pozwala na usunięcie substancji chemicznej z powierzchni skóry oraz schłodzenie tkanek, co w efekcie ogranicza rozprzestrzenianie się uszkodzeń. Zimna woda działa także jako środek chłodzący, co zmniejsza ból i zapobiega dalszym uszkodzeniom skóry. Ważne jest, aby nie stosować lodu bezpośrednio na oparzenie, ponieważ może to prowadzić do dodatkowych uszkodzeń skóry. Ponadto, pierwsza pomoc w przypadku oparzeń chemicznych powinna być zgodna z wytycznymi lokalnych instytucji zdrowotnych oraz międzynarodowych standardów, takich jak wytyczne Światowej Organizacji Zdrowia. W przypadku oparzeń chemicznych, należy również niezwłocznie skontaktować się z profesjonalną pomocą medyczną, zwłaszcza w przypadku dużych powierzchni uszkodzenia lub specyficznych substancji chemicznych, aby zminimalizować ryzyko poważnych komplikacji zdrowotnych."

Pytanie 15

Najlepiej połączyć bierne kolumny głośnikowe z akustycznym wzmacniaczem przy użyciu przewodu

A. symetrycznym o dużym przekroju żył
B. koncentrycznym ekranowanym
C. symetrycznym o małym przekroju żył
D. koncentrycznym nieekranowanym
Połączenie biernych kolumn głośnikowych ze wzmacniaczem akustycznym najlepiej wykonać przewodem symetrycznym o dużym przekroju żył, ponieważ taki typ kabla minimalizuje straty sygnału oraz eliminuje wpływ zakłóceń elektromagnetycznych, co jest niezwykle istotne w systemach audio. Wysoka jakość przewodów symetrycznych, takich jak przewody typu XLR, zapewnia stabilność połączenia oraz redukuje zniekształcenia dźwięku, co ma kluczowe znaczenie przy profesjonalnym nagłaśnianiu i w produkcji muzycznej. Przykładem zastosowania może być konfiguracja koncertowa, gdzie użycie takiego przewodu zapewnia czystość dźwięku na dużych odległościach oraz przy wysokich poziomach głośności. W branży audio stosuje się również standardy, takie jak AES/EBU, które wymagają użycia przewodów symetrycznych, co dodatkowo potwierdza ich stosowność w kontekście połączeń głośnikowych. Warto również zauważyć, że zastosowanie przewodów o dużym przekroju żył pozwala na obsługę większych mocy, co jest niezwykle istotne w przypadku wzmacniaczy o dużej mocy wyjściowej.

Pytanie 16

Zerowanie omomierza to proces polegający na

A. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
B. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
C. dostosowaniu rezystancji bocznika
D. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
Wybór innych odpowiedzi jest wynikiem nieporozumienia dotyczącego zasady działania omomierzy oraz ich kalibracji. Dobór zakresu pomiaru do przewidywanej wartości pomiaru nie ma nic wspólnego z zerowaniem. Zakres odnosi się do zakresu wartości, które omomierz może zmierzyć, a nie do kalibracji samego urządzenia. Niezrozumienie tego faktu może prowadzić do błędów w pomiarach, zwłaszcza w sytuacjach, gdy użytkownik nie jest pewien, jakie wartości powinien się spodziewać. Ustawienie '0 Ohm' przy rozwartych zaciskach również jest błędne, ponieważ w takim przypadku nie ma zamkniętego obwodu i omomierz nie ma możliwości zarejestrowania rezystancji. Warto zauważyć, że brak zrozumienia procesu kalibracji omomierza może prowadzić do jego niewłaściwego użycia, co w konsekwencji może wpłynąć na jakość i wiarygodność przeprowadzanych pomiarów. Dopasowanie rezystancji bocznika również nie jest związane z zerowaniem omomierza, ponieważ bocznik służy do pomiaru prądu, a nie do kalibracji omomierza. W sytuacjach, gdy użytkownik nie jest świadomy podstawowych zasad kalibracji, istnieje ryzyko, że pomiary rezystancji będą zafałszowane, co może prowadzić do niepoprawnych diagnoz i decyzji w zakresie napraw i konserwacji urządzeń elektrycznych.

