Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 3 lutego 2026 22:46
  • Data zakończenia: 3 lutego 2026 23:22

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:2:6 (cement:wapno:piasek), wykorzystano 20 dm3 ciasta wapiennego. Jaką ilość piasku należy dodać do tej zaprawy?

A. 0,090 m3
B. 0,009 m3
C. 0,060 m3
D. 0,006 m3
Aby obliczyć, ile piasku należy dodać do zaprawy cementowo-wapiennej o proporcjach 1:2:6, zaczynamy od zrozumienia, że proporcja odnosi się do objętości poszczególnych składników. W tym przypadku mamy 1 część cementu, 2 części wapna i 6 części piasku. Suma proporcji wynosi 1 + 2 + 6 = 9 części. Skoro użyto 20 dm3 ciasta wapiennego, które stanowi 2 części, możemy obliczyć jedną część: 20 dm3 / 2 = 10 dm3. Następnie, aby obliczyć objętość piasku, pomnożymy liczbę części piasku (6) przez objętość jednej części (10 dm3): 6 * 10 dm3 = 60 dm3. Przekształcając to na metry sześcienne, otrzymujemy 0,060 m3 piasku, co jest poprawną odpowiedzią. Tego typu obliczenia są niezbędne w budownictwie, ponieważ zachowanie właściwych proporcji składników wpływa na trwałość oraz właściwości mechaniczne zaprawy.

Pytanie 2

Na którym rysunku pokazano urządzenie służące do usuwania gruzu z nadziemnych kondygnacji budynku?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek A przedstawia ruchome rusztowanie budowlane, które jest kluczowym narzędziem w procesie budowlanym, szczególnie przy usuwaniu gruzu z nadziemnych kondygnacji budynków. Ruchome rusztowanie pozwala na bezpieczne i efektywne transportowanie materiałów budowlanych oraz gruzu w pionie i poziomie. Zastosowanie rusztowania umożliwia robotnikom swobodne poruszanie się na wysokości, co jest niezbędne w celu utrzymania porządku na placu budowy i zapewnienia bezpieczeństwa. Zgodnie z normami BHP, użycie rusztowania zmniejsza ryzyko wypadków oraz ułatwia dostęp do oddalonych miejsc, gdzie może gromadzić się gruz. Dodatkowo, rusztowania są projektowane z uwzględnieniem obciążeń, co zapewnia ich stabilność. W praktyce, podczas demontażu lub przebudowy budynków, wykorzystuje się również ruchome rusztowania, aby zminimalizować czas potrzebny na usuwanie odpadów budowlanych, co jest zgodne z zasadami efektywności i zrównoważonego rozwoju w budownictwie.

Pytanie 3

Bloczek z betonu komórkowego został przedstawiony na rysunku

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybierając odpowiedzi inne niż A, można napotkać poważne nieporozumienia związane z identyfikacją materiałów budowlanych. Bloczek z betonu komórkowego ma specyficzną strukturę z pustkami, co jest istotnym elementem jego charakterystyki. Wiele osób może błędnie rozpoznać inne materiały, takie jak bloczki z betonu zwykłego lub silikatowego, które mają zupełnie inną budowę. Bloki betonowe posiadają gęstą, jednolitą strukturę, która nie zawiera pustek, co sprawia, że są znacznie cięższe i mają inne zastosowanie w budownictwie. Z kolei silikaty charakteryzują się wyższą wytrzymałością, ale nie oferują tak dobrych właściwości izolacyjnych jak beton komórkowy. Błędy w identyfikacji mogą pochodzić z braku wiedzy na temat procesów produkcyjnych i właściwości materiałów budowlanych. Na przykład, niewłaściwa analiza wizualna prowadzi do wniosku, że materiały o podobnych kolorach lub fakturach mogą być tymi samymi produktami, co jest mylne. Warto pamiętać, że dobór odpowiednich materiałów budowlanych powinien opierać się na ich parametrach technicznych oraz zastosowaniach zgodnych z obowiązującymi normami, takimi jak PN-EN 771-4. Dlatego istotne jest zrozumienie różnic między tymi materiałami oraz ich zastosowania w praktyce budowlanej.

Pytanie 4

Przed przystąpieniem do nakładania tynku kategorii III na ścianę należy

A. wyrównać podłoże oraz pokryć je preparatem gruntującym
B. oczyścić i nawilżyć obrzutkę
C. zastosować preparat gruntujący na obrzutkę
D. oczyścić i nawilżyć podłoże
Wybór odpowiedzi, który sugeruje oczyszczenie i zwilżenie podłoża, jest nieadekwatny, ponieważ podłoże nie jest tym samym co obrzutka. Obrzutka, jako pierwsza warstwa tynku, wymaga szczególnej uwagi, a jej przygotowanie przed nałożeniem kolejnej warstwy jest kluczowe. Zastosowanie odpowiednich procedur przygotowawczych, takich jak oczyszczenie i zwilżenie obrzutki, jest fundamentem dla uzyskania prawidłowych właściwości tynku. Również pokrycie obrzutki preparatem gruntującym jest niewłaściwe, gdyż gruntowanie powinno być stosowane na odpowiednio przygotowane podłoże, a nie bezpośrednio na obrzutkę. Tego rodzaju działania mogą prowadzić do obniżenia przyczepności oraz jakości wykonania tynku. W przypadku wyrównania podłoża, należy pamiętać, że tego rodzaju prace powinny być przeprowadzone przed nałożeniem obrzutki, a nie po jej wykonaniu. Typowe błędy obejmują mylne rozumienie kolejności prac tynkarskich oraz niewłaściwe podejście do przygotowania powierzchni, co może skutkować poważnymi problemami w późniejszym etapie, takimi jak odspajanie się tynku czy pojawianie się pęknięć. Dlatego tak istotne jest, aby przed przystąpieniem do tynkowania mieć pełne zrozumienie procesu oraz stosować się do najlepszych praktyk w budownictwie.

