Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 lutego 2026 02:34
  • Data zakończenia: 8 lutego 2026 02:58

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Mikrometr
B. Kątomierz
C. Poziomnica
D. Klepsydra
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 2

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Rozlutownica
C. Lutownica na gorące powietrze z dyszą w kształcie 7x7
D. Lutownica z końcówką 'minifala'
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 3

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. różnicowy.
B. jednostronnej pracy.
C. dwustronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 4

Który element silnika oznaczono cyfrą 1?

Ilustracja do pytania
A. Stojan.
B. Komutator.
C. Wirnik.
D. Zacisk.
Element oznaczony cyfrą 1 na zdjęciu to komutator, który jest kluczowym komponentem w silnikach prądu stałego. Jego główną funkcją jest zmiana kierunku przepływu prądu w uzwojeniu wirnika, co pozwala na stałe obracanie się wirnika w jednym kierunku. Komutator składa się z segmentów wykonanych z miedzi, które są oddzielone od siebie materiałem izolacyjnym. Taki układ zapewnia, że podczas obrotu wirnika prąd zmienia kierunek w odpowiednich momentach, co jest niezbędne do utrzymania ciągłego ruchu. Dobrze zaprojektowany komutator zwiększa efektywność silnika oraz jego żywotność, co jest kluczowe w zastosowaniach przemysłowych. W standardach branżowych, takich jak IEC 60034, podkreśla się znaczenie jakości materiałów używanych do produkcji komutatorów, aby zminimalizować straty energii i zapewnić długotrwałą pracę urządzenia. W praktyce, komutatory są również poddawane regularnym przeglądom i konserwacji, aby utrzymać ich sprawność operacyjną, co stanowi dobre praktyki w zarządzaniu sprzętem elektrycznym.

Pytanie 5

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Żeliwo białe
C. Stal wysokowęglowa
D. Stal niskowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 6

W układzie przedstawionym na schemacie zawór zasadniczy jest sterowany

Ilustracja do pytania
A. pneumatycznie przez spadek ciśnienia.
B. siłą mięśni.
C. elektrycznie.
D. pneumatycznie przez wzrost ciśnienia.
Zawór zasadniczy w układzie pneumatycznym działa na zasadzie wzrostu ciśnienia. To ważny element, bo kiedy ciśnienie w linii sterującej rośnie, to przesuwa elementy zaworu pomocniczego i zmienia stan zaworu zasadniczego. Taki sposób sterowania jest często stosowany w automatyce i inżynierii pneumatycznej, bo pozwala na skuteczne zarządzanie przepływem. Na przykład w przemyśle, gdzie automatyzacja działa sprawnie dzięki pneumatycznemu sterowaniu zaworami. To umożliwia szybkie i bezproblemowe procesy technologiczne. Warto też wspomnieć, że wiele inżynieryjnych aplikacji korzysta z zaworów regulujących ciśnienie, co zwiększa ich wszechstronność i funkcjonalność.

Pytanie 7

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Najwyższa prędkość ruchu dla poszczególnych osi.
B. Gramatura wtrysku.
C. Dokładność pozycjonowania.
D. Liczba wrzecion.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 8

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 12 kN
B. 6 kN
C. 9 kN
D. 2 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 9

Ile wynosi wartość pojemności kondensatora, przedstawionego na ilustracji?

Ilustracja do pytania
A. 474 nF
B. 470 nF
C. 474 μF
D. 470 μF
Odpowiedź 470 nF jest poprawna, ponieważ oznaczenie "474" na kondensatorze interpretuje się zgodnie z systemem kodowania wartości kondensatorów. Pierwsze dwie cyfry, czyli "47", oznaczają wartość podstawową, a ostatnia cyfra, "4", wskazuje mnożnik, który w tym przypadku wynosi 10^4 pF. Dlatego, przeliczając, otrzymujemy 470000 pF, co równa się 470 nF. W praktyce kondensatory takie jak ten znajdują zastosowanie w filtrach, rezonatorach czy układach czasowych. Znajomość sposobu odczytywania wartości kondensatorów jest kluczowa dla inżynierów elektroniki, ponieważ umożliwia właściwe dobieranie elementów w układach elektronicznych. Warto zaznaczyć, że zgodnie z normą IEC 60384, odpowiednie oznakowanie wartości kondensatorów jest standardem, co ułatwia ich identyfikację i zastosowanie w różnych projektach.