Pytanie 17

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor unipolarny
B. Tranzystor bipolarny
C. Tyrystor
D. Trymer
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 18

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
B. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
C. analogowy na zakresie U=20 V i Rwe=100 kOhm
D. analogowy na zakresie U=200 V i Rwe=10 kOhm
Wybór innych opcji woltomierzy może prowadzić do nieprecyzyjnych pomiarów z kilku powodów. Użycie woltomierza cyfrowego na zakresie U=200 V z rezystancją wewnętrzną Rwe=10 MOhm może wydawać się logicznym wyborem, jednak zbyt wysoki zakres napięcia nie pozwala na wystarczającą precyzję w pomiarze wartości bliskich 18 V. W takich przypadkach, lepszym rozwiązaniem jest użycie woltomierza o niższym zakresie, co zapewnia wyższą rozdzielczość pomiarową. Z kolei analogowy woltomierz na zakresie U=200 V z rezystancją Rwe=10 kOhm ma znacznie niższą rezystancję wewnętrzną, co skutkuje znacznym obciążeniem obwodu. W praktyce, obniżenie rezystancji wewnętrznej woltomierza prowadzi do błędnych pomiarów, ponieważ wprowadza dodatkowy prąd do obwodu, co zakłóca działanie czujnika. Analogowe woltomierze są również mniej precyzyjne w porównaniu do cyfrowych, co w kontekście pomiarów wysokorezystancyjnych jest kluczowe. Zastosowanie woltomierza analogowego na zakresie U=20 V z Rwe=100 kOhm również nie jest optymalne; chociaż ma on niższy zakres, jego rezystancja wewnętrzna nadal jest za mała w porównaniu do wymagań pomiarowych. W pomiarach, gdzie istotne jest zachowanie dokładności i minimalizacja zakłóceń, kluczowe jest stosowanie odpowiednich narzędzi pomiarowych, co czyni wybór woltomierza z wysoką rezystancją wewnętrzną i odpowiednim zakresem wartości kluczowym dla uzyskania wiarygodnych wyników.

Pytanie 19

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. direktory
B. dipole
C. fidery
D. symetryzatory
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 20

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. gwoździe oraz młot
B. śruby i śrubokręt
C. wiertarka i kołki rozporowe
D. ołówek i poziomica
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 21

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. generator
B. spliter
C. modulator
D. dekoder
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 22

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. wzmacniak
B. konwerter
C. router
D. koncentrator
Wzmacniak jest urządzeniem, które służy do zwiększania mocy sygnału, jednak nie jest odpowiedni do konwersji sygnałów między różnymi mediami transmisyjnymi, jak w przypadku światłowodu i skrętki. Użycie wzmacniaka w takim kontekście mogłoby prowadzić do dalszych strat sygnału i zakłóceń, gdyż wzmacniak nie rozwiązuje problemu różnic w technologii przesyłania danych. Router z kolei to urządzenie, które kieruje ruch sieciowy między różnymi sieciami, ale również nie posiada zdolności konwersji między typami kabli. Routery są niezbędne w złożonych sieciach, gdzie konieczne jest zarządzanie ruchem, jednak nie są one przeznaczone do łączenia światłowodu z kablami miedzianymi. Koncentrator to urządzenie, które umożliwia połączenie wielu urządzeń w sieci lokalnej, ale nie jest w stanie przeprowadzać konwersji sygnału. Zastosowanie koncentratora w sytuacji wymagającej połączenia dwóch różnych typów mediów transmisyjnych byłoby niewłaściwe, prowadząc do problemów z komunikacją i transmisją danych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niewłaściwych urządzeń, obejmują mylenie funkcji wzmacniaka czy routera z funkcjonalnością konwertera, co może wynikać z braku zrozumienia podstawowych różnic w ich działaniu oraz przeznaczeniu.

Pytanie 23

Jak nazywa się przedstawiona na rysunku technologia montowania podzespołów elektronicznych na płytce drukowanej?

Ilustracja do pytania
A. Montaż przewlekany.
B. Montaż powierzchniowy.
C. Nitowanie.
D. Klejenie klejem przewodzącym.
Montaż powierzchniowy, czyli SMT (ang. Surface-Mount Technology), to fajna technologia, bo umożliwia umieszczanie elementów elektronicznych bezpośrednio na płytce drukowanej. Widać to dobrze w przedstawionym na rysunku elemencie SMD, który świetnie pokazuje, jak ta metoda działa i czemu jest tak popularna w nowoczesnej elektronice. Dzięki temu, że montaż powierzchniowy pozwala na większą miniaturyzację urządzeń oraz lepszą gęstość montażu niż montaż przewlekany, mamy mniejsze i lżejsze sprzęty. Z własnego doświadczenia wiem, że automatyzacja tego procesu produkcji oszczędza sporo czasu i pieniędzy. SMT to teraz norma w produkcji różnych urządzeń, jak smartfony czy komputery, a normy branżowe, takie jak IPC-A-610, wskazują, jak powinno to wyglądać jakościowo. Właśnie dlatego, dzięki takim technologiom, elektronika dzisiaj jest produkowana w znacznie bardziej efektywny sposób.