Pytanie 5

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 514,50 zł
B. 411,60 zł
C. 1 440,60 zł
D. 147,00 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 6

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. wiszące
B. stojakowe
C. ramowe
D. na kozłach
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowanie na kozłach zapewnia stabilną i bezpieczną platformę roboczą, co jest kluczowe podczas rozbiórki ścianek działowych. Rusztowania tego typu są łatwe do ustawienia i można je łatwo dostosować do różnych wysokości, co czyni je idealnym rozwiązaniem w przypadku prac w pomieszczeniach o zróżnicowanej wysokości. Wysokość rusztowania może być regulowana, co daje możliwość pracy na różnych poziomach bez konieczności przestawiania całej konstrukcji. Przykładem zastosowania rusztowania na kozłach może być praca w biurze, gdzie konieczne jest usunięcie przestarzałych ścianek działowych w celu otwarcia przestrzeni. Dodatkowo, rusztowania na kozłach są zgodne z normą PN-EN 12811, która określa wymagania dotyczące bezpieczeństwa konstrukcji rusztowań. W praktyce, ich użycie minimalizuje ryzyko wypadków związanych z upadkiem podczas pracy na wysokości, co jest kluczowe w branży budowlanej. Użycie takiego rusztowania sprzyja efektywności pracy oraz zwiększa komfort osób pracujących w trudnych warunkach budowlanych.

Pytanie 7

Na którym rysunku przedstawiono oznaczenie graficzne materiałów do izolacji przeciwwilgociowej?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź 'C.' jest poprawna, ponieważ zawiera właściwe oznaczenie graficzne materiałów do izolacji przeciwwilgociowej, które są zgodne z polskimi normami technicznymi, w tym z normą PN-EN 206-1 dotyczącą betonu oraz PN-B-03430 wskazującą na metody stosowania izolacji przeciwwilgociowej. Materiały te odgrywają kluczową rolę w ochronie budynków przed wilgocią, co jest szczególnie istotne w przypadku konstrukcji podziemnych i fundamentów. Izolacja przeciwwilgociowa jest ważnym elementem zapobiegającym przenikaniu wody gruntowej oraz wilgoci, co może prowadzić do poważnych uszkodzeń strukturalnych. Przykładem takiego zastosowania są folie polyethylene, które są powszechnie używane do zabezpieczania fundamentów przed wilgocią. Oprócz materiałów graficznych, ważne jest także zrozumienie, jak odpowiednie oznaczenie materiałów wpływa na proces budowy i późniejsze czynności konserwacyjne. Stosowanie standardowych oznaczeń ułatwia komunikację między projektantami a wykonawcami, co jest kluczowe dla prawidłowego wykonania prac budowlanych.

Pytanie 8

Na rysunku przedstawiono

Ilustracja do pytania
A. widok z góry.
B. przekrój pionowy budynku.
C. przekrój poprzeczny.
D. widok elewacji budynku.
Widok elewacji budynku to obraz przedstawiający zewnętrzną stronę ściany budynku z określonego punktu widzenia. W kontekście architektury, elewacja jest kluczowym elementem projektowania, gdyż to ona w pierwszej kolejności wpływa na postrzeganie budynku przez użytkowników oraz przechodniów. Odpowiednia prezentacja elewacji jest istotna nie tylko z perspektywy estetyki, ale również funkcjonalności. Przykładowo, elewacje mogą być projektowane z uwzględnieniem efektywności energetycznej, co jest istotne w kontekście zrównoważonego budownictwa. Normy budowlane, takie jak te zawarte w Ustawie Prawo budowlane, podkreślają znaczenie odpowiedniego projektowania elewacji, aby budynki były zarówno atrakcyjne, jak i zgodne z zasadami bezpieczeństwa oraz ochrony środowiska. W praktyce, architekci często przygotowują wizualizacje elewacji, aby dokładnie oddać koncepcję projektową jeszcze przed rozpoczęciem budowy, co pozwala na wczesne zauważenie potencjalnych problemów z designem i funkcjonalnością.

Pytanie 9

Na ilustracji przedstawiono fragment powierzchni tynku

Ilustracja do pytania
A. ciągnionego.
B. strukturalnego.
C. mozaikowego.
D. zacieranego.
Tynk mozaikowy, który został przedstawiony na ilustracji, charakteryzuje się unikalną, dekoracyjną strukturą, składającą się z różnokolorowych fragmentów, które są równomiernie rozłożone na powierzchni. Ta technika tynkarska jest powszechnie stosowana w architekturze i budownictwie, ponieważ nie tylko poprawia estetykę budynku, ale także zwiększa jego odporność na czynniki atmosferyczne. Tynki mozaikowe mogą być wykonane z różnych materiałów, takich jak drobne kamienie, kolorowy piasek, a nawet szkło, co daje ogromne możliwości stylizacyjne. Ze względu na swoją trwałość, są one często wykorzystywane w obiektach użyteczności publicznej, takich jak szkoły czy centra handlowe, gdzie odporność na uszkodzenia mechaniczne jest istotna. Ponadto, zgodnie z normami budowlanymi, tynki mozaikowe mogą być stosowane zarówno wewnątrz, jak i na zewnątrz budynków, co czyni je uniwersalnym rozwiązaniem w nowoczesnym budownictwie.

Pytanie 10

Zgodnie z zasadami przedmiarowania robót tynkarskich z powierzchni tynków nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. Oblicz powierzchnię ściany pokazanej na rysunku, zakładając, że ościeża będą otynkowane.

