Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 15:14
  • Data zakończenia: 31 stycznia 2026 15:35

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
B. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
C. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
D. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
Poprawnie wybrałeś przewód YDYtżo 3 × 2,5 mm², bo właśnie taki typowo stosuje się do obwodów jednofazowych gniazd wtyczkowych w instalacjach wtynkowych w systemie TN-S. Rozbijmy sobie to oznaczenie na części, bo ono dużo mówi. YDY – przewód o izolacji i powłoce z PVC, przeznaczony do instalacji stałych. Literka „t” oznacza wersję okrągłą do układania pod tynkiem, dobrze znosi ona typowe warunki w bruździe tynkarskiej. Z kolei „żo” informuje, że wśród żył jest żyła ochronna w barwach żółto-zielonych, co w sieci TN-S jest absolutnym standardem: osobny PE i osobny N. Zapis „3 × 2,5 mm²” oznacza trzy żyły (L, N, PE) o przekroju 2,5 mm². Dla obwodów gniazd w instalacjach mieszkaniowych przyjmuje się właśnie 2,5 mm² miedzi jako dobrą praktykę i zgodność z wymaganiami obciążalności długotrwałej i spadków napięcia, szczególnie przy zabezpieczeniach 16 A. W praktyce, jeśli wykonujesz obwód gniazd w pokoju, kuchni czy garażu, to elektrycy z przyzwyczajenia i doświadczenia sięgają właśnie po YDYtżo 3 × 2,5 mm². Dzięki trzem żyłom możesz poprawnie zrealizować układ TN-S: faza, neutralny i ochronny rozdzielone już od rozdzielnicy. Moim zdaniem warto zapamiętać, że do oświetlenia zwykle idzie 1,5 mm², a do gniazd – 2,5 mm², bo to pojawia się non stop zarówno na egzaminach, jak i na budowie. Dodatkowo przewód YDYt w tynku układa się wygodnie, dobrze się go mocuje w bruździe i bez problemu mieści się w typowych peszlach czy korytkach w ścianie. To jest po prostu branżowy standard w budownictwie mieszkaniowym i małym usługowym.

Pytanie 2

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. aR
B. aM
C. gG
D. gL
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 3

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. próg zadziałania wyzwalacza przeciążeniowego
B. wartość prądu wyłączającego
C. zwarciową zdolność łączeniową
D. czas zadziałania wyzwalacza zwarciowego
Wartość prądu wyłączającego jest kluczowa w kontekście samoczynnego wyłączenia zasilania, ponieważ określa poziom prądu, przy którym nadprądowy wyłącznik instalacyjny zareaguje i odłączy obwód. W sieciach TN-S, które charakteryzują się oddzieleniem systemu uziemienia od neutralnego, ważne jest, aby wartość ta była odpowiednio dobrana do warunków ochrony przeciwporażeniowej. Standardy takie jak PN-EN 60947-2 wskazują, że wyłącznik musi działać w określonym czasie, aby zapewnić bezpieczeństwo użytkowników. Przykładowo, dla prądu wyłączającego o wartości 30 mA w obwodach ochronnych, wyłącznik powinien zadziałać w czasie nieprzekraczającym 0,2 sekundy. Oprócz tego, dobór wartości prądu wyłączającego ma również praktyczne zastosowanie w projektowaniu instalacji, gdyż zbyt wysoka wartość może prowadzić do ryzyka porażenia prądem, a zbyt niska do niepotrzebnych wyłączeń. Z tego względu, analiza warunków pracy wyłącznika oraz jego parametrów jest niezbędna dla zapewnienia ochrony użytkowników i minimalizacji ryzyka awarii.