Pytanie 24

Instrukcja CLR P1.7 wskazuje na

A. wymazanie komórki o adresie 1.7
B. zerowanie linii 7 w porcie P1
C. wczytanie komórki znajdującej się pod adresem 1.7
D. konfigurację linii 7 w porcie P1
W analizie błędnych odpowiedzi na pytanie o rozkaz CLR P1.7, warto zwrócić uwagę na koncepcje, które prowadzą do nieporozumień. Sformułowanie "załadowanie komórki o adresie 1.7" sugeruje, że rozkaz ten ma na celu przeniesienie danych z pamięci do rejestru, co jest niezgodne z jego funkcją. Rozkaz CLR nie wykonuje operacji ładowania, lecz zerowania konkretnego bitu, co jest fundamentalnie różne od operacji załadunku. Podobnie odpowiedź dotycząca "ustawienia linii 7 w porcie P1" implikuje, że CLR ma na celu ustawienie bitu na stan wysoki, co jest również błędne, gdyż CLR działa odwrotnie. Z kolei odpowiedź sugerująca "skasowanie komórki o adresie 1.7" może wprowadzać w błąd, ponieważ kasowanie odnosi się do usuwania danych w pamięci, co nie ma zastosowania w kontekście rozkazów dotyczących portów I/O. Typowym błędem jest mylenie operacji manipulujących bitami w rejestrach z operacjami pamięciowymi. W kontekście programowania mikrokontrolerów, zrozumienie różnicy pomiędzy ładowaniem, ustawianiem, kasowaniem i zerowaniem bitów jest kluczowe dla prawidłowego działania aplikacji. Właściwe interpretowanie rozkazów i ich zastosowanie w praktyce stanowi istotny krok w kierunku wydajnego projektowania systemów wbudowanych.

Pytanie 25

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. systemu alarmowego w razie włamania i napadu
B. monitoringu wizyjnego
C. przeciwpożarowego
D. kontroli dostępu
System kontroli dostępu to rozwiązanie, które ma na celu ograniczenie dostępu osób niepowołanych do określonych obszarów obiektu. Jego główną funkcją jest identyfikacja osób wchodzących oraz monitorowanie ich obecności w strefach o podwyższonej ochronie. Przykładami zastosowania systemów kontroli dostępu są karty magnetyczne, identyfikatory biometryczne oraz kodowe zamki elektroniczne. Te technologie są zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 27001, które skupiają się na zarządzaniu bezpieczeństwem informacji. Implementacja systemu kontroli dostępu zwiększa bezpieczeństwo obiektu, ograniczając ryzyko kradzieży, sabotażu czy nieautoryzowanego dostępu. W praktyce, systemy te często są zintegrowane z innymi systemami zabezpieczeń, tworząc kompleksowe rozwiązania do zarządzania bezpieczeństwem.

Pytanie 26

Czym jest przerwanie w procesorze?

A. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
B. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
C. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
D. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
Przerwanie w procesorze to mechanizm, który pozwala na tymczasowe zawieszenie aktualnie wykonywanego programu w celu obsługi zadania o wyższym priorytecie. Taki mechanizm jest kluczowy w systemach operacyjnych czasu rzeczywistego, gdzie nieprzerwana obsługa krytycznych zadań jest niezbędna dla zapewnienia stabilności i bezpieczeństwa operacji. Przykładem może być sytuacja w systemie sterowania silnikiem, gdzie priorytetowe zadanie, takie jak reakcja na awarię, musi być wykonane natychmiastowo, nawet kosztem dłużej trwającego przetwarzania mniej krytycznych zadań. Ważne jest, aby procesory i systemy operacyjne implementowały odpowiednie algorytmy do zarządzania priorytetami, takie jak algorytm Round-robin czy FIFO, co zapewnia sprawną i efektywną obsługę zadań. Przerwania wspierają także złożoną synchronizację i komunikację między procesami, co jest fundamentem dla współczesnych architektur komputerowych. W praktyce, znając zasady działania przerwań, inżynierowie mogą skuteczniej projektować systemy, które są odporne na błędy i mają zapewnioną wydajność operacyjną.