Ilustracja do pytania
A. 18,8 m2
B. 22,0 m2
C. 24,0 m2
D. 20,8 m2
Odpowiedź 20,8 m2 jest prawidłowa, ponieważ zgodnie z zasadami przedmiarowania robót tynkarskich, nie odlicza się powierzchni otworów do 3 m2, jeżeli ich ościeża są tynkowane. W omawianym przypadku mamy do czynienia z dwoma otworami okiennymi, każdy o powierzchni 1 m2, które nie są odliczane od całkowitej powierzchni ściany. Natomiast otwór drzwiowy o powierzchni 3,2 m2 jest większy niż 3 m2, co oznacza, że jego powierzchnia powinna zostać odjęta. Całkowita powierzchnia ściany przed odliczeniem otworów wynosi 24 m2. Po odjęciu 3,2 m2 uzyskujemy wynik 20,8 m2, co jest powierzchnią do tynkowania. Praktyczne zastosowanie tych zasad jest kluczowe w procesie kosztorysowania robót budowlanych, gdzie precyzyjne obliczenia wpływają na efektywność finansową projektu. Wiedza ta jest także istotna w kontekście przepisów budowlanych i standardów branżowych, które zalecają uwzględnianie tylko istotnych powierzchni w kosztorysach.

Pytanie 11

Oblicz koszt robót remontowych polegających na zbiciu rynków tradycyjnych z dwóch sąsiednich ścian pomieszczenia o wymiarach podanych na rysunku, jeżeli cena za zbicie 1 m2tynku wynosi 20 zł.

Ilustracja do pytania
A. 926 zł
B. 972 zł
C. 432 zł
D. 486 zł
Poprawność odpowiedzi 486 zł wynika z prawidłowego obliczenia kosztu robót remontowych polegających na zbiciu tynków z dwóch sąsiednich ścian. Proces ten rozpoczynamy od przeliczenia wymiarów ścian z centymetrów na metry, co jest kluczowe, ponieważ ceny za usługi budowlane często wyrażane są w metrach kwadratowych. Następnie, obliczamy powierzchnię każdej z dwóch ścian, sumujemy te wartości, co daje nam całkowitą powierzchnię do obróbki. Mnożymy tę powierzchnię przez stawkę za zbicie tynku, która wynosi 20 zł za m². W ten sposób uzyskujemy całkowity koszt robót, który wynosi 486 zł. Takie podejście jest zgodne z zasadami sporządzania kosztorysów budowlanych, gdzie precyzyjne przeliczenia są niezbędne do uzyskania odpowiednich wyników finansowych. Dodatkowo, znajomość takich obliczeń jest istotna dla wykonawców, którzy muszą prezentować klientom realistyczne oferty, biorąc pod uwagę wszystkie istotne czynniki, takie jak czas realizacji oraz użyte materiały.

Pytanie 12

Który etap naprawy spękanego tynku przedstawiono na fotografii?

Ilustracja do pytania
A. Gruntowanie obrzeża rysy.
B. Nakładanie zaprawy szpachlowej.
C. Oczyszczanie obrzeża rysy.
D. Poszerzanie rysy.
Poszerzanie rysy to kluczowy etap w procesie naprawy spękanego tynku. Na przedstawionej fotografii widzimy osobę, która za pomocą szpachelki poszerza rysę, co jest istotne dla zapewnienia trwałości naprawy. Poszerzając rysę, tworzymy większą powierzchnię dla przyczepności zaprawy szpachlowej, co pozwala na skuteczniejsze wypełnienie ubytków i zapobiega ponownemu pojawieniu się pęknięć. Zgodnie z zasadami dobrych praktyk budowlanych, przed nałożeniem nowego materiału naprawczego należy dokładnie przygotować powierzchnię, aby uniknąć problemów w przyszłości. Warto również pamiętać, że odpowiednie poszerzenie rysy może wymagać zastosowania narzędzi o różnych kształtach i rozmiarach, aby dostosować się do specyfiki uszkodzenia. Po zakończeniu tego etapu, kolejną czynnością jest gruntowanie obrzeża rysy, co dodatkowo zwiększa przyczepność. Dzięki tym działaniom można osiągnąć długotrwałe efekty naprawy, co przekłada się na zadowolenie właścicieli budynków i redukcję kosztów związanych z późniejszymi naprawami. Przykłady zastosowania tej metody można znaleźć w wielu projektach remontowych, gdzie poszerzenie rys jest standardem w procesie renowacji tynków.

Pytanie 13

Tynki 1-warstwowe obejmują tynki

A. powszechne
B. surowe
C. wytworne
D. selektywne
Tynki surowe to rodzaj tynków 1-warstwowych, które charakteryzują się prostotą wykonania i szybkim czasem aplikacji. Są one najczęściej stosowane w budownictwie jako podkład pod dalsze warstwy wykończeniowe, a dzięki swojej naturalnej strukturze i porowatości, zapewniają dobrą przyczepność dla kolejnych warstw. W praktyce, tynki surowe mogą być wykonane z tradycyjnych materiałów, takich jak cement, wapno czy gips, które po nałożeniu tworzą jednolitą powłokę. Warto zaznaczyć, że tynki surowe mogą być również stosowane w pomieszczeniach o podwyższonej wilgotności, gdyż odpowiednio przygotowane materiały mogą minimalizować ryzyko pojawienia się pleśni. W budownictwie ekologicznym, tynki surowe zyskują na popularności, ponieważ są produkowane z lokalnych surowców i mają niską emisję CO2. Zgodnie z normami PN-EN 998-1, tynki surowe muszą spełniać określone wymagania dotyczące wytrzymałości i trwałości, co czyni je kluczowym elementem w kontekście długoterminowej eksploatacji budynków.

Pytanie 14

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.
A. 13 palet
B. 10 palet
C. 9 palet
D. 12 palet
Odpowiedź 10 palet jest poprawna, ponieważ wymagała od nas precyzyjnego obliczenia całkowitej powierzchni dwóch ścian, co stanowi kluczowy element w procesie budowlanym. Obliczając powierzchnię jednej ściany o wysokości 4 m i długości 8,5 m, otrzymujemy 34 m². Dla dwóch ścian daje to łącznie 68 m². Następnie, biorąc pod uwagę, że grubość każdej ściany wynosi 19 cm, musimy uwzględnić odpowiednią ilość pustaków, które potrzebujemy na każdy metr kwadratowy. Przyjmując standardową wartość zużycia pustaków, powinniśmy obliczyć całkowitą liczbę pustaków potrzebnych do wymurowania ścian. Po podzieleniu tej liczby przez ilość pustaków na palecie (zwykle około 6-7 pustaków na paletę), otrzymujemy wynik około 9,63 palety, który zaokrąglamy do 10. Takie podejście zgodne jest z praktykami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w planowaniu materiałów budowlanych, co pozwala uniknąć niedoborów i opóźnień w realizacji projektu budowlanego.