Pytanie 4

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
B. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
C. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
D. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
Prawidłowo wskazane, że zalecenie „gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu” nie jest typowym wymaganiem dla nowych instalacji mieszkaniowych. W aktualnej praktyce i wg zaleceń normowych (np. PN‑HD 60364, wytyczne SEP) dąży się do logicznego podziału instalacji na obwody, ale nie aż tak drobiazgowego, żeby każde pomieszczenie miało osobny obwód gniazd. Z mojego doświadczenia w mieszkaniówce robi się zwykle kilka obwodów gniazd ogólnych, które obejmują po 2–3 pomieszczenia, z zachowaniem ograniczenia obciążenia i długości linii, oraz oddzielne obwody dla kuchni i dużych odbiorników. Chodzi o rozsądny kompromis między bezpieczeństwem, funkcjonalnością a kosztami. Gdyby dla każdego pokoju prowadzić osobny obwód gniazd, rozdzielnica rozrasta się niepotrzebnie, rośnie ilość kabli, zabezpieczeń, pracy przy montażu i późniejszej eksploatacji. Technicznie da się tak zrobić, ale nie jest to wymagane, ani specjalnie praktyczne w typowych mieszkaniach. Natomiast pozostałe trzy odpowiedzi odzwierciedlają powszechnie przyjęte dobre praktyki. Gniazda wtyczkowe w kuchni prowadzi się z osobnego obwodu, bo kuchnia jest mocno obciążona: czajnik, mikrofalówka, zmywarka, czasem piekarnik, małe AGD – wszystko to generuje duże prądy i wymaga osobnego zabezpieczenia. Rozdzielenie obwodów oświetleniowych od gniazd to też standard – pozwala np. przy wyłączeniu zabezpieczenia gniazd (zwarcie, przeciążenie) zachować oświetlenie, co jest istotne dla bezpieczeństwa użytkowników i serwisu. Odbiorniki dużej mocy, jak płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator, zasila się z wydzielonych obwodów właśnie po to, by nie przeciążać obwodów ogólnych i dobrać odpowiedni przekrój przewodów oraz zabezpieczenie nadprądowe i różnicowoprądowe. Moim zdaniem klucz w projektowaniu instalacji mieszkaniowej to nie „jak najwięcej obwodów”, tylko sensowny podział wynikający z bilansu mocy, wygody eksploatacji i wymogów normowych.

Pytanie 5

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Biurową.
C. Przenośną.
D. Punktową.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 6

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. zwarcie międzyprzewodowe między punktami 5 – 6.
B. uszkodzenie przewodu między punktami 2 – 3.
C. niepewne zamocowanie puszki rozgałęźnej do podłoża.
D. przerwa w przewodzie neutralnym.
Odpowiedź wskazująca na zwarcie międzyprzewodowe między punktami 5 – 6 jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji układu wykazała wartość 0 Ω. W normalnych warunkach, gdy łącznik jest otwarty, oczekiwalibyśmy, że rezystancja będzie nieskończona, co wskazuje na brak przepływu prądu. W przypadku stwierdzenia rezystancji równej 0 Ω, mamy do czynienia z niepożądanym połączeniem, czyli zwarciem, które prowadzi do ciągłego zasilania żarówki. Takie sytuacje mogą występować w wyniku uszkodzenia izolacji przewodów lub błędów w instalacji elektrycznej. W praktyce, aby zapobiegać takim usterkom, zaleca się regularne przeglądy i pomiary instalacji, zgodnie z normami PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa elektrycznego. Prawidłowa diagnoza i naprawa zwarć są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji.

Pytanie 7

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, lutownica, tester
B. Tester, wkrętak, lutownica
C. Ściągacz izolacji, wkrętak, próbnik
D. Szczypce, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 8

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 9

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 10

Które określenie instalacji dotyczy ich podziału ze względu na rodzaje obiektów budowlanych?

