Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 11 grudnia 2025 21:46
  • Data zakończenia: 11 grudnia 2025 21:51

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Oględziny wymagające demontażu
B. Włączanie i wyłączanie
C. Przeglądy wymagające demontażu
D. Zarządzanie czasem pracy
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby zidentyfikować miejsce o zwiększonej temperaturze obudów silników w wersji przeciwwybuchowej, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu pomiar temperatury nie powinien być wykonywany?

A. Na końcu obudowy od strony napędowej
B. W okolicy pokrywy wentylatora
C. Na tarczy łożyskowej, od strony napędowej blisko pokrywy łożyskowej
D. W centrum obudowy w rejonie skrzynki zaciskowej
Pomiary temperatury silników przeciwwybuchowych są istotne dla zapobiegania ryzyku wybuchów, co czyni to zadanie kluczowym w kontekście bezpieczeństwa. Wybór niewłaściwego miejsca do pomiaru może prowadzić do błędnych odczytów, co z kolei może zagrażać bezpieczeństwu. Miejsca takie jak końce obudowy od strony napędowej, tarcza łożyskowa czy pośrodku obudowy w pobliżu skrzynki zaciskowej mogą wydawać się odpowiednie, jednak nie biorą pod uwagę czynników, które mogą wpływać na temperaturę. Pomiar na końcu obudowy od strony napędowej naraża na wpływ ciepła generowanego przez silnik oraz przekładnię, co może prowadzić do zawyżonych wyników. Z kolei pomiar na tarczy łożyskowej jest obarczony ryzykiem wpływu na wynik sił tarcia, co również może fałszować dane. Miejsce w pobliżu skrzynki zaciskowej, z drugiej strony, może być zdominowane przez ciepło pochodzące z połączeń elektrycznych, które również mogą wykazywać wyższe temperatury niż reszta obudowy. Praktyka wskazuje, że pomiar w miejscach, gdzie ciepło jest bardziej stabilne i niezakłócone, jest zgodna z najlepszymi praktykami w branży, co można znaleźć w dokumentach normatywnych, takich jak IEC 60079. Dlatego kluczowe jest, aby do pomiaru wybierać miejsca, które są mniej narażone na zmiany temperatury spowodowane czynnikami zewnętrznymi, co zwiększa dokładność i niezawodność odczytów.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. przerywanej
B. nieokresowej
C. dorywczej
D. ciągłej
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 8

Jaką czynność konserwacyjną silnika prądu stałego można zrealizować podczas jego inspekcji w trakcie działania?

A. Czyszczenie komutatora
B. Wymiana uszkodzonego amperomierza w obwodzie zasilającym
C. Weryfikacja stanu osłon elementów wirujących
D. Weryfikacja stanu szczotkotrzymaczy
Sprawdzanie osłon części wirujących w silnikach prądu stałego to naprawdę istotna kwestia, jeśli mówimy o ich konserwacji. Te osłony są jak tarcza – chronią nas przed przypadkowymi kontaktem z ruchomymi elementami i pomagają w ochronie silnika przed różnymi zanieczyszczeniami. Regularne przeglądy tych osłon mogą pomóc zauważyć usterki, takie jak pęknięcia czy luzy, które mogą doprowadzić do poważniejszych problemów. Na przykład, w przemyśle, gdzie silniki muszą być niezawodne, kontrola stanu tych osłon to podstawa. Podobno według norm ISO 13857, bezpieczeństwo to kluczowa sprawa, więc chronienie się przed urazami od ruchomych części maszyn to nie tylko dobry pomysł, ale wręcz obowiązek. Sprawdzanie stanu osłon to jedna z tych rzeczy, które powinniśmy robić podczas przeglądów technicznych, bo wczesne wykrycie jakichś problemów to skuteczny sposób na uniknięcie kłopotów w przyszłości.