Pytanie 27

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 30:2
B. 2:15
C. 15:2
D. 2:30
Omówienie niepoprawnych odpowiedzi na pytanie o stosunek uciśnięć do wentylacji w RKO ujawnia szereg powszechnych nieporozumień. Odpowiedzi takie jak 2:30 czy 15:2 opierają się na błędnym zrozumieniu priorytetów w resuscytacji. Kluczowym celem RKO jest natychmiastowe przywrócenie przepływu krwi, a nie dążenie do równowagi między uciśnięciami a wentylacją. Odpowiedź 2:30 sugeruje, że można skoncentrować się na wentylacji kosztem uciśnięć, co jest sprzeczne z aktualnymi wytycznymi, które zalecają maksymalizację uciśnięć w celu zapewnienia efektywnego krążenia. Odpowiedź 15:2 również błędnie podkreśla wentylację w stosunku do liczby uciśnięć, co nie odzwierciedla aktualnych zaleceń, które kładą większy nacisk na uciśnięcia. Istnieje ryzyko, że nadmierne skupienie na wentylacji może opóźnić rozpoczęcie uciśnięć, co w sytuacjach nagłych może prowadzić do poważnych konsekwencji zdrowotnych. Ważne jest, aby osoby świadome zasad RKO miały świadomość, że w sytuacjach bezdechu i zatrzymania krążenia kluczowe jest szybkie i wydajne działanie, które koncentruje się na uciśnięciach. Współczesne prace badawcze podkreślają, że przeprowadzenie większej liczby uciśnięć jest bardziej efektywne w przywracaniu krążenia, co potwierdzają badania kliniczne. Dlatego, aby być skutecznym ratownikiem, istotne jest zrozumienie, że prawidłowy stosunek uciśnięć do wentylacji to 30:2, co zapewnia odpowiednią dynamikę w procesie ratunkowym.

Pytanie 28

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Monoblock
B. Twin
C. Quatro
D. Quad
Odpowiedź Quad jest prawidłowa, ponieważ konwerter Quad pozwala na podłączenie czterech tunerów satelitarnych do jednego talerza antenowego. Posiada on cztery wyjścia, co umożliwia niezależne odbieranie sygnałów przez każdy z tunerów. Dzięki temu możliwe jest jednoczesne oglądanie różnych programów telewizyjnych lub nagrywanie ich, co jest istotne w przypadku gospodarstw domowych z większą liczbą użytkowników. Stosowanie konwertera Quad jest szczególnie zalecane w przypadku instalacji, gdzie użytkownicy chcą korzystać z różnych tunerów, co zwiększa funkcjonalność systemu satelitarnego. Zgodnie z najlepszymi praktykami branżowymi, takie rozwiązanie powinno być stosowane w instalacjach, gdzie planowane jest wykorzystanie większej liczby urządzeń jednocześnie, co zapewnia wygodę i elastyczność w dostępie do szerokiej gamy programów. Ważne jest również, aby konwerter był podłączony do odpowiedniego uchwytu antenowego, aby zapewnić stabilny odbiór sygnału. Warto również zwrócić uwagę na kompatybilność konwertera z posiadanymi tunerami, co ma kluczowe znaczenie dla prawidłowego działania całego systemu.

Pytanie 29

Wskaż, którego urządzenia dotyczą dane przedstawione we fragmencie dokumentacji technicznej.

StandardyIEEE 802.11b/g/n
Technika modulacjiCCK, OFDM
Częstotliwość pracy [GHz]2.4 - 2.4835
Moc wyjściowa [dBm]do 20
Chipset radiowyAtheros
Max. szybkość transmisji11n: 150Mbps
11g: 54Mbps
11b: 11Mbps
Czułość130M: -68dBm@10% PER
108M: -68dBm@10% PER
54M: -68dBm@10% PER
11M: -85dBm@8% PER
6M: -88dBm@10% PER
1M: -90dBm@8% PER
Tryby pracyAP router
WISP router + AP
Serwer DHCPTak
DDNSTak
Wbudowane zabezpieczeniaWPA/WPA2: 64/128/152 BIT WEP;
TKIP/AES