Pytanie 10

Na którym rysunku przedstawiono muskuł pneumatyczny?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Muskuł pneumatyczny, znany również jako siłownik pneumatyczny, jest kluczowym elementem w wielu aplikacjach automatyki przemysłowej. Odpowiedź B jest poprawna, ponieważ przedstawia typowy siłownik pneumatyczny, który składa się z cylindra oraz tłoka. Działa on na zasadzie sprężania powietrza, co pozwala na uzyskanie dużych sił w stosunkowo kompaktowym wymiarze. Przykłady zastosowania muskułów pneumatycznych obejmują automatyzację procesów produkcyjnych, gdzie siłowniki te są używane do przesuwania, podnoszenia lub zaciskania obiektów. W przemyśle spożywczym, siłowniki pneumatyczne są często wykorzystywane do transportu produktów i materiałów. Warto zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, muskuły pneumatyczne powinny być dobrane zgodnie z wymaganiami aplikacji, takimi jak ciśnienie robocze, siła wymagająca do wykonania zadania oraz cykle pracy. Dodatkowo, regularne przeglądy i konserwacja tych urządzeń są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy.

Pytanie 11

Który z przedstawionych schematów połączenia uzwojenia wzbudzenia silnika prądu stałego zrealizowany jest bocznikowo?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź B jest prawidłowa, ponieważ zgodnie z zasadami konstrukcji silników prądu stałego uzwojenie wzbudzenia w połączeniu bocznikowym jest podłączone równolegle do uzwojenia roboczego. Na schemacie B, uzwojenie wzbudzenia E1 jest rzeczywiście podłączone równolegle do uzwojenia roboczego A1-A2, co jest charakterystyczne dla tej konfiguracji. Połączenie bocznikowe jest często stosowane w silnikach prądu stałego, ponieważ pozwala na uzyskanie stabilnych parametrów pracy silnika, a także umożliwia łatwe dostosowanie momentu obrotowego do zmieniających się warunków roboczych. W praktyce, silniki z uzwojeniem bocznikowym znajdują zastosowanie w aplikacjach, gdzie wymagane jest duże przyspieszenie oraz możliwość regulacji prędkości obrotowej, na przykład w dźwigach czy wózkach widłowych. Zastosowanie uzwojenia bocznikowego sprzyja również zmniejszeniu wahań prędkości silnika, co poprawia jego stabilność oraz efektywność energetyczną.

Pytanie 12

Przyrząd pokazany na rysunku to

Ilustracja do pytania
A. klucz dynamometryczny.
B. klucz francuski.
C. klucz płaski.
D. klucz szwedzki.
Klucz dynamometryczny, przedstawiony na zdjęciu, jest narzędziem specjalistycznym, które umożliwia precyzyjne dokręcanie śrub i nakrętek z zastosowaniem określonego momentu obrotowego. W przeciwieństwie do innych typów kluczy, takich jak klucz francuski, klucz płaski czy klucz szwedzki, które jedynie umożliwiają przekręcanie elementów, klucz dynamometryczny posiada mechanizm, który umożliwia użytkownikowi ustawienie pożądanego momentu obrotowego, co jest kluczowe w wielu zastosowaniach inżynieryjnych i motoryzacyjnych. Przykładami zastosowań klucza dynamometrycznego są prace przy montażu silników, gdzie zbyt niski lub zbyt wysoki moment obrotowy może prowadzić do uszkodzenia elementów, a także w przypadku montażu kół w pojazdach, gdzie właściwie dobrany moment dokręcania śrub jest niezbędny dla bezpieczeństwa. Klucze dynamometryczne są również regulowane zgodnie z obowiązującymi normami branżowymi, co zapewnia ich niezawodność i dokładność w pracy. Prawidłowe użycie tego narzędzia przyczynia się do bezpieczeństwa i trwałości montażu.

Pytanie 13

Wskaż gatunek stali, z której należy wykonać niepodatne na korozję żaroodporne ramię robota przemysłowego.

Ilustracja do pytania
A. 1.3343
B. 1.0037
C. 1.2311
D. 1.4541
Stal 1.4541, znana również jako stal austenityczna, nierdzewna i żaroodporna, charakteryzuje się wysoką odpornością na korozję oraz stabilnością w wysokich temperaturach. Zawiera istotne ilości chromu i niklu, co wpływa na jej strukturę i właściwości. Użycie takiej stali w konstrukcji ramion robotów przemysłowych jest zgodne z najlepszymi praktykami inżynieryjnymi, szczególnie w aplikacjach, gdzie wymagane są odporność na działanie agresywnych substancji chemicznych oraz zdolność do pracy w trudnych warunkach termicznych. Przykładowo, w branży automatyzacji przemysłowej, roboty wyposażone w elementy ze stali 1.4541 mogą być stosowane w procesach spawania, pakowania, czy transportu w warunkach wysokiej wilgotności lub wysokich temperatur. Dodatkowo, stal ta spełnia normy dotyczące materiałów do kontaktu z żywnością, co czyni ją jeszcze bardziej uniwersalnym wyborem.

