Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 20 grudnia 2025 00:51
  • Data zakończenia: 20 grudnia 2025 01:07

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 2

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. W rozdzielnicy mieszkaniowej.
B. W złączu.
C. W rozdzielnicy głównej.
D. Bezpośrednio przed licznikami.
Zabezpieczenia nadprądowe o najwyższej wartości prądu powinny być montowane w złączu elektrycznym. To takie kluczowe miejsce, gdzie instalacja odbiorcza spotyka się z siecią elektroenergetyczną. Dzięki temu cała instalacja jest lepiej chroniona przed przeciążeniami i zwarciami. Instalując te zabezpieczenia w złączu, nie tylko broni się przewody zasilające, ale i wszystkie obwody odbiorcze. Z tego co wiem, jest to zgodne z normami, jak PN-IEC 60364, które mówią, że trzeba je stosować w złączu. W praktyce, jak już dojdzie do przeciążenia, to zabezpieczenie w złączu zadziała najszybciej, co może uratować droższe elementy instalacji. Weźmy na przykład budynki mieszkalne – tam często montuje się te zabezpieczenia w złączu, żeby cała instalacja była bezpieczniejsza dla użytkowników.

Pytanie 3

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 4

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. profilowania przewodów.
B. wciskania łożysk.
C. zdejmowania pierścieni Segera.
D. zaciskania złączek Wago.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do pierścieni Segera, które odgrywają kluczową rolę w branży mechanicznej i motoryzacyjnej. Umożliwiają one szybki i efektywny montaż oraz demontaż pierścieni zabezpieczających, które są powszechnie stosowane do zabezpieczania elementów na wałach lub w otworach. Dzięki charakterystycznym końcówkom, które pasują do otworów w pierścieniach, użytkownik może łatwo rozszerzyć lub ściągnąć pierścień Segera bez ryzyka uszkodzenia zarówno narzędzia, jak i zamontowanych komponentów. W praktyce użycie szczypiec do pierścieni Segera znacznie zwiększa efektywność pracy, minimalizując czas potrzebny na wymianę elementów, co jest niezbędne w kontekście utrzymania ruchu czy serwisowania maszyn. Ponadto, stosowanie odpowiednich narzędzi, takich jak te szczypce, wpisuje się w dobre praktyki inżynieryjne, które zalecają korzystanie z dedykowanych narzędzi do specyficznych zadań, co pozwala na uniknięcie błędów związanych z używaniem nieodpowiednich rozwiązań. Dlatego też, znajomość i umiejętność posługiwania się szczypcami do pierścieni Segera jest nie tylko korzystna, ale wręcz niezbędna w wielu dziedzinach techniki.

Pytanie 5

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Styczników.
B. Wyłączników nadprądowych.
C. Wyłączników różnicowoprądowych.
D. Transformatorów.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 6

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór przewodu D do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest właściwy z kilku powodów. Przewód ten charakteryzuje się odpowiednią izolacją, która jest niezbędna do pracy w warunkach napięcia stałego. W przypadku prądu stałego, szczególnie przy wyższych napięciach, kluczowe jest, aby przewód był odporny na przepięcia oraz miał właściwości dielektryczne, które zapobiegają przebiciu izolacji. W praktyce oznacza to, że przewody stosowane w instalacjach DC muszą być zgodne z normami, takimi jak IEC 60228 oraz IEC 60529, które określają wymagania dotyczące izolacji i ochrony przed wodą i ciałami stałymi. Przykładem zastosowania przewodu D mogą być instalacje w fotowoltaice, gdzie również wykorzystywane są wysokie napięcia stałe. Odpowiedni dobór przewodu wpływa nie tylko na bezpieczeństwo, ale także na efektywność energetyczną całego systemu. Dlatego korzystanie z przewodów zgodnych ze specyfikacjami producentów oraz standardami branżowymi jest kluczowe.