Tablica dostępu / odmowy dostępu
definiowana
po adresach MAC kart klienckich,
Filtrowanie dostępu do Internetu
poprzez filtry adresów IP, MAC
oraz poszczególnych portów protokołu
TCP/IP
Typ antenydipolowa (dipol ćwierćfalowy) o zysku
3dBi,
możliwe jest dołączenie anteny
zewnętrznej
Złącze antenySMA R/P
Porty LANIEEE802.3 (10BASE-T), IEEE802.3u
(100BASE-TX)
Ilość portów LAN1 port WAN (RJ-45)
4 porty LAN 10/100 Mb (RJ-45, UTP/STP)
Kontrolki LEDPower, System, WLAN, WAN, Act/Link (4
x Ethernet)
Temperatura pracy0 °C do 50°C
Wymiary [mm]192 x 130 x 33
Napięcie zasilania230 V AC/9 V DC
A. Karty Wi-Fi
B. Rejestratora NVR
C. Routera Wi-Fi
D. Kamery IP
Wybór odpowiedzi "Routera Wi-Fi" jest naprawdę dobrym wyborem, bo w tym fragmencie dokumentacji widać wyraźnie, że pasuje do cech routerów. Routery Wi-Fi mają super istotną rolę w tym, jak działa sieć, łączą różne urządzenia i dają nam dostęp do internetu, łącząc się z naszym dostawcą. Zresztą, w dokumentacji wymienione są różne tryby pracy, jak AP router czy WISP router + AP, co pokazuje, że routery mogą działać w różnych sytuacjach w sieci. A to, że mają funkcje jak serwer DHCP, który przydziela adresy IP automatycznie, to już standard w nowoczesnych sieciach. Zabezpieczenia sieci, takie jak WPA/WPA2, WEP czy TKIP/AES, są niezwykle ważne, bo chronią nasze dane przesyłane przez sieć, a to bezpieczeństwo staje się coraz bardziej istotne w naszych domach i biurach. Generalnie, routery Wi-Fi pozwalają na korzystanie z internetu na wielu urządzeniach naraz, co jest bardzo wygodne, a przy tym dbają o dobrą ochronę danych.

Pytanie 30

Aby zlokalizować metalowy obiekt w systemie automatyki przemysłowej, najbardziej odpowiednim rozwiązaniem będzie czujnik

A. pojemnościowy
B. optyczny
C. temperatury
D. indukcyjny
Czujnik indukcyjny jest najbardziej odpowiednim rozwiązaniem do wykrywania metalowych przedmiotów w zastosowaniach automatyki przemysłowej. Działa na zasadzie generowania pola elektromagnetycznego, które zmienia się w obecności obiektu metalowego. Kiedy metalowy przedmiot wchodzi w zasięg pola, zmienia się jego wartości, co pozwala czujnikowi na detekcję obiektu. Jest to szczególnie użyteczne w zautomatyzowanych liniach produkcyjnych, gdzie precyzyjne wykrywanie elementów metalowych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Przykładowo, czujniki indukcyjne są powszechnie stosowane w robotyce do detekcji pozycji narzędzi lub komponentów, a także w systemach transportowych, gdzie mogą monitorować obecność części na taśmach produkcyjnych. W branży przemysłowej standardy takie jak ISO 13849-1 dotyczące bezpieczeństwa maszyn podkreślają znaczenie stosowania niezawodnych czujników wykrywających obecność obiektów, co czyni czujniki indukcyjne odpowiednim wyborem. Dodatkowo, ich odporność na zanieczyszczenia oraz możliwość pracy w trudnych warunkach, jak np. w wysokiej temperaturze czy w obecności wilgoci, sprawia, że są one często preferowanym rozwiązaniem w przemysłowych aplikacjach.

Pytanie 31

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Zasilacza komputerowego
B. Czujnika kontaktronowego
C. Zwrotnicy antenowej
D. Symetryzatora antenowego
Kiedy wybierasz elementy, które nie potrzebują czyszczenia, pokazuje to, że nie do końca rozumiesz, jak działają urządzenia elektroniczne. Zwrotnice antenowe czy symetryzatory antenowe zarządzają sygnałem, a ich budowa zwykle nie pozwala na gromadzenie się kurzu. Dlatego nie musisz ich tak często czyścić, jak zasilaczy. Konserwacja w ich przypadku bardziej polega na sprawdzaniu, czy wszystko działa jak należy. A jeżeli chodzi o czujniki kontaktronowe, to też nie mają chłodzenia, więc ich konserwacja to głównie dbanie o to, by dobrze reagowały na zmiany w otoczeniu. Często mylimy te urządzenia z tymi, które wymagają aktywnego chłodzenia, przez co źle rozumiemy, jak ważne jest czyszczenie. Warto pamiętać, że każde z tych urządzeń ma inne wymagania konserwacyjne niż zasilacze, więc dobrze znać ich specyfikę, aby zadbać o odpowiednią konserwację.