Pytanie 14

Jakie zasilanie należy zastosować do silnika, którego tabliczka znamionowa została przedstawiona na fotografii?

Ilustracja do pytania
A. Napięcie stałe, 84 V
B. Trójfazowe, 400 V
C. Trójfazowe, 230 V
D. Jednofazowe, 400 V
Wybrane odpowiedzi, takie jak "Jednofazowe, 400 V" czy "Napięcie stałe, 84 V", nie są właściwe z kilku kluczowych powodów związanych z zasadami działania silników elektrycznych. Silniki jednofazowe są przeznaczone do zastosowań o mniejszych mocach i często wymagają zastosowania kondensatorów do rozruchu, co znacznie ogranicza ich zastosowanie w przemyśle. W przypadku silnika z oznaczeniem trójfazowym, zasilanie jednofazowe nie tylko nie pozwoli na osiągnięcie pełnej mocy, ale także może prowadzić do poważnych uszkodzeń. Zasilanie napięciem stałym, jak w odpowiedzi "Napięcie stałe, 84 V", jest całkowicie nieodpowiednie dla silnika trójfazowego. Silniki trójfazowe działają na zasadzie zmiennego pola magnetycznego generowanego przez prąd trójfazowy, co jest kluczowe do ich efektywności. W przypadku podłączenia napięcia stałego, silnik nie będzie w stanie wytworzyć obrotów, co doprowadzi do jego zablokowania i potencjalnych uszkodzeń. Typowe błędy myślowe polegają na zakładaniu, że silnik można podłączyć do jakiegokolwiek dostępnego źródła zasilania bez uwzględnienia jego specyfikacji, co jest fundamentalnym błędem w inżynierii elektrycznej. Dlatego ważne jest, aby zawsze odnosić się do oznaczeń na tabliczkach znamionowych i przestrzegać norm oraz dobrych praktyk branżowych.

Pytanie 15

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. obróbki
C. pomiarów
D. montażu
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 16

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Zaginanie
C. Zgrzewanie
D. Klejenie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 17

Którą śrubę należy wkręcać przy pomocy przedstawionej końcówki?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór niewłaściwej odpowiedzi na to pytanie może prowadzić do poważnych nieporozumień w zakresie użycia narzędzi i ich zastosowań. Śruby oznaczone literami A i B również mają nacięcia krzyżowe, ale różnią się one w kształcie główki, co wpływa na sposób ich wkręcania. W przypadku gdyby użytkownik wybrał śrubę A lub B, mogłoby to sugerować, że nie rozumie różnic między różnymi typami nacięć w śrubach, co jest kluczową kwestią w praktycznym zastosowaniu narzędzi. Ponadto, wybór śruby D, z sześciokątnym nacięciem, może świadczyć o braku znajomości podstawowych standardów dotyczących narzędzi montażowych. Właściwe dopasowanie końcówki narzędzia do nacięcia śruby jest istotnym aspektem w zapewnieniu efektywności pracy oraz bezpieczeństwa użytkowania. Użycie niewłaściwego narzędzia może prowadzić do uszkodzenia elementów, co z kolei może narazić na niebezpieczeństwo zarówno użytkownika, jak i konstrukcję. Ważne jest, aby przy wkręcaniu śrub zawsze dobierać odpowiednią końcówkę do nacięcia, a także znać różnice między poszczególnymi typami nacięć, aby uniknąć nieprawidłowych operacji, które mogą skutkować nieodwracalnymi uszkodzeniami. Praktyczne zastosowanie wiedzy w tym zakresie jest kluczowe w każdej dziedzinie, w której montaż i demontaż elementów są na porządku dziennym.

Pytanie 18

W procesie TIG stosuje się technikę spawania

A. łukiem plazmowym
B. elektrodą wolframową w osłonie argonowej
C. strumieniem elektronów
D. elektrodą topliwą w osłonie dwutlenku węgla
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 19

W powyższym układzie stycznik K1 włącza się tylko wtedy, gdy przycisk S1 jest wciśnięty. Zwolnienie przycisku S1 nie wyłącza K1. Przyczyną błędnego działania układu jest