Pytanie 7

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
B. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
C. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
D. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 8

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 230 V
B. 100 V
C. 12 V
D. 50 V
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 9

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny FRX400.
B. Stycznik elektromagnetyczny.
C. Wyłącznik nadprądowy S304.
D. Wyłącznik silnikowy.
Poprawna odpowiedź to stycznik elektromagnetyczny. Na zdjęciu widoczne są charakterystyczne cewki elektromagnetyczne, które aktywują styki przy pomocy pola magnetycznego. Styczniki są kluczowymi elementami w systemach automatyki, umożliwiając zdalne załączanie i wyłączanie obwodów elektrycznych, co jest niezwykle istotne w kontekście sterowania silnikami elektrycznymi w aplikacjach przemysłowych. Dzięki nim można bezpiecznie kontrolować duże obciążenia, co przekłada się na efektywność operacyjną. Styczniki są projektowane zgodnie z normami IEC 60947-4-1, które definiują wymagania dotyczące ich konstrukcji oraz poziomów bezpieczeństwa operacyjnego. Przykłady zastosowania to sterowanie silnikami w maszynach produkcyjnych, systemach wentylacyjnych oraz w instalacjach oświetleniowych, gdzie można zdalnie załączać i wyłączać obwody. Użycie styczników pozwala też na integrację z systemami automatyki budynkowej, co zwiększa komfort i efektywność energetyczną.

Pytanie 10

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
C. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
D. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 11

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-L
B. Z L-PE
C. Z L-PE(RCD)
D. Z L-N
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 12

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 1,15 Ω
B. 2,00 Ω
C. 2,30 Ω
D. 3,83 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 13

Zdjęcie przedstawia

Ilustracja do pytania
A. łącznik żaluzjowy.
B. łącznik wielofunkcyjny.
C. wyłącznik schodowy.
D. wyłącznik krzyżowy.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 14

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 15

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Zamiana przewodu neutralnego z ochronnym
B. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
C. Zamiana przewodu neutralnego z fazowym
D. Poluzowany przewód neutralny w głównym złączu budynku
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 16

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 1 180,0 lm/W
B. 81,4 lm/W
C. 14,5 lm/W
D. 206,9 lm/W
Nieprawidłowe odpowiedzi często wynikają z nieporozumień związanych z efektywnością świetlną. Często ludzie mylą lumeny z watami, co prowadzi do pomyłek. Na przykład, jeśli ktoś odpowiedział 14,5 lm/W, to pewnie myślał, że moc żarówki to jej skuteczność, co całkowicie mija się z prawdą. Moc w watach mówi nam, ile energii żarówka zużywa, a nie jak dobrze świeci. Inny błąd to podawanie złych danych, jak 1 180,0 lm/W – to jest fizycznie niemożliwe dla normalnych źródeł światła. Czasem zapominamy także o kontekście, w jakim używamy źródeł światła, co prowadzi do błędnych wyników. Trzeba pamiętać, że skuteczność świetlna to liczby, które trzeba dobrze zrozumieć i podliczyć, bazując na danych o strumieniu świetlnym i mocy, co jest współczesnym krokiem w stronę lepszej efektywności energetycznej oraz ekologii.

Pytanie 17

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 1 i 7
B. 4 i 8
C. 7 i 8
D. 1 i 4
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 18

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie pracował w stanie jałowym
B. Silnik będzie zasilany prądem przeciwnym
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 19

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Skok napięcia
B. Przeciążenie obwodu
C. Upływ prądu
D. Zwarcie międzyfazowe
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 20

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 21

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. MR16
B. GU10
C. E27
D. E14
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 22

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TN-S
B. TN-C
C. TT
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 23

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
D. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 24