Pytanie 32

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. topnik
B. pasta lutownicza
C. nadsiarczan sodowy
D. alkohol izopropylowy
Pasta lutownicza to materiał stosowany w procesie lutowania, a nie wytrawiania. Jej głównym zadaniem jest ułatwienie połączeń między elementami elektronicznymi a płytkami PCB poprzez obniżenie temperatury topnienia lutowia. Zastosowanie pasty lutowniczej w kontekście wytrawiania jest mylne, ponieważ nie ma ona właściwości chemicznych, które umożliwiałyby efektywne usunięcie warstwy miedzi. Topnik również nie jest odpowiednim środkiem do wytrawiania. Jest on stosowany w lutowaniu w celu poprawy przyczepności lutowia do powierzchni, jednak nie ma on zdolności do rozpuszczania miedzi. Natomiast alkohol izopropylowy jest stosowany głównie do czyszczenia elementów elektronicznych, usuwania zanieczyszczeń lub kalafonii po lutowaniu, a nie do procesu wytrawiania. Często zdarza się, że nieprecyzyjne rozumienie ról różnych substancji prowadzi do błędnych wniosków, co jest typowe wśród osób dopiero uczących się technologii PCB. Ważne jest, aby podczas nauki zagłębiać się w specyfikę zastosowań chemikaliów oraz procesów technologicznych, aby uniknąć mylenia ich funkcji oraz zapewnić zgodność z najlepszymi praktykami w branży elektroniki.

Pytanie 33

Luty miękkie obejmują luty

A. cynowo-ołowiowe i bezołowiowe
B. miedziano-fosforowe
C. mosiężne
D. srebrne
Odpowiedź dotycząca lutów cynowo-ołowiowych i bezołowiowych jako luty miękkie jest prawidłowa, ponieważ te materiały są powszechnie stosowane w procesach lutowania ze względu na swoje właściwości. Luty cynowo-ołowiowe zawierają stop cynku i ołowiu, co sprawia, że mają niską temperaturę topnienia, co czyni je łatwymi w użyciu w elektronice, gdzie precyzyjne połączenia są kluczowe. Luty bezołowiowe, stosowane w odpowiedzi na regulacje dotyczące ograniczenia użycia ołowiu, zyskały popularność w branży elektronicznej, a ich zastosowanie jest zgodne z normami RoHS. W praktyce, proces lutowania tymi materiałami wymaga odpowiednich technik, aby zapewnić trwałość i elektryczną ciągłość połączeń. Dodatkowo, w ramach standardów IPC, określono wytyczne dotyczące stosowania lutów, co zabezpiecza jakość komponentów elektronicznych oraz ich odporność na czynniki zewnętrzne. Zrozumienie typów lutów i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w obszarze elektroniki.

Pytanie 34

Aby zmierzyć tłumienie w światłowodzie jednomodowym, które urządzenie powinno zostać użyte?

A. reflektometr
B. oscyloskop
C. wobuloskop
D. fotometr
Reflektometria optyczna to technika pomiarowa, która jest kluczowa w ocenie tłumienności światłowodów jednomodowych. Reflektometr, wykorzystujący metodę czasu przelotu (OTDR), umożliwia dokładne pomiary strat sygnału w światłowodzie, co jest istotne dla zapewnienia jakości transmisji danych. Dzięki tej metodzie można identyfikować miejsca uszkodzeń, zagięć i innych anomalii, które mogą wpływać na wydajność sieci. Przykładowo, w trakcie instalacji nowych światłowodów, reflektometr pozwala na szybkie zlokalizowanie ewentualnych problemów, co przyspiesza proces serwisowania i minimalizuje przestoje w komunikacji. Dobre praktyki w branży telekomunikacyjnej zalecają regularne korzystanie z reflektometrów podczas konserwacji sieci, aby utrzymać optymalną jakość sygnału oraz spełniać standardy branżowe, takie jak ITU-T G.652. Reflektometr jest więc niezbędnym narzędziem w pracy techników zajmujących się sieciami optycznymi.