Ilustracja do pytania
A. uszkodzony stycznik K1.
B. błędne podłączenie styku zwiernego K1.
C. uszkodzony przycisk S1.
D. błędne podłączenie cewki stycznika K1.
Wybór tej odpowiedzi pokazuje, że zrozumiałeś, jak ważne jest odpowiednie podłączenie styku zwiernego K1. To naprawdę kluczowa rzecz dla działania całego układu. Kiedy mówimy o styczniku K1, to pamiętaj, że musi być on wyposażony w styk podtrzymujący. Dzięki temu, nawet jak zwolnisz przycisk S1, układ nadal działa. Tak to działa: styk zwierny K1 powinien być połączony równolegle z przyciskiem S1, a to zapewnia, że w momencie wciśnięcia przycisku, cewka stycznika jest zasilana. Po zwolnieniu przycisku styk zwierny przejmuje kontrolę, więc cewka nadal jest zasilana. W automatyce to popularne rozwiązanie, które sprawia, że obwody działają niezawodnie. Oczywiście, w sytuacjach awaryjnych musimy też pamiętać o normach bezpieczeństwa i stosować odpowiednie elementy, żeby wszystko działało jak należy. Jak widzisz, zastosowanie tej koncepcji w praktyce naprawdę wpływa na stabilność i zminimalizowanie błędów.

Pytanie 20

Jak często należy sprawdzać poziom oleju sprężarki tłokowej, której wskaźnik poziomu oleju przedstawiono na rysunku?

Ilustracja do pytania
A. Po 50 godzinach pracy sprężarki.
B. Raz do roku.
C. Raz na 2 lata.
D. Każdego dnia przed pierwszym uruchomieniem.
Sprawdzanie poziomu oleju w sprężarce tłokowej każdego dnia przed jej pierwszym uruchomieniem jest kluczowym elementem zapewnienia jej prawidłowego funkcjonowania. Olej pełni istotną funkcję w smarowaniu ruchomych części, co zmniejsza tarcie i zapobiega przegrzewaniu się jednostki. Regularna kontrola poziomu oleju pozwala na wczesne wykrycie ewentualnych wycieków oraz utraty smarności, co mogłoby prowadzić do poważnych uszkodzeń sprężarki. W praktyce, wiele firm zajmujących się konserwacją sprzętu zaleca takie codzienne sprawdzenie jako standardową procedurę operacyjną. Standardy ISO 9001 czy normy branżowe ASHRAE podkreślają znaczenie regularnych przeglądów i konserwacji urządzeń, co jest niezbędne do zachowania ich efektywności i wydajności. Dzięki nawykowi codziennego sprawdzania poziomu oleju można uniknąć nieprzewidzianych przestojów produkcyjnych oraz kosztownych napraw, co w dłuższej perspektywie przynosi oszczędności.

Pytanie 21

Jaką średnicę powinien mieć siłownik jednostronnego działania o działaniu pchającym, by przy ciśnieniu 6 barów działał z siłą 1120 N?

WARTOŚCI SIŁ DZIAŁANIA SIŁOWNIKÓW KOMPAKTOWYCH
Średnica siłownika [mm]Siłowniki dwustronnego działania z jednostronnym tłoczyskiemSiłowniki dwustronnego działania z dwustronnym tłoczyskiemSiłowniki jednostronnego działania pchająceSiłowniki jednostronnego działania ciągnące
Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca przy zasilaniu 6 bar [N]Siła ciągnąca Sprężyny [N]Siła ciągnąca przy zasilaniu 6 bar [N]Siła pchająca Sprężyny [N]
121219191911106816
161219191911106816
2018814214214217471287
252952482482482701222412
324824154154154501638416
407546876876877082364223
501178105810581058112030100230
631869175017501750180035168235
803014282928292829295060271560
100471044204420442045201004231100
A. 63 mm
B. 80 mm
C. 50 mm
D. 100 mm
Poprawna odpowiedź to 50 mm, co oznacza, że siłownik jednostronnego działania o takim rozmiarze jest w stanie generować wystarczającą siłę przy ciśnieniu 6 barów. Aby to zrozumieć, warto przyjrzeć się wzorowi na siłę: F = P * A, gdzie F to siła, P to ciśnienie, a A to pole przekroju tłoka. Pole przekroju tłoka obliczamy ze wzoru A = π * (d/2)², gdzie d to średnica tłoka. Po przekształceniu wzoru, możemy obliczyć średnicę tłoka wymagającą dla konkretnych parametrów. Przy średnicy 50 mm, pole przekroju wynosi około 1,963 cm², co przy ciśnieniu 6 barów (co odpowiada 600 kPa) daje siłę równą 1178 N. Taka siła jest wystarczająca do osiągnięcia zamierzonego wyniku 1120 N, co czyni siłownik o średnicy 50 mm idealnym rozwiązaniem. W praktyce, dobór odpowiedniego siłownika jest kluczowy w aplikacjach takich jak automatyka przemysłowa, gdzie precyzja i moc są istotnymi czynnikami.