Pytanie 9

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 1 do 6
B. Od 7 do 14
C. Od 19 do 26
D. Od 47 do 52
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 10

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmniejszenie prędkości obrotowej
B. zmianę kierunku obrotu
C. zwiększenie prędkości obrotowej
D. zatrzymanie wirnika
Kierunek wirowania silnika indukcyjnego zależy od fazy zasilania oraz układu połączeń uzwojeń, a sama zmiana liczby par biegunów nie wpływa na tę charakterystykę. Przełączenie cewek w silniku indukcyjnym nie może spowodować zmiany kierunku obrotów, chyba że reinterpretujemy układ połączeń w sposób, który to umożliwia. Niezrozumienie tego aspektu prowadzi do błędnego wniosku, że kierunek obrotów zmienia się w wyniku zwiększenia liczby par biegunów. Z kolei stwierdzenie, że zmiana ta mogłaby spowodować zwiększenie prędkości obrotowej, jest również nieprawidłowe. W rzeczywistości, przy stałej częstotliwości zasilania, im więcej par biegunów, tym mniejsza prędkość obrotowa. W odniesieniu do pojęcia zatrzymania się wirnika, zmiana liczby par biegunów sama w sobie nie prowadzi do zatrzymania, chyba że towarzyszą temu inne czynniki, jak przerwy w zasilaniu czy zbyt duże obciążenie. W praktyce, zrozumienie zasad pracy silników indukcyjnych, w tym zależności między prędkością a liczbą par biegunów, jest kluczowe dla właściwego projektowania i eksploatacji tych urządzeń. Ignorując te zasady, można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w aplikacjach przemysłowych.

Pytanie 11

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową.
B. Hydronetkę.
C. Tłumicę.
D. Gaśnicę cieczy.
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Brak ciągłości przewodu ochronnego
B. Zbyt wysoka rezystancja przewodu uziemiającego
C. Pogorszenie stanu mechanicznego złącz przewodów
D. Brak ciągłości przewodu neutralnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 14

Jaką maksymalną wartość prądu ustawioną na przekaźniku termobimetalowym można zastosować w obwodzie zasilania silnika asynchronicznego o parametrach znamionowych UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It = 1,05 A
B. It = 1,33 A
C. It = 0,88 A
D. It = 1,15 A
Wybór wartości prądu zadziałania na poziomie 0,88 A, 1,05 A czy 1,33 A nie uwzględnia istotnych zasad dotyczących zabezpieczania silników elektrycznych. Ustawienie przekaźnika na wartość 0,88 A jest zbyt niskie i nie pozwoli na odpowiednią ochronę silnika. Tego typu wartość może sprawić, że przekaźnik będzie zbyt szybko reagował na normalne, krótkotrwałe przeciążenia, co prowadziłoby do częstych wyłączeń i nieuzasadnionych przestojów w pracy urządzenia. Ustalenie prądu zadziałania na 1,05 A z kolei nie zapewnia odpowiedniego marginesu, co może skutkować brakiem ochrony w sytuacjach, gdy silnik doświadcza chwilowych wzrostów obciążenia. Zatem, przekaźnik zadziałałby w momencie, gdy obciążenie jest wciąż akceptowalne, co prowadziłoby do potencjalnych uszkodzeń. Z kolei ustawienie na 1,33 A wiąże się z ryzykiem, że silnik będzie działał z przeciążeniem przez dłuższy czas, co może prowadzić do przegrzania i uszkodzenia uzwojeń. W praktyce, odpowiednie wartości prądu zadziałania powinny być ustalane na podstawie analizy obciążenia oraz zastosowanych norm, które zalecają wartości w granicach 1,1 do 1,2-krotności prądu znamionowego dla skutecznej ochrony silnika przed przeciążeniem. Ignorowanie tych zasad prowadzi do nieefektywności w zabezpieczeniach oraz zwiększa ryzyko awarii.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L1
B. Przewód L3
C. Przewód N
D. Przewód L2
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 17

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. ochronny PE
B. neutralny N
C. fazowy LI
D. fazowy L2
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 18

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. DC-2
B. DC-4
C. AC-1
D. AC-3
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby ocenić kondycję techniczną przewodów wyrównawczych, należy zmierzyć między każdą dostępną częścią przewodzącą a najbliższym punktem głównego przewodu wyrównawczego