Pytanie 35

Mostek Graetza stanowi przykład

A. generatora
B. zasilacza
C. stabilizatora
D. prostownika
Mostek Graetza, znany również jako mostek prostowniczy, jest układem elektronicznym składającym się z czterech diod, który służy do prostowania prądu zmiennego na prąd stały. Jego działanie polega na tym, że diody przewodzą prąd tylko w jednym kierunku, co pozwala na eliminację ujemnych połówek fali prądu zmiennego. W rezultacie, na wyjściu mostka uzyskujemy stały sygnał, którego amplituda jest dwukrotnie większa niż w przypadku pojedynczego prostownika. Mostek Graetza znajduje szerokie zastosowanie w zasilaczach, gdzie konieczne jest przekształcenie prądu zmiennego z sieci na prąd stały, który można wykorzystać do zasilania urządzeń elektronicznych. Dodatkowo, w przypadku zastosowań w systemach audio i w urządzeniach elektronicznych, mostki prostownicze są kluczowe dla zapewnienia stabilnych napięć. Dobrze zaprojektowany mostek prostowniczy zapewnia nie tylko efektywność, ale także bezpieczeństwo, zmniejszając ryzyko przeciążenia układu. W branży obowiązują określone standardy dotyczące doboru komponentów oraz projektowania układów prostowniczych, co gwarantuje ich niezawodność i długoterminową funkcjonalność.

Pytanie 36

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa B
B. Klasa C
C. Klasa AB
D. Klasa A
Wzmacniacze klasy C są projektowane głównie do pracy w aplikacjach radiowych, gdzie sygnały są modulowane i nie wypadają w zakresie akustycznym. Ich struktura bazuje na pracy w trybie nasycenia, co oznacza, że przełączają się w stan aktywny na krótki czas, co prowadzi do znacznych zniekształceń nieliniowych. Dlatego nie nadają się do wzmacniania sygnałów akustycznych, które wymagają wysokiej jakości i minimalnych zniekształceń. W praktyce, wzmacniacze klasy C są używane w nadajnikach FM oraz w aplikacjach RF, gdzie istotne jest uzyskanie wysokiej efektywności i mocy wyjściowej, jednak zniekształcenia sygnału mogą być tolerowane. W kontekście audio, najlepszym wyborem są wzmacniacze klasy A lub AB, które oferują znacznie lepszą linearność i niższe zniekształcenia, co jest zgodne z dobrymi praktykami w produkcji sprzętu audio.

Pytanie 37

Którego typu środka gaśniczego nie należy używać do gaszenia ognia pochodzącego z urządzenia elektrycznego?

A. Proszku gaśniczego.
B. Piany gaśniczej.
C. Halon.
D. Dwutlenku węgla.
Stosowanie halonu, dwutlenku węgla lub proszku gaśniczego w celu gaszenia płomieni wydobywających się z urządzeń elektrycznych może prowadzić do niebezpiecznych sytuacji. Halon, pomimo że nie przewodzi prądu, jest substancją szkodliwą dla środowiska i od 2015 roku nie jest już produkowany zgodnie z Protokołem Montrealskim. Jego zastosowanie jest ograniczone, a w wielu krajach całkowicie zakazane. Dwutlenek węgla jest skutecznym środkiem gaśniczym, ale nie jest idealnym rozwiązaniem w każdym przypadku. Może występować ryzyko zamarznięcia w dyszy, co może prowadzić do uszkodzeń sprzętu. Użycie proszku gaśniczego, choć może być skuteczne, wiąże się z ryzykiem uszkodzenia urządzeń elektronicznych oraz wymaga dokładnego oczyszczenia po akcji gaśniczej. Wybór środka gaśniczego powinien być dokładnie przemyślany, z uwzględnieniem specyfiki pożaru. Typowym błędem jest mylenie skuteczności działania różnych typów środków gaśniczych bez uwzględnienia ich właściwości w kontekście urządzeń elektrycznych. Właściwe szkolenia i znajomość zasad BHP są kluczowe, aby uniknąć niewłaściwych decyzji w sytuacji zagrożenia.

Pytanie 38

Utrzymanie w dobrym stanie elementów chłodzących w zasilaczach sprzętu elektronicznego polega na