A. Podtynkowe w rurach.
B. Biurowe.
C. Oświetleniowe.
D. Prądu stałego.
W tym pytaniu kluczowe jest zwrócenie uwagi, o jaki sposób klasyfikacji instalacji chodzi. Mamy wyraźnie zaznaczone „ze względu na rodzaje obiektów budowlanych”, czyli patrzymy na typ budynku: biurowiec, budynek mieszkalny, hala przemysłowa, magazyn, szkoła, szpital itd. To jest bardzo częsty podział w projektowaniu, bo od przeznaczenia obiektu zależą wymagania obciążeniowe, bezpieczeństwa, funkcjonalności i też późniejszej eksploatacji. Odpowiedzi takie jak „prądu stałego”, „oświetleniowe” czy „podtynkowe w rurach” są jak najbardziej spotykane w praktyce, ale opisują zupełnie inne kryteria podziału instalacji. Określenie „prądu stałego” odnosi się do rodzaju prądu, a więc do charakteru zasilania. Możemy mówić o instalacjach prądu stałego w systemach fotowoltaicznych, zasilaniu awaryjnym DC, systemach telekomunikacyjnych czy automatyki. To jest podział według rodzaju napięcia (DC/AC), a nie według typu budynku. Taka instalacja może występować zarówno w obiekcie biurowym, przemysłowym, jak i np. w infrastrukturze kolejowej. Podobnie z określeniem „oświetleniowe” – tu kryterium jest funkcjonalne: do czego instalacja służy. Instalacja oświetleniowa to ta część instalacji elektrycznej, która zasila oprawy, układy sterowania światłem, awaryjne oświetlenie ewakuacyjne itd. Może być wykonana w budynku biurowym, mieszkalnym, magazynie, praktycznie wszędzie. Podział na instalacje oświetleniowe, siłowe, gniazdowe, technologiczne nie ma nic wspólnego z rodzajem obiektu, tylko z przeznaczeniem obwodów. Określenie „podtynkowe w rurach” z kolei opisuje sposób wykonania, czyli technikę prowadzenia instalacji. Chodzi o to, że przewody są układane w rurkach instalacyjnych (peszlach lub rurach sztywnych) i przykryte tynkiem. To jest typowy wariant w ścianach murowanych. W normach i wytycznych mówi się wtedy o sposobie ułożenia przewodu, strefach instalacyjnych, doborze przekroju z uwzględnieniem warunków chłodzenia. Taki sposób montażu też może wystąpić w bardzo różnych obiektach, nie tylko w biurowcach. Typowy błąd myślowy przy takich pytaniach polega na tym, że ktoś widzi znane słowo techniczne i automatycznie zakłada, że chodzi o „rodzaj instalacji”, bez zwrócenia uwagi, według jakiego kryterium ten „rodzaj” jest definiowany. W praktyce mamy kilka równoległych podziałów: według przeznaczenia obwodów, według rodzaju prądu, według sposobu prowadzenia przewodów, według napięcia znamionowego, stref zagrożenia wybuchem i właśnie według rodzaju obiektu budowlanego. W zadaniu chodziło dokładnie o ten ostatni, dlatego jedynie określenie odnoszące się do typu budynku – czyli „biurowe” – pasuje merytorycznie do treści pytania.

Pytanie 11

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
B. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
C. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
D. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 12

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 1000 W
B. 100 W
C. 500 W
D. 50 W
W przypadku błędnego wyboru wartości mocy, należy zwrócić uwagę na kilka kluczowych zagadnień związanych z interpretacją wyników pomiarów. Odpowiedzi 50 W, 100 W, 1000 W oraz 500 W mogą wydawać się atrakcyjne, jednak nie uwzględniają one rzeczywistych parametrów pomiarowych wykorzystywanych w watomierzu. Na przykład, wybór 50 W może wynikać z nieporozumienia dotyczącego wskazania watomierza, które być może nie uwzględnia poprawnych wartości prądu oraz napięcia. Dodatkowo, odpowiedzi 100 W oraz 1000 W również nie są zgodne z zasadami obliczania mocy. Warto pamiętać, że moc elektryczna jest definiowana jako iloczyn napięcia i prądu, a ich niewłaściwe zrozumienie może prowadzić do znacznych błędów w ocenie wydajności urządzeń elektrycznych. Typowe myślenie, które prowadzi do takich błędów, opiera się na pomijaniu kluczowych parametrów technicznych, takich jak rzeczywiste wartości prądu i napięcia zainstalowanego urządzenia. W praktyce, ignorowanie tych zasad skutkuje nieprawidłowymi wynikami i może stanowić zagrożenie dla bezpieczeństwa użytkowania instalacji elektrycznych. Ważne jest, aby każdy, kto zajmuje się pomiarami elektrycznymi, rozumiał, w jaki sposób odczyty są generowane i jakie parametry wpływają na ostateczne wyniki pomiarów.