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Grzejnik elektryczny
B. Pralkę elektryczną.
C. Kuchenkę elektryczną.
D. Zmywarkę do naczyń.
To, co widzisz na rysunku, to symbol zmywarki do naczyń, który jest zgodny z normą PN-EN 60617. Wiesz, ta norma określa, jak powinny wyglądać graficzne symbole w dokumentacji elektrycznej. Zmywarki stają się coraz bardziej popularne w inteligentnych domach, więc naprawdę ważne jest, by ich oznaczenie było prawidłowe. Dzięki temu łatwiej zidentyfikujesz to urządzenie w schematach elektrycznych, co ma duże znaczenie, gdy projektujesz instalację. Myślę, że w nowoczesnych kuchniach znajomość takich symboli to podstawa, żeby wszystko działało jak należy. Na przykład, projektując kuchnię, zmywarka musi być podłączona do odpowiednich obwodów, a to wymaga znajomości jej symbolu i specyfikacji, żeby uniknąć złych podłączeń. Wiadomo, lepiej zapobiegać, niż potem naprawiać!

Pytanie 25

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Jednofazowego ze stykiem ochronnym.
B. Trójfazowego bez styku ochronnego.
C. Jednofazowego bez styku ochronnego.
D. Trójfazowego ze stykiem ochronnym.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji gniazd elektrycznych. Gniazda jednofazowe bez styku ochronnego oraz gniazda trójfazowe, zarówno z jak i bez styku ochronnego, różnią się zasadniczo pod względem zastosowania i bezpieczeństwa. Gniazda jednofazowe bez styku ochronnego, mimo że są popularne w niektórych aplikacjach, nie zapewniają ochrony przed porażeniem, co czyni je mniej bezpiecznymi w zastosowaniach, gdzie ryzyko kontaktu z prądem jest wyższe. Gniazda trójfazowe, z kolei, są projektowane do zasilania większych urządzeń przemysłowych i wymagają zastosowania specjalistycznych wtyczek oraz kabli. W kontekście domowym lub w małych biurach, gniazda trójfazowe są zazwyczaj zbędne, a ich używanie bez odpowiedniego uzasadnienia może prowadzić do nieefektywności energetycznej. Często błędne wybory wynikają z mylnego założenia, że większa liczba faz przekłada się na lepsze parametry elektryczne w każdej sytuacji. Należy pamiętać, że dobór odpowiedniego gniazda elektrycznego powinien być oparty na specyfikacji urządzeń, które mają być podłączone, oraz na obowiązujących normach bezpieczeństwa. Zrozumienie tych podstawowych zasad jest kluczowe do uniknięcia potencjalnych zagrożeń i nieprawidłowości w instalacjach elektrycznych.

Pytanie 26

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia jednej fazy
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia dwóch faz
D. zamiana miejscami dwóch faz
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 27

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik zostanie zasilony prądem przeciwnym.
B. silnik znajdzie się w stanie jałowym.
C. wirnik silnika będzie w bezruchu.
D. wirnik silnika zostanie dogoniony.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 28

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
C. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
D. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
Odpowiedź polegająca na zamocowaniu nowych przewodów do końców starych i wyciąganiu ich podczas wprowadzania nowych jest najbardziej efektywnym sposobem wymiany uszkodzonych przewodów w instalacji elektrycznej. Metoda ta minimalizuje inwazyjność pracy, co jest kluczowe w kontekście renowacji pomieszczeń. Działając w ten sposób, oszczędzamy czas i koszty związane z ewentualnymi naprawami ścian i podłóg. Ponadto, stosując ten sposób, możemy zachować integralność istniejącej instalacji, unikając potencjalnego uszkodzenia rur, co może prowadzić do dodatkowych kosztów. W praktyce, ta technika jest szeroko zalecana w standardach branżowych, takich jak PN-IEC 60364, które podkreślają znaczenie skutecznych i bezpiecznych metod naprawy instalacji elektrycznych. Warto również dodać, że przy tej metodzie kluczowe jest użycie odpowiednich materiałów, takich jak przewody o właściwej specyfikacji oraz narzędzi, które umożliwiają precyzyjne wykonanie wymiany.