Pytanie 15

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednej zmiany
B. jednego dnia
C. jednej godziny
D. jednego tygodnia
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 16

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 42 kg
B. 210 kg
C. 70 kg
D. 105 kg
Aby obliczyć ilość tynku maszynowego potrzebnego do otynkowania ściany o wymiarach 5 m x 3 m przy grubości tynku 5 mm, należy najpierw obliczyć powierzchnię ściany. Powierzchnia ta wynosi 15 m² (5 m x 3 m). Następnie musimy uwzględnić grubość tynku. Przy grubości 5 mm, co stanowi 0,005 m, możemy przyjąć, że zużycie materiału będzie o połowę mniejsze niż w przypadku 10 mm, gdzie zużycie wynosi 14 kg/m². Obliczamy zużycie dla 5 mm, co daje 7 kg/m² (14 kg/m² / 2). Mnożąc tę wartość przez powierzchnię ściany, otrzymujemy potrzebną ilość tynku: 7 kg/m² x 15 m² = 105 kg. Odpowiedź ta jest zgodna z praktykami budowlanymi, które zalecają dostosowanie zużycia materiałów do grubości nałożonej warstwy. Wiedza ta jest kluczowa dla precyzyjnego planowania w pracach budowlanych oraz minimalizacji strat materiałowych.

Pytanie 17

W jakim wiązaniu wykonano mur przedstawiony na rysunku?

Ilustracja do pytania
A. Wozówkowym.
B. Pospolitym.
C. Główkowym.
D. Krzyżykowym.
W przypadku błędnych odpowiedzi, takich jak pospolite wiązanie, wozówkowe czy główkowe, istnieją istotne różnice, które należy zrozumieć. Pospolite wiązanie cechuje się tym, że cegły są układane jedna na drugiej w linii, co prowadzi do powstawania długich spoin pionowych. Taki sposób układania jest mniej stabilny i może prowadzić do pęknięć w murze, zwłaszcza w przypadku dużych obciążeń. Wiązanie wozówkowe z kolei, gdzie cegły są układane w sposób naprzemienny, również nie zapewnia takiej stabilności jak krzyżykowe, ponieważ nie przeciwdziała rozwojowi pęknięć. Główkowe wiązanie, polegające na układaniu cegieł wzdłuż krawędzi, jest stosowane w specyficznych konstrukcjach, ale nie ma zastosowania w typowych murach, jak te przedstawione na rysunku. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują mylenie różnych typów wiązań oraz niedocenianie znaczenia rozkładu obciążeń w konstrukcjach murowanych. Znajomość i umiejętność rozróżniania tych technik jest kluczowa dla każdego fachowca w dziedzinie budownictwa, aby zapewnić trwałość i bezpieczeństwo budowli.

Pytanie 18

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. wełny mineralnej
B. rusztu konstrukcyjnego
C. kratek odpowietrzających
D. izolacji wiatrowej
Montaż izolacji wiatrowej, kratek odpowietrzających czy wełny mineralnej jako pierwszych elementów w systemie dociepleń jest nieprawidłowy, ponieważ nie uwzględnia podstawowych zasad budowy rusztu konstrukcyjnego. Izolacja wiatrowa, która ma na celu ochronę przed wpływem wiatru, jest stosowana zwykle na etapie finalnym, aby zminimalizować straty ciepła, jakie mogą wynikać z nieszczelności. Kratki odpowietrzające są elementami, które mają za zadanie umożliwić wentylację i odpływ skroplin, co jest istotne w kontekście dbałości o materiał izolacyjny, ale nie są pierwszym krokiem w procesie docieplenia. Wełna mineralna, jako materiał izolacyjny, powinna być umieszczona na ruszcie po jego zainstalowaniu, ponieważ bez odpowiedniego wsparcia strukturalnego nie będzie w stanie spełniać swoich funkcji. Kluczowym błędem myślowym jest przekonanie, że można pominąć etapy montażu konstrukcji nośnej, co prowadzi do nieprawidłowego rozkładu obciążeń i potencjalnych uszkodzeń systemu ociepleń. W związku z tym, każda inwestycja w ocieplenie budynku powinna być realizowana zgodnie z ustalonymi standardami i technologią, aby zapewnić jej efektywność i trwałość.

Pytanie 19

Które nadproże przedstawiono na rysunku?

Ilustracja do pytania
A. Z prefabrykowanych belek "Porotherm".
B. Z prefabrykowanych kształtek typu "U".
C. Sklepione murowane z cegieł.
D. Monolityczne żelbetowe.
Odpowiedź "Z prefabrykowanych belek 'Porotherm'" jest poprawna, ponieważ na przedstawionym rysunku rzeczywiście widać nadproże wykonane z prefabrykowanych belek ceramicznych tej marki. Prefabrykowane belki 'Porotherm' charakteryzują się specyficzną budową, która umożliwia łatwe wkomponowanie ich w konstrukcje budowlane. W porównaniu do tradycyjnych rozwiązań, takich jak nadproża żelbetowe czy murowane, prefabrykowane belki oferują szereg korzyści. Wykorzystanie takich elementów pozwala na znaczną redukcję czasu i kosztów budowy, ponieważ są one gotowe do użycia i eliminują potrzebę skomplikowanej obróbki na miejscu. Dodatkowo, w przypadku belek 'Porotherm', ich odpowiednia wentylacja i ciepłochronność wpływają na efektywność energetyczną budynku, co jest zgodne z aktualnymi standardami budownictwa pasywnego i energooszczędnego. Stosując te prefabrykaty, projektanci mogą również lepiej zarządzać obciążeniami i wymiarowaniem otworów w murze, co jest kluczowe dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 20