A. pojemność doziemną
B. natężenie prądu
C. rezystancję przewodów
D. spadek napięcia
Pomiar rezystancji przewodów wyrównawczych jest kluczowym elementem w ocenie ich stanu technicznego. Wyrównanie potencjałów w instalacjach elektrycznych ma na celu zwiększenie bezpieczeństwa oraz ochronę przed porażeniem prądem. W przypadku przewodów wyrównawczych, ich ciągłość oraz niski opór elektryczny są niezbędne, aby zapewnić skuteczne odprowadzanie prądów zwarciowych. Zgodnie z normami, takimi jak PN-HD 60364, powinny być one badane, aby weryfikować, że rezystancja nie przekracza określonych wartości, co może zapobiegać niebezpiecznym sytuacjom. Praktycznym przykładem jest pomiar rezystancji przewodu między punktami, gdzie przewody są połączone z ziemią lub innymi elementami instalacji. Wartości te powinny być rejestrowane i analizowane, aby zapewnić, że instalacja spełnia wymogi bezpieczeństwa oraz normy techniczne. W przypadku wykrycia wysokiej rezystancji, konieczne mogą być działania naprawcze, takie jak wymiana lub naprawa przewodów, co jest niezbędne dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 1 rok
B. 5 lat
C. 3 lata
D. 4 lata
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 24

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Pojawienia się przepięcia.
B. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
C. Podwyższenia częstotliwości ponad wartość nominalną.
D. Nadkompensacji sieci.
Zrozumienie mechanizmów działania systemów elektroenergetycznych wymaga głębszej analizy sytuacji związanych z różnymi odpowiedziami na postawione pytanie. Stwierdzenie, że samoczynne częstotliwościowe odciążenie zadziała w przypadku przekompensowania sieci, jest mylące, ponieważ przekompensowanie oznacza, że moc bierna jest wyższa niż zapotrzebowanie. W takiej sytuacji nie dochodzi do problemów z częstotliwością, a wręcz przeciwnie, sieć staje się bardziej stabilna. Zwiększenie częstotliwości ponad wartość znamionową również nie jest sytuacją, gdzie SCO ma zastosowanie. Wysoka częstotliwość sygnalizuje, że generator dostarcza więcej mocy niż jest potrzebne, co prowadzi do ryzyka uszkodzenia sprzętu, a nie do aktywacji mechanizmów odciążających. Wreszcie, wystąpienie przepięcia, świadczy o nadmiarze napięcia, co nie jest równoznaczne ze zwiększoną mocą pobraną, a zatem również nie uruchamia samoczynnych mechanizmów odciążających. W praktyce, błędne zrozumienie tych mechanizmów prowadzi do nieefektywnego zarządzania obciążeniem w sieci, co może skutkować poważnymi konsekwencjami dla stabilności systemu energetycznego. Właściwe zarządzanie obciążeniem oraz umiejętność prognozowania zmian w zapotrzebowaniu na moc są kluczowe dla zapewnienia ciągłości dostaw energii elektrycznej.

Pytanie 25

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. zadziałaniu bezpiecznika
C. zamontowaniu w oprawach nowych źródeł światła
D. rozbudowaniu instalacji
Odpowiedź dotycząca przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia po każdorazowym rozbudowaniu instalacji jest słuszna. Rozbudowa instalacji wiąże się z wprowadzeniem nowych elementów oraz modyfikacją istniejących, co może wpływać na bezpieczeństwo i funkcjonalność całego systemu. Z tego względu, standardy branżowe, takie jak PN-EN 60364, zalecają przeprowadzanie pomiarów kontrolnych po każdej rozbudowie, aby upewnić się, że instalacja spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz nie stwarza zagrożenia dla użytkowników. Przykładowo, po dodaniu nowych obwodów czy urządzeń, ważne jest, aby sprawdzić ich poprawność pod względem rezystancji izolacji oraz ciągłości przewodów. Tego typu pomiary pozwalają na identyfikację potencjalnych usterek, takich jak niewłaściwe połączenia czy uszkodzenia izolacji, które mogą prowadzić do awarii lub zagrożeń pożarowych.