Pytanie 22

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. usunąć ciało obce, położyć rannego i wezwać lekarza
B. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
C. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
D. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
Zastosowanie jałowego opatrunku na ranę i uniesienie kończyn to bardzo dobry sposób na radzenie sobie z krwotokiem zewnętrznym. Najpierw trzeba zasłonić ranę, żeby nie doszło do jej zanieczyszczenia. Dzięki temu zmniejszamy ryzyko zakażeń. Potem, unosząc kończyny, ograniczamy przepływ krwi do rany, co może pomóc w zatrzymaniu krwawienia aż do przybycia fachowej pomocy. To wszystko jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, która podkreśla, jak ważne jest trzymanie poszkodowanego w stabilnej pozycji. W takich sytuacjach, kiedy czas odpowiedzi służb medycznych jest dłuższy, te kroki mają naprawdę kluczowe znaczenie i mogą uratować życie.

Pytanie 23

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 16-bitowym
B. 64-bitowym
C. 32-bitowym
D. 8-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 24

Wskaż rodzaj zaworu przedstawiony za pomocą symbolu graficznego.

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Przełącznik obiegu.
C. Szybkiego spustu.
D. Podwójnego sygnału.
Poprawna odpowiedź to przełącznik obiegu, który jest wykorzystywany w systemach pneumatycznych i hydraulicznych do zarządzania przepływem medium w zależności od sygnałów ciśnieniowych. Symbol graficzny przedstawiający taki zawór informuje o jego funkcji, która jest analogiczna do operacji logicznej OR. W praktyce oznacza to, że zawór ten może kierować przepływ medium do jednego z dwóch obiegów w odpowiedzi na wprowadzone sygnały. Przełączniki obiegu są powszechnie stosowane w automatyce przemysłowej, szczególnie w aplikacjach wymagających zmiany kierunku przepływu, co wpływa na efektywność i wydajność systemów. Zgodnie z normami branżowymi, odpowiednie oznaczenie i zrozumienie symboliki zaworów jest kluczowe dla projektowania systemów, ich konserwacji oraz szybkiej identyfikacji w przypadku awarii. Wiedza na temat przełączników obiegu pozwala inżynierom lepiej planować i optymalizować procesy produkcyjne, co jest istotnym elementem nowoczesnego zarządzania automatyką.

Pytanie 25

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik nadmiarowy
B. Stycznik elektromagnetyczny
C. Przekaźnik termobimetalowy
D. Wyłącznik różnicowoprądowy
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 26

W obwodzie zasilania silnika element oznaczony symbolem Ql

Ilustracja do pytania
A. ogranicza natężenie prądu rozruchu silnika.
B. zabezpiecza obwód przed skutkami zwarć i przeciążeń.
C. odpowiada za załączanie i wyłączania silnika.
D. poprawia współczynnik cos φ.
Wybór odpowiedzi dotyczącej załączania i wyłączania silnika jest niepoprawny ze względu na podstawowe nieporozumienie dotyczące funkcji symbolu Q1 w schemacie elektrycznym. W rzeczywistości, element Q1 nie jest urządzeniem, które odpowiada za sam proces załączania czy wyłączania silnika. Jego rolą jest zabezpieczanie obwodu, a nie kontrolowanie ruchu silnika. Zrozumienie tej funkcji jest kluczowe, ponieważ wiele osób myli wyłączniki nadprądowe z przełącznikami czy stycznikami, które rzeczywiście kontrolują zasilanie silnika, ale mają zupełnie inną funkcję. W wyborze odpowiedzi dotyczącej ograniczania natężenia prądu rozruchu silnika, można zauważyć błędne założenie, że wyłącznik nadprądowy pełni taką funkcję. W praktyce, takie ograniczenie osiąga się przy pomocy specjalnych układów rozruchowych, jak softstarty, a nie za pomocą wyłącznika, który reaguje na nadmiar prądu. Odpowiedź mówiąca o poprawie współczynnika cos φ również jest myląca, ponieważ wyłączniki nadprądowe nie wpływają na współczynnik mocy, który odnosi się do efektywności energetycznej obwodu. Dlatego kluczowe jest zrozumienie, że funkcje zabezpieczeń obwodowych są ściśle określone i nie należy ich mylić z innymi elementami systemów elektrycznych.