Pytanie 13

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa na zaciskach odbiornika Z2 lub Z3.
C. Zwarcie na zaciskach odbiornika Z2 lub Z3.
D. Uszkodzenie przewodu neutralnego.
Kiedy przewód neutralny w systemie trójfazowym ulega uszkodzeniu, napięcie na poszczególnych fazach rozkłada się nierównomiernie. To może mieć spore konsekwencje dla odbiorników, takich jak Z1. Na przykład, jeżeli przewód neutralny jest w złym stanie, napięcie na urządzeniach z mniejszą impedancją może znacznie wzrosnąć. To może prowadzić do ich uszkodzenia. W branży elektrycznej, jak mówi norma IEC 60364, prawidłowe uziemienie i sprawność przewodów neutralnych są mega istotne dla bezpieczeństwa instalacji. Wyobraź sobie sytuację, gdzie urządzenie podłączone do zepsutego obwodu neutralnego otrzymuje napięcie dużo wyższe niż 400V. To na pewno nie jest dobre dla sprzętu. Dlatego regularne sprawdzanie i konserwacja instalacji są kluczowe, żeby uniknąć takich problemów.

Pytanie 14

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 15

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 40 A, 25 A
B. 25 A, 25 A
C. 25 A, 40 A
D. 40 A, 40 A
Odpowiedź 40 A, 40 A jest prawidłowa, ponieważ wymaga ona zastosowania zabezpieczeń dla obwodów zasilających odbiorniki w zależności od ich mocy. W przypadku obwodu trójfazowego, przepływowy podgrzewacz wody o mocy 12 kW można obliczyć używając wzoru na moc trójfazową: P = √3 * U * I, gdzie U to napięcie międzyfazowe (400 V). Przekształcając wzór, otrzymujemy I = P / (√3 * U), co dla 12 kW prowadzi do wartości prądu wynoszącej około 17,32 A. Dodając margines bezpieczeństwa oraz biorąc pod uwagę normy instalacyjne, które przewidują zastosowanie wyłączników o wartości nominalnej nieprzekraczającej 40 A, uzyskujemy właściwą wartość zabezpieczenia. Dla obwodu jednofazowego zmywarki o mocy 3,5 kW stosując wzór P = U * I, obliczamy prąd jako I = P / U, co w tym przypadku daje nam wartość około 15 A. Wybierając zabezpieczenie 40 A, również dla obwodu jednofazowego, zapewniamy zgodność z normami oraz odpowiedni zapas mocy na wypadek nagłych wzrostów poboru energii. Takie podejście jest zgodne z zasadami projektowania instalacji elektrycznych, które zakładają stosowanie zabezpieczeń z marginesem bezpieczeństwa, co ma na celu ochronę zarówno urządzeń, jak i samej instalacji.

Pytanie 16

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K2, K7
B. K1, K5, K4, K6, K3, K7, K2
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K2, K3, K4, K5, K6, K7
Odpowiedź K1, K5, K4, K6, K3, K7, K2 jest poprawna, ponieważ kolejność załączania styczników odzwierciedla logiczny przepływ energii w układzie rozruchowym silnika pierścieniowego. Po załączeniu wyłączników Q i Q1 oraz przycisku S1, stycznik K1, jako pierwszy w obwodzie, zostaje aktywowany, co jest zgodne z zasadami działania obwodów elektrycznych. Zamykanie styków K1 (13-14) uruchamia stycznik K5, który jest kluczowy w kolejnych etapach rozruchu. Następnie, przez zamknięcie styków K5, do akcji wchodzi K4, a następnie K6, które są połączone szeregowo, co jest typowe dla układów rozruchowych silników. Ważne jest, aby zrozumieć znaczenie takiej kolejności: każdy stycznik aktywuje kolejne elementy układu, co pozwala na kontrolowany i bezpieczny rozruch silnika. Zasady te są zgodne z normami IEC 60947 dotyczącymi aparatury łączycej. W praktyce, taka sekwencja działania jest nie tylko efektywna, ale także minimalizuje ryzyko przeciążenia, co jest kluczowe w projektowaniu systemów automatyki przemysłowej.