Pytanie 26

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji izolacji
B. Napięcia krokowego
C. Rezystancji uziomu
D. Impedancji zwarciowej
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. prądowego po stronie wtórnej
B. napięciowego po stronie pierwotnej
C. prądowego po stronie pierwotnej
D. napięciowego po stronie wtórnej
Wybór bezpieczników w obwodzie przekładników prądowych po stronie pierwotnej, wtórnej czy napięciowej jest problematyczny i oparty na kilku błędnych założeniach. Przykładowo, stosowanie bezpieczników po stronie wtórnej może wydawać się rozsądne, jednak niesie ono ryzyko uszkodzenia izolacji uzwojeń. Działanie bezpiecznika w sytuacji zwarcia prowadzi do nagłego wzrostu napięcia w obwodzie wtórnym, co może uszkodzić izolację oraz wpłynąć na dokładność pomiarów. Podobnie, umieszczanie bezpieczników na stronie pierwotnej, w kontekście przekładników napięciowych, również stwarza niebezpieczeństwo dla urządzeń zabezpieczających, ponieważ naraża je na nadmierne napięcia i przepięcia. Warto zauważyć, że przekładniki prądowe i napięciowe są projektowane z myślą o zachowaniu wysokiej niezawodności w transporcie informacji o prądzie i napięciu do systemów pomiarowych. Bezpieczniki w istocie mogą zakłócać ten proces, wprowadzając dodatkowe ryzyko i zmniejszając niezawodność całego systemu. W praktyce, należy stosować odpowiednie metody zabezpieczeń i monitorowania, które są zgodne z normami branżowymi, aby uniknąć tych problemów. Normy te, jak IEC 61850, podkreślają znaczenie prawidłowego doboru zabezpieczeń oraz ich integracji z systemami monitorującymi, co jest kluczowe dla utrzymania bezpieczeństwa i efektywności w instalacjach elektrycznych.