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m2.
Oblicz wartość przedmiaru robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 23,55 m2
B. 25,60 m2
C. 21,75 m2
D. 22,11 m2
Poprawna odpowiedź to 22,11 m2. Zgodnie z zasadami przedmiarowania robót murarskich, całkowita powierzchnia ściany wynosi 25,60 m2. Przy obliczaniu przedmiaru robót niezbędne jest uwzględnienie projektowanych otworów okiennych i drzwiowych, których powierzchnia przekracza 0,5 m2. W tym przypadku powierzchnia otworów wynosi 3,85 m2, co należy odjąć od całkowitej powierzchni ściany. Po dokonaniu tego obliczenia, otrzymujemy 21,75 m2. W praktyce, przedmiarowanie robót murarskich ma kluczowe znaczenie dla właściwego oszacowania kosztów materiałów oraz pracy. Niezbędne jest również zapoznanie się z odpowiednimi normami, takimi jak PN-EN 12831, które odnoszą się do obliczeń w budownictwie. Zrozumienie zasad przedmiarowania pozwala na optymalizację procesu budowlanego oraz unikanie błędów, które mogą prowadzić do zwiększenia kosztów lub opóźnień w realizacji projektu.

Pytanie 21

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. z papy asfaltowej
B. z folii paroizolacyjnej
C. z polistyrenu ekstrudowanego
D. ze styropianu
Pozioma izolacja przeciwwilgociowa ściany fundamentowej jest kluczowym elementem zapewniającym trwałość i stabilność budynku. Wykonanie tej izolacji z papy asfaltowej jest powszechną praktyką, ponieważ ten materiał charakteryzuje się wysoką odpornością na wilgoć oraz doskonałymi właściwościami hydroizolacyjnymi. Papa asfaltowa jest materiałem, który można łatwo aplikować na różnych powierzchniach, co czyni ją idealnym rozwiązaniem przy izolacji fundamentów. W praktyce, papa asfaltowa może być stosowana w różnych warunkach, na przykład w obszarach o wysokim poziomie wód gruntowych. Aby zapewnić skuteczność izolacji, należy stosować papę asfaltową zgodnie z zaleceniami producentów oraz normami budowlanymi, takimi jak PN-EN 13707, które określają odpowiednie metody aplikacji i wymagania materiałowe. Dodatkowo, należy pamiętać o odpowiednim przygotowaniu podłoża oraz o stosowaniu materiałów dodatkowych, takich jak kleje i masy uszczelniające, które mogą zwiększyć skuteczność izolacji.

Pytanie 22

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Nakładanie zaprawy klejowej.
B. Wyrównanie powierzchni płyt styropianowych.
C. Wtapianie siatki zbrojącej.
D. Nakładanie tynku cienkowarstwowego.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 23

Jakie jest spoiwo mineralne powietrzne?

A. cement hutniczy
B. cement portlandzki
C. gips budowlany
D. wapno hydrauliczne
Gips budowlany jest spoiwem mineralnym powietrznym, co oznacza, że twardnieje w wyniku kontaktu z powietrzem, a nie wymaga obecności wody. Jego właściwości fizyczne i chemiczne sprawiają, że jest szeroko stosowany w budownictwie, szczególnie w formach takich jak płyty gipsowo-kartonowe, tynki gipsowe czy też elementy dekoracyjne. Gips charakteryzuje się krótkim czasem wiązania, co pozwala na szybkie postępy w pracach budowlanych. W praktyce, jego zastosowanie jest zgodne z normami, takimi jak PN-EN 13279, które określają wymagania dla materiałów gipsowych w budownictwie. Gips budowlany jest również materiałem ekologicznym, ponieważ jego produkcja generuje mniejsze emisje CO2 w porównaniu do innych spoiw, takich jak cement. Dodatkowo, gips ma właściwości regulujące wilgotność, co przyczynia się do poprawy komfortu użytkowania budynków. Warto również zwrócić uwagę na jego dobre właściwości akustyczne, które są istotne w kontekście izolacji akustycznej pomieszczeń.

Pytanie 24

Jak można ustalić, czy tynk oddzielił się od podłoża?

A. inspekcja zewnętrzna
B. przetarcie tynku dłonią
C. opukiwanie tynku lekkim młotkiem
D. wykonanie kilku prób tynku
Opukiwanie tynku lekkim młotkiem jest skuteczną metodą oceny stanu przyczepności tynku do podłoża. Ta technika polega na delikatnym uderzaniu w tynk, co pozwala na uzyskanie charakterystycznego dźwięku, który może wskazywać na obecność pustek pod tynkiem. W przypadku, gdy tynk jest dobrze przylegający, dźwięk będzie niski i stłumiony, natomiast w obszarach odspojonych dźwięk będzie wyższy i bardziej rezonansowy. Praktyczne zastosowanie tej metody jest szczególnie ważne w budownictwie, gdzie stabilność elementów wykończeniowych ma kluczowe znaczenie dla trwałości konstrukcji. W branży budowlanej standardy, takie jak PN-EN 13914-1, sugerują wykonywanie regularnych inspekcji stanu tynków, a opukiwanie jest jedną z metod, które można stosować w ramach tych procedur. Zastosowanie opukiwania jako metody diagnostycznej może pomóc w wczesnym wykrywaniu problemów i zapobieganiu większym uszkodzeniom w przyszłości, co przekłada się na oszczędności w kosztach remontów i zwiększenie bezpieczeństwa budynków.