Pytanie 17

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 18

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 2.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 19

Na której ilustracji przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 4.
Prawidłowo wskazana została ilustracja 4, bo właśnie tam widzimy typową rozdzielnicę natynkową przeznaczoną do montażu na ścianie, a nie w jej wnętrzu. Charakterystyczne cechy to wyraźnie wystająca obudowa, brak kołnierza do osadzenia w tynku oraz zaokrąglone krawędzie korpusu, które po prostu „siadają” na gotowej ścianie. Taka rozdzielnica ma zwykle przygotowane miejsca na przepusty kablowe z góry, z dołu lub z tyłu, żeby można było wygodnie wprowadzić przewody w istniejącej instalacji. Od frontu widoczna jest uchylna, najczęściej przezroczysta pokrywa, pod którą montuje się aparaturę na szynie DIN: wyłączniki nadprądowe, różnicowoprądowe, ograniczniki przepięć, liczniki energii itp. W praktyce natynkowe rozdzielnice stosuje się głównie w garażach, piwnicach, pomieszczeniach gospodarczych, warsztatach, a także w instalacjach modernizowanych, gdzie nie ma sensu kuć ścian pod wersję podtynkową. Moim zdaniem to jest najwygodniejsze rozwiązanie wszędzie tam, gdzie liczy się łatwy dostęp serwisowy i możliwość późniejszej rozbudowy obwodów. Zgodnie z dobrą praktyką i wymaganiami norm (PN‑HD 60364 i norm producentów osprzętu) dobierając taką rozdzielnicę zwraca się uwagę na stopień ochrony IP, klasę izolacji, ilość modułów oraz sposób wprowadzenia kabli. Ważne jest też prawidłowe mocowanie do podłoża – kołki rozporowe lub odpowiednie śruby – tak, aby obudowa była stabilna, nie przenosiła naprężeń na przewody i zapewniała odpowiednie warunki chłodzenia aparatów. W instalacjach domowych często spotyka się rozdzielnice natynkowe w wykonaniu z tworzywa, dokładnie takie jak na ilustracji 4, bo są lekkie, łatwe w montażu i odporne na korozję.

Pytanie 20

Który z wymienionych symboli literowo-cyfrowych powinien mieć przewód zastosowany do zasilenia z sieci jednofazowej o napięciu 230 V ruchomego odbiornika, wykonanego w II klasie ochronności?

A. H03VVH2-F 2X1,5
B. H05VV-K 3X0,75
C. H05VV-U 2X1,5
D. H03VV-F 3X0,75
W tym zadaniu haczyk polega głównie na zrozumieniu, że przewód musi być dopasowany nie tylko do napięcia 230 V, ale też do charakteru odbiornika (ruchomy) i jego klasy ochronności (II klasa). Wiele osób łapie się na tym, że patrzy tylko na przekrój żył albo na to, że „wygląda znajomo”, a pomija oznaczenia dotyczące budowy i przeznaczenia. Przewód H05VV-K 3×0,75 to przewód o wyższym napięciu znamionowym 300/500 V, z żyłami linkowymi (K – giętkie), ale trzyżyłowy. Taki przewód jest typowo przewidziany dla urządzeń wymagających żyły ochronnej PE, czyli dla I klasy ochronności. W II klasie ochronności nie stosuje się przewodu ochronnego, urządzenie ma podwójną lub wzmocnioną izolację i gniazdo przyłączeniowe z reguły przystosowane jest do wtyczki bez styku ochronnego. Zastosowanie przewodu 3-żyłowego do takiego odbiornika jest po prostu niezgodne z zasadą doboru osprzętu i często koliduje z konstrukcją urządzenia. Podobny problem występuje przy H03VV-F 3×0,75 – tu co prawda napięcie 300/300 V jest już dobrane poprawnie do lekkich odbiorników, przewód jest elastyczny, ale znowu mamy trzy żyły. To jest typowy przewód do małych urządzeń I klasy, gdzie potrzebna jest żyła ochronna. W praktyce widzi się go np. przy lampkach biurkowych z bolcem ochronnym czy małych urządzeniach z metalową obudową. Do II klasy taki przewód jest po prostu nadmiarowy i niezgodny z koncepcją ochrony izolacją, a producenci urządzeń i normy branżowe wyraźnie rozdzielają te zastosowania. Ostatnia opcja, H05VV-U 2×1,5, ma inny problem: litera U oznacza żyły jednodrutowe, sztywne. To jest przewód raczej instalacyjny, do stałego ułożenia, np. w kanałach, rurkach, na stałe w ścianie, a nie do zasilania ruchomego odbiornika, który jest ciągle przesuwany, zwijany czy zginany. Sztywny przewód w takim zastosowaniu szybko pęka, łamie się przy wejściu do urządzenia i po prostu stwarza zagrożenie. Moim zdaniem typowy błąd przy takich pytaniach to patrzenie tylko na napięcie i przekrój, bez czytania całego symbolu: H03 vs H05, VV, F, K, U, ilość żył. Dobre praktyki, zgodne z normami PN-HD 21 i ogólnymi zasadami doboru przewodów, wymagają, żeby przewód do ruchomego odbiornika w II klasie był lekki, giętki, dwużyłowy i przeznaczony właśnie do takiego typu pracy. Tego tu zabrakło w błędnych odpowiedziach – albo za dużo żył, albo niewłaściwa konstrukcja przewodu do pracy ruchomej.