Pytanie 27

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. o polepszonych parametrach lepkości i temperatury
C. mineralny bez dodatków uszlachetniających
D. syntetyczny
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 28

Na schemacie strzałką oznaczono zawór

Ilustracja do pytania
A. podwójnego sygnału.
B. ograniczający ciśnienie.
C. zwrotny nie obciążony.
D. szybkiego spustu.
Odpowiedź, że strzałką oznaczono zawór podwójnego sygnału, jest trafna ponieważ zawór ten pełni istotną rolę w systemach automatyki i pneumatyki. Jest to zawór typu AND, co oznacza, że wymaga aktywacji dwóch sygnałów wejściowych, aby umożliwić przepływ medium, takiego jak powietrze. W praktyce oznacza to, że jeśli jeden z sygnałów jest nieaktywny, przepływ nie będzie możliwy, co może być kluczowe w przypadku zastosowań wymagających wysokiego poziomu bezpieczeństwa. Zawory podwójnego sygnału są powszechnie stosowane w instalacjach, gdzie niezawodność systemu jest kluczowa, takich jak automatyka przemysłowa czy systemy bezpieczeństwa. Przykładem ich zastosowania może być system kontroli ciśnienia, gdzie aktywacja dwóch czujników temperatury i ciśnienia jest niezbędna do prawidłowego działania. Dobrą praktyką w projektowaniu systemów automatyki jest stosowanie zaworów logicznych w układach, które wymagają więcej niż jednego warunku dla uruchomienia, co zwiększa bezpieczeństwo i niezawodność operacyjną systemu.

Pytanie 29

Którego narzędzia z przedstawionych na ilustracjach należy użyć, aby wlutować elementy tak jak na rysunku?

Ilustracja do pytania
A. Narzędzia 4.
B. Narzędzia 3.
C. Narzędzia 1.
D. Narzędzia 2.
Narzędzie 1 to lutownica kolbowa, która jest powszechnie stosowanym narzędziem w elektronice do precyzyjnego lutowania elementów elektronicznych na płytkach drukowanych. Lutownice kolbowe charakteryzują się stałą temperaturą oraz możliwością precyzyjnego prowadzenia końcówki, co jest kluczowe przy pracy z delikatnymi komponentami, które mogą ulec uszkodzeniu pod wpływem nadmiernego ciepła. Użycie lutownicy kolbowej umożliwia szybkie i efektywne połączenie elementów, zapewniając jednocześnie wysoką jakość lutów, co jest istotne dla niezawodności całego układu. W przypadku lutowania, istotne jest również stosowanie odpowiednich rodzajów lutowia oraz topników, które mogą wpłynąć na jakość połączenia. Lutownice kolbowe są zgodne z najlepszymi praktykami w branży, pozwalając na wykonanie trwalszych i estetycznych lutów, co jest często wymagane w produkcji urządzeń elektronicznych.

Pytanie 30

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. spawania
B. lutowania
C. napawania
D. polerowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 31

Uzwojenia silnika powinny być połączone w gwiazdę. Który rysunek przedstawia tabliczkę zaciskową silnika z poprawnie połączonymi uzwojeniami?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Rysunek D przedstawia poprawne połączenie uzwojeń silnika w konfiguracji gwiazdy, co jest kluczowym aspektem dla zapewnienia optymalnej pracy silnika elektrycznego. W połączeniu w gwiazdę, trzy uzwojenia silnika są ze sobą połączone w jednym punkcie, co skutkuje zredukowaniem napięcia fazowego na każdym z uzwojeń. To podejście jest szeroko stosowane w silnikach asynchronicznych, gdzie obniżenie napięcia fazowego pozwala na łagodniejsze uruchomienie silnika oraz zmniejsza ryzyko przeciążenia w momencie rozruchu. W praktyce, połączenie w gwiazdę jest stosowane w aplikacjach, które wymagają dużych momentów obrotowych przy niskich prędkościach. Dodatkowo, zgodnie z normą IEC 60034, połączenie w gwiazdę pozwala na równomierne rozłożenie obciążeń w silniku, co przekłada się na ich dłuższą żywotność oraz mniejsze straty energetyczne. Z tego powodu, właściwe rozpoznanie i zastosowanie połączenia w gwiazdę ma fundamentalne znaczenie dla efektywności operacyjnej silników elektrycznych.

Pytanie 32

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. symetryczny nieekranowany (tzw. skrętka nieekranowana)
B. koncentryczny
C. światłowodowy
D. symetryczny ekranowany (tzw. skrętka ekranowana)
Kabel światłowodowy to naprawdę świetny wybór do sterowania sieciowego w systemach mechatronicznych. Szczególnie jeśli chodzi o przesył danych na długie odległości i zmniejszenie wpływu zakłóceń elektromagnetycznych. Wiesz, światłowody przesyłają sygnały jako impulsy świetlne, co sprawia, że są mniej podatne na zakłócenia niż tradycyjne kable miedziane. W automatyce przemysłowej, gdzie odległości między sprzętem mogą być naprawdę duże, to się przydaje. Kable te są odporne na zakłócenia elektryczne, więc idealnie nadają się do miejsc, gdzie są mocne pola elektromagnetyczne, jak w pobliżu maszyn elektrycznych. W dodatku mamy standardy komunikacyjne, takie jak 10GBASE-SR, które pokazują, że światłowody są super efektywne i wydajne, zwłaszcza na większych dystansach. Choć koszt zakupu jest wyższy na początku, długofalowo to się opłaca, bo są bardziej niezawodne i tańsze w eksploatacji.