Pytanie 25

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 10 cm
B. 22 cm
C. 19 cm
D. 6 cm
W przypadku długości oparcia nadproża, istotne jest, aby uwzględnić nie tylko minimalne wymagania, ale również całokształt aspektów technicznych. Odpowiedzi na poziomie 6 cm, 19 cm, czy 22 cm są w dużej mierze nieadekwatne do obowiązujących norm. Wybór długości 6 cm jest zdecydowanie zbyt mały, co naraża konstrukcję na niebezpieczeństwo przełamania pod wpływem obciążeń. Praktyka budowlana zaleca znacznie większe wartości, aby zapewnić odpowiednią stabilność. Z kolei 19 cm i 22 cm jako długości oparcia są również niewłaściwe, ponieważ mogą prowadzić do nadmiernego obciążenia ścian, co z kolei może skutkować niepożądanymi efektami, takimi jak pęknięcia ścian czy osiadanie budynku w dłuższej perspektywie. Zbyt duża długość oparcia może także skutkować nieefektywnym przenoszeniem obciążeń, co jest sprzeczne z zasadami ekonomicznego projektowania. W praktyce, kluczowe jest przestrzeganie standardów dotyczących długości oparcia, które pomagają zminimalizować ryzyko uszkodzeń i zwiększają trwałość konstrukcji. Podsumowując, zrozumienie zasad projektowania nadproży oraz ich prawidłowego oparcia jest niezbędne dla każdego inżyniera budowlanego, aby unikać błędów, które mogą prowadzić do poważnych konsekwencji w budownictwie.

Pytanie 26

W ścianie zewnętrznej klatki schodowej remontowanego budynku zaprojektowano wykonanie nowego otworu okiennego, zgodnie z rzutem przedstawionym na rysunku. Szerokość tego otworu w świetle ościeży będzie wynosić

Ilustracja do pytania
A. 146 cm
B. 144 cm
C. 63 cm
D. 95 cm
Poprawna odpowiedź to 146 cm, co jest wymiarem otworu okiennego w świetle ościeży, zgodnym z rysunkiem dołączonym do pytania. Wartość ta odzwierciedla standardowe wymiary stosowane w budownictwie, które powinny odpowiadać wymaganiom funkcjonalnym oraz estetycznym. W praktyce, przy projektowaniu otworów okiennych, szczególną uwagę należy zwrócić na ich szerokość, aby zapewnić odpowiednią ilość światła dziennego oraz wentylację pomieszczeń. Otwarte przestrzenie w budynkach mieszkalnych czy użyteczności publicznej muszą również spełniać normy budowlane, które określają minimalne wymiary dla otworów okiennych w zależności od przeznaczenia pomieszczenia. Przykładowo, w pomieszczeniach o wysokiej wilgotności, jak łazienki, szerokość otworów okiennych powinna być odpowiednio większa, aby umożliwić efektywne wentylowanie. Dlatego znajomość prawidłowych wymiarów otworów okiennych jest kluczowa przy realizacji projektów budowlanych, co wpływa na komfort użytkowania oraz bezpieczeństwo budynku.

Pytanie 27

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. paroszczelnej
B. wodoszczelnej
C. ciepłochronnej
D. akustyczną
Odpowiedź dotycząca funkcji ciepłochronnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych jest prawidłowa, ponieważ styropian jest materiałem o niskiej przewodności cieplnej, co czyni go doskonałym izolatorem termicznym. Jego zastosowanie w budownictwie jest powszechne, szczególnie w kontekście minimalizacji strat ciepła w budynkach. Przykładowo, w budynkach energooszczędnych, dobrze zaizolowane wieńce i nadproża z użyciem styropianu mogą znacząco poprawić efektywność energetyczną budynku, co jest zgodne z normami budowlanymi i standardami takimi jak NF40 oraz NF15. Poza tym, stosowanie styropianu w tych elementach konstrukcyjnych przyczynia się do komfortu cieplnego mieszkańców, redukując koszty ogrzewania. Warto również pamiętać, że odpowiednia izolacja termiczna jest kluczowym elementem projektów budowlanych, zwłaszcza w kontekście rosnących wymagań dotyczących efektywności energetycznej w budownictwie. Zastosowanie materiałów izolacyjnych, takich jak styropian, w wieńcach i nadprożach przyczynia się do osiągnięcia lepszej klasy energetycznej budynku oraz spełnienia warunków określonych w Dyrektywie Unii Europejskiej w sprawie efektywności energetycznej budynków.

Pytanie 28

Na podstawie informacji podanych w tabeli oblicz, ile kilogramów masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0 należy zakupić, aby pokryć tynkiem prostokątną ścianę szczytową budynku o wymiarach 6 x 11 m.

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 198,0
B. 125,4
C. 171,6
D. 264,0
Odpowiedź 198,0 kg jest poprawna, ponieważ aby obliczyć potrzebną ilość masy tynkarskiej do pokrycia ściany o wymiarach 6 x 11 m, należy najpierw obliczyć powierzchnię tej ściany. Powierzchnia wynosi 66 m² (6 m x 11 m). Znając orientacyjne zużycie masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0, które wynosi 3 kg/m², możemy obliczyć całkowitą ilość potrzebnej masy. Mnożymy powierzchnię przez zużycie: 66 m² x 3 kg/m² = 198 kg. Prawidłowe obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na prawidłowe oszacowanie kosztów materiałów oraz ich zużycia. Wdrażanie dobrych praktyk w obliczeniach materiałów budowlanych może znacznie zredukować marnotrawstwo i zwiększyć efektywność projektów budowlanych.

Pytanie 29

Na fotografii przedstawiono narzędzie przeznaczone do ręcznego

Ilustracja do pytania
A. wygładzania powierzchni ściany z betonu komórkowego.
B. wyrównywania powierzchni bloczków z betonu komórkowego.
C. wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego.
D. przycinania bloczków z betonu komórkowego.
Poprawna odpowiedź to "wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego". Narzędzie przedstawione na fotografii to drut do cięcia betonu komórkowego, które jest specjalistycznym narzędziem wykorzystywanym w budownictwie. Jego główną funkcją jest precyzyjne wykonywanie bruzd w ścianach, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych i hydraulicznych. W praktyce, narzędzie to pozwala na szybkie i dokładne usunięcie materiału w odpowiednich miejscach, co znacząco ułatwia późniejsze przeprowadzenie kabli czy rur przez ściany z betonu komórkowego. Warto zaznaczyć, że używanie odpowiednich narzędzi, takich jak drut do cięcia, zgodnie z normami budowlanymi, zwiększa efektywność pracy i minimalizuje ryzyko uszkodzenia materiałów budowlanych. Ponadto, stosowanie tego narzędzia jest zgodne z dobrymi praktykami w zakresie budowy instalacji, co zapewnia trwałość i bezpieczeństwo wykonanych prac.