Pytanie 21

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Klejenie na gorąco przewodu kabelkowego.
C. Ściąganie izolacji z przewodu.
D. Zaciskanie końcówki tulejkowej.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 22

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. B.
B. C.
C. D.
D. A.
Odpowiedź B jest poprawna, ponieważ zestaw ten zawiera wszystkie niezbędne narzędzia i materiały potrzebne do ułożenia podtynkowej instalacji elektrycznej w rurkach stalowych. Bruzdownica jest kluczowym narzędziem, które umożliwia precyzyjne wykonanie bruzd w ścianie, co jest niezbędne do umieszczenia rurek. Dodatkowo, drut wiązałkowy oraz stalowe gwoździe są zbawienne przy mocowaniu rurek, zapewniając ich stabilność i bezpieczeństwo instalacji. Młotek wykorzystywany jest do prac montażowych, co podkreśla znaczenie precyzyjnych prac ręcznych w instalacjach elektrycznych. Otwornica koronowa pozwala natomiast na wykonanie otworów pod puszki instalacyjne, co jest istotnym elementem końcowego wykończenia każdej instalacji. W kontekście standardów branżowych, wybór odpowiednich narzędzi i materiałów jest kluczowy dla zapewnienia bezpieczeństwa i trwałości instalacji, co jest zgodne z normami PN-IEC dotyczących instalacji elektrycznych. Wiedza o właściwym doborze narzędzi oraz materiałów przekłada się na efektywność i bezpieczeństwo pracy, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 23

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
B. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
C. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
D. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 24

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik obwodu zwarcia
B. omomierz
C. megaomomierz
D. miernik indukcyjny uziemień
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 25

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
C. uzwojenia fazowego.
D. izolacji pomiędzy zaciskami uzwojeń silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 26

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. omomierza i amperomierza
C. woltomierza i amperomierza
D. watomierza oraz woltomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 27

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. D.
B. B.
C. C.
D. A.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 28

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 4 mm2
C. 6 mm2
D. 1,5 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 29

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 32W
B. L 18W
C. L 36W
D. L 22W
Wybieranie dławika, który nie ma odpowiedniej mocy do świetlówek, to dość powszechny błąd. Dławiki L 22W, L 18W czy L 32W po prostu nie dadzą rady zasilać dwóch świetlówek T8, które każda mają 18W. Zbyt słaby dławik może prowadzić do różnych problemów - świetlówki mogą migotać lub nawet w ogóle nie działać. Dodatkowo, może to zwiększyć zużycie energii oraz skrócić żywotność zarówno dławika, jak i świetlówek. Bezpieczeństwo też nie jest bez znaczenia, bo dławiki niewłaściwie dobrane do obciążenia mogą się przegrzewać, co jest niebezpieczne. W elektryce naprawdę warto trzymać się zasad doboru komponentów i zalecań producentów. Dlatego dobrze jest przeanalizować wymagania obciążeniowe i stosować odpowiednie dławiki, bo to może uchronić przed typowymi błędami przy montażu oświetlenia.