A. oczyszczeniu ich za pomocą sprężonego powietrza
B. przetarciu ich drobnym papierem ściernym
C. zanurzeniu ich w wodnym roztworze detergentu
D. pomalowaniu ich lakierem elektroprzewodzącym
Zanurzenie elementów chłodzących w wodnym roztworze detergentu to podejście, które jest nie tylko niewłaściwe, ale także potencjalnie niebezpieczne. Woda jest przewodnikiem prądu, a kontakt z elementami elektronicznymi może prowadzić do zwarć, uszkodzenia komponentów lub nawet zniszczenia całego urządzenia. Oczyszczanie w takiej formie jest sprzeczne z podstawowymi zasadami bezpieczeństwa w elektronice, które sugerują unikanie wilgoci w miejscach, gdzie znajdują się obwody elektryczne. Pomalowanie elementów chłodzących lakierem elektroprzewodzącym również jest błędne, ponieważ takie lakiery są stosowane do tworzenia połączeń elektrycznych, a nie do konserwacji. Nałożenie ich na elementy chłodzące może prowadzić do niepożądanych efektów, takich jak zmniejszenie efektywności dissipacji ciepła. Z kolei przetarcie ich drobnym papierem ściernym to metoda, która w teorii miałaby na celu usunięcie brudu, jednak w praktyce, papier ścierny może powodować zarysowania i uszkodzenia powierzchni elementów, co z kolei pogarsza ich właściwości termiczne. Każda z tych metod ignoruje fundamentalne zasady konserwacji sprzętu elektronicznego, w tym znaczenie zachowania integralności fizycznej i funkcjonalnej komponentów. Dlatego kluczowe jest, aby podchodzić do konserwacji zasilaczy z odpowiednią wiedzą i stosować sprawdzone metody, takie jak oczyszczenie sprężonym powietrzem, które jest bezpieczne i skuteczne.

Pytanie 39

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wejściowa
B. Czułość
C. Selektywność
D. Moc wyjściowa
Czułość, selektywność oraz moc wyjściowa to parametry, które są kluczowe w ocenie jakości odbiorników radiowych. Czułość odbiornika definiuje minimalny poziom sygnału, przy którym urządzenie jest w stanie zidentyfikować i przetworzyć sygnał. W praktyce, oznacza to, że im niższa wartość czułości, tym lepiej odbiornik poradzi sobie z odbieraniem słabych sygnałów, co jest szczególnie istotne w obszarach o niskiej mocy sygnału. Selektywność natomiast, określa zdolność urządzenia do oddzielania sygnałów znajdujących się blisko siebie w spektrum częstotliwości. Wartość ta jest niezwykle ważna, gdyż pozwala na odbiór wybranych stacji bez zakłóceń spowodowanych przez inne nadajniki działające w sąsiedztwie. Moc wyjściowa to parametr, który wskazuje na siłę sygnału dostarczanego do końcowego urządzenia, co ma bezpośredni wpływ na jakość dźwięku. Błędne zrozumienie mocy wejściowej i jej roli w kontekście odbiorników radiowych może prowadzić do mylnego wniosku, że jest ona istotnym parametrem dla tych urządzeń. W rzeczywistości moc wejściowa dotyczy źródła sygnału, a nie samego odbiornika, co jest kluczowym aspektem, który powinien być uwzględniany przy analizie parametrów radiowych. Zrozumienie tych różnic jest niezbędne dla prawidłowej oceny i porównania odbiorników radiowych w różnych zastosowaniach.

Pytanie 40

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. ciągłych rur z instalacji grzewczej
B. ciągłych rur z instalacji wodociągowej
C. gołych przewodów miedzianych
D. przewodu zerowego z sieci zasilającej
Wykorzystanie przewodów miedzianych gołych, ciągłych rur instalacji grzewczej czy ciągłych rur instalacji wodociągowej do uziemienia systemu antenowego może wydawać się rozsądne, jednak w praktyce niesie ze sobą wiele ryzyk i niebezpieczeństw. Przewody miedziane gołe, choć mają doskonałą przewodność, nie są odpowiednie do uziemienia ze względu na ich narażenie na korozję oraz możliwość wystąpienia przerwy w ciągłości przewodzenia prądu. Korozja może znacząco zmniejszyć efektywność uziemienia, co w konsekwencji prowadzi do niewystarczającej ochrony przed przepięciami. Z kolei ciągłe rury instalacji grzewczej oraz wodociągowej mogą być podłączone do systemów zasilających, które nie są właściwie uziemione lub mogą być pod napięciem, co stwarza ryzyko porażenia prądem. W normach instalacyjnych, takich jak PN-EN 61140, klarownie wskazuje się, że uziemienie powinno być realizowane przy użyciu dedykowanych systemów uziemiających, które są projektowane z myślą o zapewnieniu maksymalnego bezpieczeństwa i efektywności. Typowym błędem myślowym jest założenie, że jakiekolwiek przewodniki metalowe mogą być stosowane do uziemienia – takie podejście pomija kluczowe zasady bezpieczeństwa i może prowadzić do tragicznych konsekwencji.