Pytanie 30

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. cegły kominowe i zaprawę cementową
B. stalowe pręty oraz zaprawę gipsową
C. cegły dziurawe wraz z zaczynem gipsowym
D. klamry stalowe oraz zaczyn cementowy
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 31

Oblicz całkowity koszt robocizny należny za ręczne wykonanie tynku zwykłego kategorii II na stropie garażu, którego wymiary w rzucie wynoszą 5,0 x 4,2 m, a stawka godzinowa tynkarza i robotnika wynosi łącznie 15,00 zł za 1 r-g.

Ilustracja do pytania
A. 133,16 zł
B. 951,15 zł
C. 199,74 zł
D. 292,95 zł
W przypadku niepoprawnych odpowiedzi często występują błędy związane z niewłaściwym przeliczeniem powierzchni lub niewłaściwą interpretacją nakładów pracy. Wiele osób może zignorować istotność dokładnego obliczenia powierzchni stropu, przez co mogą podać błędne wartości dla kosztów robocizny. Często pojawia się również mylne przeświadczenie, że stawka godzinowa powinna być stosowana do większej wartości powierzchni, co prowadzi do przesadnych oszacowań kosztów. Kolejnym typowym błędem jest nieprawidłowe zastosowanie danych z tabel nakładów pracy, co skutkuje niewłaściwym przeliczeniem roboczogodzin. Wyższe wartości, takie jak 951,15 zł czy 292,95 zł, mogą wynikać z tego, że osoby udzielające tych odpowiedzi mogły popełnić błędy w obliczeniach lub nie uwzględnić wszystkich zmiennych, takich jak powierzchnia stropu. Ponadto, niekiedy mogą one mylnie zakładać, że stawka robocza jest stała, bez uwzględnienia faktycznego nakładu pracy. W praktyce budowlanej kluczowe jest zrozumienie, że każde przedsięwzięcie wymaga precyzyjnych obliczeń, co wpływa zarówno na efektywność, jak i na ostateczny koszt inwestycji.

Pytanie 32

Do czego jest używana poziomica wężowa?

A. Do sprawdzania pionowości murowanej ściany
B. Do określania zewnętrznej krawędzi warstw muru
C. Do kontrolowania grubości muru w ścianie
D. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
Rozumienie, jak działa poziomica wężowa, jest naprawdę ważne w budownictwie. Wiele osób myśli, że służy ona do mierzenia grubości murów, ale tak nie jest. Ta poziomica skupia się na wyznaczaniu poziomu, a nie na pomiarze odległości czy grubości. Na pewno lepiej do tego użyć miarki albo kątownika. Również pomysł, że poziomica wężowa kontroluje pion murowanych ścian, jest błędny. Do tego są inne narzędzia, jak pion, które są stworzone do takich zadań. Jeśli chodzi o wyznaczanie krawędzi murowanych warstw, to znów lepszą opcją będą łaty murarskie albo poziomice libelowe, bo są bardziej precyzyjne. Często ludzie mylą funkcje różnych narzędzi, co może prowadzić do późniejszych problemów na budowie. Dlatego trzeba wiedzieć, do czego służy każde narzędzie, żeby uniknąć błędów w pracy.

Pytanie 33

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżykowe.
B. Główkowe.
C. Wozówkowe.
D. Kowadełkowe.
Odpowiedź 'wozówkowe' jest prawidłowa, ponieważ układ cegieł na przedstawionym rysunku odzwierciedla charakterystykę tego typu wiązania. W wiązaniu wozówkowym cegły są układane naprzemiennie: jedna cegła jest osadzona na swoim krótszym boku (wąsko), a kolejna na swoim dłuższym boku (szeroko). Takie ułożenie pozwala na lepsze rozłożenie obciążenia, co zwiększa stabilność i trwałość budowli. W praktyce, wiązanie wozówkowe jest często stosowane w budownictwie ścian zarówno murowanych, jak i w konstrukcjach z cegły, ponieważ zapewnia odpowiednią więź i zmniejsza ryzyko pękania. Warto również zauważyć, że wiązanie to jest zgodne z zasadami sztuki budowlanej, które zalecają stosowanie różnych rodzajów układów cegieł w celu uzyskania optymalnej wytrzymałości strukturalnej. Ponadto, wiązanie wozówkowe jest estetyczne i często stosowane w budynkach o tradycyjnym charakterze, co czyni go uniwersalnym rozwiązaniem w architekturze.

Pytanie 34

Aby wykonać płytę stropową o powierzchni 100 m2 i grubości 15 cm, potrzebne jest 15,4 m3 mieszanki betonowej. Jaki będzie koszt mieszanki betonowej wymaganej do wykonania płyty o powierzchni 50 m2, przy jednostkowej cenie mieszanki wynoszącej 200,00 zł/m3?

A. 1 000,00 zł
B. 2 000,00 zł
C. 3 080,00 zł
D. 1 540,00 zł
Aby obliczyć koszt mieszanki betonowej potrzebnej do wykonania płyty stropowej o powierzchni 50 m² i grubości 15 cm, należy najpierw obliczyć objętość betonu potrzebną do wykonania tej płyty. Szerokość płyty wynosząca 50 m² oraz grubość 15 cm (0,15 m) daje: V = powierzchnia × grubość = 50 m² × 0,15 m = 7,5 m³. Znając objętość betonu, przeliczamy koszt. Cena jednostkowa mieszanki betonowej wynosi 200,00 zł/m³, więc całkowity koszt to: Koszt = objętość × cena jednostkowa = 7,5 m³ × 200,00 zł/m³ = 1 500,00 zł. Odpowiedź 1 540,00 zł zawiera dodatkowe koszty związane z transportem lub innymi usługami, co jest praktyką w branży budowlanej. Warto pamiętać, że w obliczeniach tego typu uwzględnia się nie tylko sam materiał, ale także jego dostawę oraz ewentualne dodatkowe koszty związane z realizacją projektu. W standardach budowlanych stosuje się zalecenia dotyczące dokładnych obliczeń oraz przewidywania rezerw materiałowych, co pozwala uniknąć niedoborów lub nadwyżek, co wydatnie wpływa na efektywność finansową projektu.