Pytanie 30

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 31

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Najwyższą temperaturę otoczenia podczas eksploatacji
B. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
C. Klasę ochronności przed porażeniem energią elektryczną
D. Minimalny przekrój przewodów podłączonych do zacisków
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 32

Kiedy instalacja elektryczna nie musi być poddawana konserwacji i/lub naprawie?

A. Gdy przeprowadza się prace konserwacyjne w budynku, np. malowanie ścian. 
B. Gdy stan techniczny instalacji jest zły lub wartości jej parametrów nie mieszczą się w granicach określonych w instrukcji eksploatacji.
C. Gdy stwierdzone zostanie uszkodzenie instalacji elektrycznej. 
D. Gdy eksploatacja instalacji zagraża bezpieczeństwu obsługi lub/i otoczenia. 
Poprawnie wskazana odpowiedź dotyczy sytuacji, w której w budynku prowadzi się zwykłe prace konserwacyjne, np. malowanie ścian, wymiana listew przypodłogowych, drobne prace wykończeniowe, które nie ingerują w instalację elektryczną. Sama czynność malowania czy odświeżania pomieszczeń nie jest powodem do tego, żeby automatycznie wykonywać konserwację lub naprawę instalacji. Oczywiście, zgodnie z dobrą praktyką, przed takimi pracami należy instalację odpowiednio zabezpieczyć – osłonić gniazda, wyłączniki, oprawy, a czasem nawet odłączyć zasilanie w danym obwodzie, ale to nie jest to samo co konserwacja instalacji w sensie technicznym. Konserwacja i naprawa są wymagane, gdy występują objawy zużycia, uszkodzenia albo zagrożenie dla bezpieczeństwa użytkowników, co wynika z przepisów BHP oraz wymagań norm, np. PN‑HD 60364 i przepisów eksploatacji urządzeń elektroenergetycznych. W praktyce technicznej wygląda to tak, że instalację poddajemy przeglądom okresowym (np. co 5 lat w budynkach mieszkalnych, częściej w obiektach o podwyższonym ryzyku) oraz doraźnym kontrolom po stwierdzeniu nieprawidłowości. Jeśli podczas malowania ktoś zauważy nadpalone gniazdo, luźny osprzęt, przebarwienia wokół puszki – to wtedy jest to już sygnał do działań serwisowych. Natomiast samo malowanie, tapetowanie czy inne prace wykończeniowe nie stanowią podstawy do obowiązkowej konserwacji instalacji. Moim zdaniem ważne jest, żeby odróżniać prace budowlano‑wykończeniowe od prac eksploatacyjnych na instalacji elektrycznej – to są dwie różne bajki, chociaż często wykonywane w tym samym czasie. Dlatego dobrze, że kojarzysz, iż przy zwykłych robotach remontowych instalacja nie musi być z automatu konserwowana lub naprawiana, o ile jej stan techniczny jest prawidłowy i zgodny z dokumentacją oraz instrukcją eksploatacji.

Pytanie 33

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 mA oraz napięcie znamionowe 40 V
B. 0,03 A oraz znamionowy prąd ciągły 40 A
C. 0,03 mA oraz znamionowy prąd ciągły 40 mA
D. 0,03 A oraz napięcie znamionowe 40 V
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 34

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Prostownik dwupołówkowy.
C. Ogranicznik przepięć.
D. Wyłącznik zmierzchowy.
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 35

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. wyłącznie przewód neutralny.
B. przewody fazowe i przewód neutralny.
C. wyłącznie przewody fazowe.
D. przewód fazowy i przewód neutralny.
Odpowiedź wskazująca na włączenie ochronnika przeciwprzepięciowego między uziemienie a przewody fazowe oraz przewód neutralny jest poprawna, ponieważ zgodnie z normami, takimi jak PN-EN 62305, ochronniki SPD powinny być instalowane w taki sposób, aby efektywnie odprowadzać nadmiar energii spowodowane przepięciami do ziemi. Ochronnik SPD jest kluczowym elementem ochrony instalacji elektrycznych przed skutkami przepięć atmosferycznych oraz wywołanych przez inne źródła. W praktyce oznacza to, że zarówno przewody fazowe, jak i neutralny mogą być narażone na różnego rodzaju zakłócenia, które mogą prowadzić do uszkodzenia sprzętu czy zagrożenia dla użytkowników. Umieszczając ochronnik w opisanej konfiguracji, zapewniamy optymalny poziom bezpieczeństwa. Przykłady zastosowania obejmują instalacje w budynkach mieszkalnych, biurach oraz obiektach przemysłowych, gdzie ochrona przed przepięciami ma kluczowe znaczenie dla ciągłości działania urządzeń elektrycznych oraz bezpieczeństwa ludzi.