Pytanie 33

Na szynie TH35 trzeba zamontować przedstawiony na ilustracji przekaźnik o 4 zestykach przełącznych. Które gniazdo można zastosować do tego montażu?

Ilustracja do pytania
A. Gniazdo 4.
B. Gniazdo 1.
C. Gniazdo 3.
D. Gniazdo 2.
Gniazdo 3. zostało wybrane, ponieważ posiada odpowiednią konfigurację pinów, która jest zgodna z wymaganiami przekaźnika o 4 zestykach przełącznych. W kontekście montażu na szynie TH35, istotne jest, aby gniazdo nie tylko pasowało do wymiarów przekaźnika, ale również zapewniało stabilne połączenie oraz ułatwiało serwisowanie i wymianę komponentów. W przypadku gniazda 3. jego konstrukcja została zaprojektowana zgodnie z normami IEC 60947, co gwarantuje bezpieczeństwo i wydajność w zastosowaniach przemysłowych. W praktyce, zastosowanie właściwego gniazda pozwala na minimalizację problemów związanych z błędnym podłączeniem, co może prowadzić do awarii systemu. Warto również zwrócić uwagę na standardy dotyczące montażu, które zalecają stosowanie gniazd kompatybilnych oraz właściwe prowadzenie okablowania, co wpływa na niezawodność całego układu.

Pytanie 34

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. CAP
B. CAD
C. SCADA
D. CAM
Odpowiedź "CAM" (Computer-Aided Manufacturing) jest prawidłowa, ponieważ oprogramowanie CAM jest kluczowym narzędziem w procesach wytwarzania, szczególnie w kontekście sterowania maszynami CNC (Computer Numerical Control). Oprogramowanie CAM pozwala na generowanie kodów G, które są niezbędne do precyzyjnego sterowania maszynami, takimi jak frezarki, tokarki czy wtryskarki. Dzięki zastosowaniu CAM, inżynierowie i technicy mogą projektować złożone geometrie części, które następnie są bezpośrednio przekładane na ruchy maszyn, co znacząco zwiększa wydajność produkcji i redukuje ryzyko błędów. W praktyce, systemy CAM są zintegrowane z systemami CAD (Computer-Aided Design), co umożliwia płynne przejście od etapu projektowania do produkcji. Branża wytwórcza korzysta z oprogramowania CAM zgodnie z najlepszymi praktykami, takimi jak standardy ISO, co zapewnia wysoką jakość i powtarzalność procesów wytwarzania. Dodatkowo, korzystanie z CAM może przyspieszyć czasy realizacji projektów oraz umożliwić produkcję złożonych części, które byłyby trudne do wykonania tradycyjnymi metodami.

Pytanie 35

Którym kluczem należy dokręcić śruby podczas montażu elementu przedstawionego na rysunku?

Ilustracja do pytania
A. Oczkowym.
B. Nasadowym.
C. Dynamometrycznym.
D. Uniwersalnym.
Klucz dynamometryczny jest narzędziem niezbędnym w sytuacjach, gdzie precyzyjne określenie momentu dokręcenia śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Na zdjęciu widoczny jest element z sforsowanymi śrubami, które mają różne wymagane momenty dokręcenia: 24 Nm i 48 Nm. Użycie klucza dynamometrycznego umożliwia ustawienie pożądanego momentu, co zapobiega zarówno niedokreśleniu, które może prowadzić do luzowania się połączeń w czasie eksploatacji, jak i nadmiernemu dokręceniu, mogącemu prowadzić do uszkodzenia materiału lub śruby. Przykładem zastosowania klucza dynamometrycznego jest montaż elementów w silnikach samochodowych, gdzie precyzyjne dokręcenie śrub jest kluczowe dla prawidłowego funkcjonowania jednostki napędowej oraz jej długowieczności. Standardy branżowe, takie jak ISO 6789, podkreślają znaczenie narzędzi pomiarowych w zapewnieniu jakości montażu. Wykorzystanie klucza dynamometrycznego stanowi więc najlepszą praktykę i jest zalecane w wielu gałęziach przemysłu.