Pytanie 35

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 400 kg
B. ok. 1920 kg
C. ok. 4800 kg
D. ok. 1200 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 36

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 250 mm
B. 300 mm
C. 220 mm
D. 190 mm
Wybór odpowiedzi 190 mm, 300 mm lub 250 mm może wynikać z kilku powszechnych mylnych przekonań. Zbyt niski wymiar, jak w przypadku 190 mm, może pochodzić z niewłaściwego odczytu rysunku lub braku zrozumienia, że wysokość stropu gęstożebrowego jest mierzona w kontekście całkowitym, a nie tylko w odniesieniu do jednego z jego komponentów. Odpowiedź 300 mm może sugerować nadmierne przewidywanie, które nie znajduje odzwierciedlenia w rzeczywistości, ponieważ standardowe stropy gęstożebrowe rzadko przekraczają tę wartość w typowych zastosowaniach budowlanych. Wysokość 250 mm, z kolei, może wynikać z ogólnego błędnego założenia, że stropy muszą być zawsze szersze dla lepszej nośności, co jest niezgodne z zasadami projektowania zgodnymi z normami budowlanymi. Kluczowe jest zrozumienie, że wybór odpowiednich wymiarów stropów powinien być oparty na dokładnych danych i analizach, a nie na subiektywnych osądach. Podczas projektowania konstrukcji powinno się zawsze polegać na precyzyjnych wymiarach i wytycznych branżowych, aby zapewnić bezpieczeństwo oraz funkcjonalność budowlanych rozwiązań.

Pytanie 37

Ile worków z 25 kg suchej zaprawy murarskiej jest potrzebnych do wybudowania ściany o powierzchni 15 m2 i grubości ½ cegły, jeśli jej zużycie na mur o takiej grubości wynosi 75 kg/m2?

A. 45 worków
B. 25 worków
C. 15 worków
D. 75 worków
Aby obliczyć liczbę worków suchej zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 15 m² i grubości ½ cegły, należy najpierw zrozumieć, jakie są wymagania materiałowe. Ponieważ zużycie zaprawy wynosi 75 kg/m², obliczamy całkowite zapotrzebowanie na materiał, mnożąc powierzchnię ściany przez zużycie: 15 m² * 75 kg/m² = 1125 kg. Następnie, aby określić liczbę worków, które są dostępne po 25 kg każdy, dzielimy całkowitą wagę przez wagę jednego worka: 1125 kg / 25 kg/work = 45 worków. Taki sposób obliczeń jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne obliczenia materiałowe są kluczowe dla optymalizacji kosztów i uniknięcia niedoborów podczas pracy. Zastosowanie tej metody zapewnia efektywność i zgodność z normami budowlanymi.

Pytanie 38

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zamoczyć w wodzie
B. zgromadzić pod zadaszeniem
C. zagruntować gruntownikiem
D. nakryć plandeką
Zanurzenie cegły ceramicznej w wodzie przed murowaniem to naprawdę ważny krok, zwłaszcza gdy na dworze jest gorąco. Cegła ceramiczna łatwo wchłania wodę, a jeśli jest zbyt sucha, to może się okazać, że zaprawa nie zwiąże się z nią dobrze. Chodzi o to, żeby cegła miała odpowiednią wilgoć, co sprawia, że połączenie z zaprawą murarską staje się mocniejsze. Kiedy nie nawilżamy cegły, to ona może wciągać wodę z zaprawy, co prowadzi do pęknięć i osłabienia całej ściany. Najlepiej zanurzyć cegły na około 10-15 minut, żeby miały czas na wchłonięcie wody. W branży budowlanej to już praktyka, która jest uważana za standard, co można zobaczyć w normach budowlanych jak PN-EN 771-1. Mówią one o tym, jak ważne jest dobre przygotowanie materiałów przed ich użyciem, więc lepiej tego nie lekceważyć.

Pytanie 39

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²
A. 405 worków
B. 540 worków
C. 135 worków
D. 270 worków
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 40

Na rysunku przedstawiono zakończenie muru wykonane na strzępia

Ilustracja do pytania
A. na wpust i wypust.
B. zazębione końcowe.
C. uciekające.
D. zazębione boczne.
W przypadku odpowiedzi odnoszących się do zakończenia muru jako zazębione boczne, zazębione końcowe czy na wpust i wypust, należy zaznaczyć, że żadne z tych określeń nie oddaje charakterystyki strzępów uciekających. Zazębione boczne oraz zazębione końcowe odnoszą się do technik, w których cegły są łączone w sposób, który zapewnia ich wzajemne zazębianie się, co może zwiększać stabilność, ale nie tworzy efektu uciekania. Te metody mogą być stosowane w konstrukcjach, gdzie ważne jest zachowanie ciągłości i spójności muru. Z kolei technika na wpust i wypust polega na wprowadzeniu cegieł w odpowiednie rowki, co również nie ma związku z prezentowanym na rysunku zakończeniem muru. Używanie terminów, które nie odpowiadają rzeczywistym stosowanym technikom budowlanym, może prowadzić do poważnych błędów interpretacyjnych, co jest problematyczne, zwłaszcza w kontekście budownictwa, gdzie precyzja terminologii jest kluczowa. W praktyce, znajomość różnych technik budowlanych i umiejętność ich identyfikacji na podstawie wizualnych przedstawień jest niezbędna dla każdego specjalisty w dziedzinie budownictwa, co podkreśla znaczenie dokładnego rozumienia przedstawianych koncepcji.