Pytanie 30

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Weryfikacja połączeń stykowych
B. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
C. Ocena czystości filtrów powietrza chłodzącego
D. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
No, każda inna opcja, którą podałeś, ma jakieś uzasadnienie w kontekście bezpieczeństwa układu napędowego. Na przykład, kontrola połączeń stykowych to jeden z najważniejszych elementów sprawdzania stanu technicznego. Jeśli połączenia są źle zainstalowane albo uszkodzone, mogą spowodować różne problemy, jak przepięcia czy awarie całego systemu. Wiadomo, że powinno się to regularnie sprawdzać, bo to dobre praktyki inżynieryjne, a także są normy, takie jak IEC 60204, które mówią o bezpieczeństwie sprzętu elektrycznego. Czystość filtrów powietrza chłodzącego też ma znaczenie, bo brudne filtry mogą ograniczać przepływ powietrza, co prowadzi do przegrzania komponentów i ich uszkodzenia. Utrzymanie ich w czystości to coś, co zaleca się w dokumentacji technicznej i co mówią producenci przekształtników. No i kontrola zabezpieczeń nadprądowych i zmiennozwarciowych też jest bardzo ważna. Te elementy chronią system przed uszkodzeniem, jeśli pojawi się za dużo prądu lub zwarcie. Jak nie przestrzegasz tych zasad, to może być naprawdę niebezpiecznie, więc każda z tych czynności jest istotna w kontekście sprawdzania stanu układów napędowych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Piezorezystor
B. Tensometr
C. Halotron
D. Pozystor
Tensometr to przetwornik, który jest idealnym narzędziem do pomiaru momentu obrotowego, szczególnie w kontekście wałów napędowych silników elektrycznych. Działa na zasadzie pomiaru deformacji, które są wynikiem przyłożonego momentu obrotowego. Kiedy wał napędowy zostaje poddany obciążeniu, jego deformacja jest proporcjonalna do przyłożonego momentu, co pozwala na dokładne obliczenie tego momentu przy użyciu tensometrów. Przykłady zastosowania tensometrów obejmują przemysł motoryzacyjny, gdzie są wykorzystywane do testowania komponentów silników, a także w maszynach przemysłowych do monitorowania stanu technicznego wałów oraz detekcji przeciążeń. W branży stosuje się także standardy, takie jak ISO 376, które regulują metody kalibracji i pomiaru tensometrycznego, zapewniając wysoką precyzję i niezawodność wyników. Zastosowanie tensometrów w praktyce nie tylko poprawia jakość pomiarów, ale również zwiększa bezpieczeństwo operacyjne, dzięki możliwości wczesnego wykrywania problemów w systemach napędowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 50 V
B. 60 V
C. 25 V
D. 12 V
Istniejące nieprawidłowe odpowiedzi związane z wartością skuteczną napięcia dotykowego dotykają kluczowych aspektów bezpieczeństwa elektrycznego, które są niezwykle istotne w kontekście ochrony życia i zdrowia ludzi. Odpowiedzi sugerujące ilości mniejsze niż 50 V, jak 12 V, 25 V czy 60 V, mogą wprowadzać w błąd co do rzeczywistego ryzyka związanego z narażeniem na działanie prądu przemiennego. Po pierwsze, 12 V to napięcie, które w większości przypadków uznawane jest za bezpieczne, ale w praktyce, zwłaszcza w warunkach wilgotnych, nawet niskie napięcia mogą stanowić zagrożenie, jeśli nie są odpowiednio zabezpieczone. 25 V również nie jest wystarczająco zabezpieczone, biorąc pod uwagę, że normy bezpieczeństwa w różnych aplikacjach zazwyczaj uwzględniają wyższe wartości. Co więcej, 60 V, choć bliskie rzeczywistego niebezpieczeństwa, przekracza zalecaną wartość 50 V, co wyraźnie narusza zasady ochrony przeciwporażeniowej. Warto również podkreślić, że w przypadku napięć przekraczających 50 V, znaczenie ma nie tylko ich wartość, ale również czas ekspozycji oraz warunki otoczenia. Błędem jest zakładanie, że napięcie poniżej 50 V jest zawsze bezpieczne, co ignoruje złożoność interakcji między prądem a organizmem ludzkim. Z tego powodu kluczowe jest przestrzeganie standardów, takich jak IEC 60479, które stanowią fundament dla bezpiecznego projektowania instalacji elektrycznych.

Pytanie 39

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. drutu nawojowego
B. lakieru izolacyjnego
C. izolacji żłobkowej
D. pierścienia zwierającego
Nieprawidłowe koncepcje dotyczące odpowiedzi związane z drutem nawojowym, izolacją żłobkową i lakierem izolacyjnym mogą wynikać z nieporozumienia dotyczącego funkcji tych elementów w budowie silnika indukcyjnego. Drut nawojowy jest kluczowym elementem, ponieważ to właśnie z niego składają się uzwojenia stojana. Jego jakość oraz odpowiedni dobór materiału mają bezpośrednie przełożenie na wydajność i sprawność silnika. Izolacja żłobkowa zapewnia, że uzwojenia nie zwarcia się nawzajem, co jest niezbędne do prawidłowego funkcjonowania silnika. Lakier izolacyjny dodatkowo chroni uzwojenia przed wilgocią i zanieczyszczeniami, co może prowadzić do uszkodzeń. Ignorowanie roli tych elementów może prowadzić do błędnych wniosków na temat konstrukcji silników. Często problemy dotyczące ich zastosowania mogą wynikać z braku znajomości norm branżowych, które zalecają konkretne materiały i metody izolacji, co jest kluczowe dla bezpieczeństwa oraz wydajności pracy silników. Wszelkie niedopatrzenia w tych kwestiach mogą prowadzić do awarii silnika, a także zwiększenia kosztów eksploatacji z powodu nieefektywności energetycznej. W związku z tym, ważne jest zrozumienie, że każdy z wymienionych elementów pełni istotną rolę w prawidłowym działaniu silnika indukcyjnego.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.