Pytanie 36

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. samonastawne.
B. sztywne.
C. podatne.
D. przegubowe.
Wybór odpowiedzi dotyczącej sprzęgła sztywnego wskazuje na pewne nieporozumienia dotyczące charakterystyki sprzęgieł mechanicznych. Sprzęgło sztywne, w przeciwieństwie do sprzęgła podatnego, nie pozwala na kompensację odchyleń osiowych ani kątowych, co może prowadzić do szybkiego zużycia komponentów w przypadku niewłaściwego dopasowania wałów. Sprzęgła sztywne są stosowane głównie w sytuacjach, w których precyzyjne połączenie dwóch wałów jest niezbędne, np. w przekładniach o wysokiej wydajności. W przypadku odpowiedzi na sprzęgło samonastawne, również występuje nieporozumienie, ponieważ te urządzenia są zaprojektowane tak, aby automatycznie dostosowywać się do zmieniających się warunków pracy, co nie jest cechą sprzęgieł podatnych. W praktyce, koncepcja sprzęgła samonastawnego odnosi się do mechanizmów, które nie występują w omawianych rozwiązaniach. Z kolei sprzęgło przegubowe, które również jest powiązane z ruchem, nie ma tych samych właściwości elastycznych co sprzęgło podatne. Dlatego zrozumienie różnic między tymi rozwiązaniami jest kluczowe, aby uniknąć błędów w doborze sprzętów do określonych zadań inżynieryjnych. Wybór niewłaściwego typu sprzęgła może prowadzić do zwiększonego zużycia, obciążeń i potencjalnych awarii układu mechanicznego, co podkreśla znaczenie znajomości charakterystyk poszczególnych rozwiązań w inżynierii mechanicznej.

Pytanie 37

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda 19°C
B. Temperatura otwarcia 18°C, amplituda 17°C
C. Temperatura otwarcia -1°C, amplituda 18°C
D. Temperatura otwarcia 18°C, amplituda -1°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 38

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. wysyłanie impulsów sterujących w błędnej kolejności
B. brak modyfikacji częstotliwości impulsów z kontrolera
C. nadmierne obciążenie silnika
D. zbyt wysokie napięcie zasilające
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 39

Na podstawie przedstawionego diagramu określ którym symbolem jest oznaczony element powodujący wysterowanie zaworu Y1 w pierwszym kroku działania.

Ilustracja do pytania
A. T
B. B1
C. 1S1
D. 2A1
Odpowiedź 1S1 jest poprawna, ponieważ na diagramie to właśnie ten symbol reprezentuje element, który aktywuje zawór Y1 w pierwszym kroku działania. Zrozumienie tego schematu jest kluczowe dla prawidłowego działania systemów automatyki, w których precyzyjne sterowanie zaworami może mieć bezpośredni wpływ na efektywność procesów. W kontekście automatyki przemysłowej, elementy jak 1S1 często pełnią rolę czujników lub sygnałów sterujących, które decydują o otwarciu lub zamknięciu zaworu w odpowiedzi na zmiany warunków operacyjnych. Dobrą praktyką jest regularne analizowanie i testowanie takich schematów, aby upewnić się, że każdy element działa zgodnie z przewidzianymi normami. Ponadto, znajomość oznaczeń i ich funkcji jest niezbędna w kontekście zgodności z normą ISO 1219, która określa standardy dla symboli i schematów używanych w pneumatyce oraz hydraulice.

Pytanie 40

Do kondensatora podłączono napięcie zmienne U = 10 V, f = 50 Hz i zmierzono prąd I = 314 mA płynący przez kondensator. Pojemność kondensatora jest równa (skorzystaj z podanego wzoru na reaktancję kondensatora)
$$ X_c = \frac{1}{2 \pi \cdot f \cdot C} $$

A. C = 3,14 mF
B. C = 1,0 mF
C. C = 0,03 mF
D. C = 0,1 mF
Aby obliczyć pojemność kondensatora, można skorzystać z wzoru na reaktancję kondensatora, który jest opisany równaniem: Xc = 1 / (2 * π * f * C), gdzie Xc to reaktancja, f to częstotliwość, a C to pojemność. W tym przypadku, znając prąd I oraz napięcie U, można obliczyć reaktancję kondensatora, korzystając z prawa Ohma: U = I * Xc, co pozwala na przekształcenie wzoru do postaci Xc = U / I. Następnie, podstawiając wartości z treści zadania, uzyskujemy Xc = 10 V / 0,314 A = 31,83 Ω. Po przekształceniu wzoru na pojemność, otrzymujemy C = 1 / (2 * π * f * Xc). Podstawiając wartości częstotliwości f = 50 Hz oraz Xc = 31,83 Ω, uzyskuje się C = 0,1 mF. Wiedza o pojemności kondensatorów jest kluczowa w wielu dziedzinach inżynierii, w tym w projektowaniu układów elektronicznych, gdzie kondensatory są stosowane w filtrach, układach zasilających oraz w obwodach rezonansowych. Zrozumienie ich parametrów pozwala na właściwy dobór komponentów do konkretnych zastosowań.