Pytanie 36

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ALY 2,5 mm2
B. ADY 2,5 mm2
C. YLY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 37

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 20 A
B. 6 A
C. 16 A
D. 26 A
Poprawna odpowiedź to 20 A, co wynika z analizy schematu elektrycznego związanego z obwodem oświetleniowym. W obwodzie tym kluczową rolę odgrywają wyłącznik nadprądowy B20 oraz stycznik SM-320, które mają znamionowy prąd roboczy wynoszący 20 A. W praktyce oznacza to, że przy prawidłowym doborze elementów, obwód może bezpiecznie eksploatować prąd do 20 A bez ryzyka przeciążenia. Należy pamiętać, że dobra praktyka inżynierska wymaga, aby znamionowy prąd urządzeń był dostosowany do obciążenia, jakie będą musiały tolerować. Warto również zwrócić uwagę na automat zmierzchowy, który ma prąd znamionowy 16 A, jednak nie stanowi on ograniczenia w przypadku tego konkretnego obwodu, gdyż stycznik SM-320 wytrzymuje wyższe wartości prądu. W praktyce, w przypadku projektowania obwodów oświetleniowych, kluczowe jest, aby nie przekraczać znamionowych wartości prądów, co zapewnia długotrwałą i bezpieczną eksploatację instalacji elektrycznych.

Pytanie 38

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Żaluzjowy.
B. Schodowy.
C. Świecznikowy.
D. Dwubiegunowy.
Odpowiedź 'Żaluzjowy' jest poprawna, ponieważ na schemacie widoczny jest łącznik, który kontroluje ruch silnika, co jest charakterystyczne dla systemów sterowania żaluzjami. W przypadku łączników żaluzjowych, zazwyczaj mamy do czynienia z dwoma przyciskami: jeden służy do podnoszenia żaluzji, a drugi do ich opuszczania. Tego rodzaju łączniki są powszechnie stosowane w domach, biurach oraz budynkach użyteczności publicznej, gdzie automatyzacja zasłon i żaluzji może znacząco poprawić komfort użytkowania oraz efektywność energetyczną. Dobrą praktyką w instalacjach elektrycznych jest stosowanie łączników dostosowanych do konkretnego zastosowania, w tym przypadku łączników żaluzjowych, aby zapewnić bezpieczeństwo oraz wygodę. Znajomość tych systemów pozwala również na prawidłowe projektowanie i wdrażanie rozwiązań automatyki budynkowej, co jest coraz bardziej popularne w nowoczesnym budownictwie.

Pytanie 39

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Szeregowy.
B. Grupowy.
C. Dwubiegunowy.
D. Jednobiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 40

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji.
C. Reaktancję rozproszenia transformatora.
D. Rezystancję uziomu.
Poprawna odpowiedź to rezystancja uziomu, którą można zmierzyć przy pomocy miernika rezystancji uziemienia, jak przedstawiony na ilustracji. Tego typu przyrząd jest niezbędny do oceny efektywności systemów uziemienia, które są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz ochrony przed przepięciami. Zgodnie z normą PN-IEC 60364, rezystancja uziomu powinna być jak najniższa, aby zapewnić prawidłowe odprowadzanie prądów zwarciowych do ziemi. W praktyce, miernik umożliwia ocenę, czy wartości rezystancji mieszczą się w akceptowalnych granicach, co jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym. Regularne pomiary rezystancji uziomu są zalecane w ramach konserwacji instalacji elektrycznych, a także przed oddaniem do użytku nowo zainstalowanych systemów. Wiedza o tym, jak korzystać z miernika rezystancji uziemienia oraz interpretować wyniki, jest istotna dla każdego elektryka i inżyniera zajmującego się bezpieczeństwem elektrycznym.