Pytanie 29

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Żarowe.
C. Półprzewodnikowe.
D. Wyładowcze wysokoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 30

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
D. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 31

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Użycie odbiorników II klasy ochronności.
B. Separację odbiornika.
C. Samoczynne wyłączenie zasilania.
D. Połączenie wyrównawcze.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 32

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Przeciwogniową.
B. Podtynkową hermetyczną.
C. Natynkową hermetyczną.
D. Do montażu gniazd i wyłączników.
Prawidłowa odpowiedź to "Natynkowa hermetyczna", co jest zgodne z charakterystyką puszki instalacyjnej PHS-1, która ma zabezpieczenie IP44. Oznaczenie to wskazuje, że puszka jest odporna na ciała stałe o średnicy większej niż 1 mm oraz na krople wody padające pod różnymi kątami. Puszki natynkowe hermetyczne są powszechnie stosowane w miejscach, gdzie występuje ryzyko kontaktu z wilgocią, co czyni je idealnym rozwiązaniem w instalacjach przemysłowych oraz w obiektach użyteczności publicznej. Ich budowa, w tym dławice bezgwintowe i zaciski gwintowe izolowane, zapewnia nie tylko bezpieczeństwo, ale również łatwość montażu. Stosowanie takich puszek zgodnie z normami IEC 60529 oraz PN-EN 60670-1 przyczynia się do zwiększenia bezpieczeństwa instalacji elektrycznych, a także minimalizuje ryzyko uszkodzeń spowodowanych warunkami atmosferycznymi. Przykłady zastosowania obejmują obiekty budowlane narażone na działanie czynników zewnętrznych, takie jak tereny przemysłowe, magazyny, a także instalacje w ogrodach i na zewnątrz budynków.

Pytanie 33

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. DY 2,5 mm2
B. LY 2,5 mm2
C. YDY 5×2,5 mm2
D. YLY 7×2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 34

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przeciążeniem
B. porażeniem
C. zwarciem
D. przepięciem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 35

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 120 V
B. 1000 V
C. 500 V
D. 250 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 36

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
B. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
C. gniazda umieszczać tylko w strefie przypodłogowej.
D. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
Wybór odpowiedzi uwzględniającej zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu jest prawidłowy, ponieważ zgodnie z polskimi normami oraz najlepszymi praktykami w branży elektrycznej, projektowanie instalacji elektrycznych powinno uwzględniać preferencje użytkowników. Wysokość montażu osprzętu może wpływać na komfort użytkowania, dlatego istotne jest, aby dostosować ją do indywidualnych potrzeb mieszkańców. Na przykład, w pomieszczeniach, gdzie osoby o różnym wzroście korzystają z gniazd czy wyłączników, ich optymalne umiejscowienie może znacznie poprawić funkcjonalność przestrzeni. Należy również pamiętać, że wszelkie zalecenia inwestora muszą być zgodne z przepisami bezpieczeństwa, co oznacza, że powinny one być weryfikowane pod kątem zgodności z normami np. PN-IEC 60364. Uwzględnienie takich wskazówek nie tylko poprawia ergonomię, ale także zwiększa bezpieczeństwo użytkowania instalacji elektrycznej.

Pytanie 37

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Kontroli stanu osłon elementów wirujących
B. Sprawdzenia szczotek i szczotkotrzymaczy
C. Oceny stanu przewodów ochronnych oraz ich podłączenia
D. Sprawdzenia działania systemów chłodzenia
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 38

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Schematy montażowe są kluczowym elementem w projektowaniu instalacji elektrycznych, a ich nieprawidłowe zrozumienie może prowadzić do poważnych błędów montażowych. Odpowiedzi A, B i D nie przedstawiają schematu montażowego, co skutkuje ich niepoprawnością. Odpowiedzi te mogą przedstawiać inne typy rysunków, takie jak schematy ideowe, które z kolei koncentrują się na przedstawieniu funkcji urządzeń i ich wzajemnych połączeń bez wskazywania szczegółów montażowych, lub diagramy blokowe, które ilustrują ogólną koncepcję systemu. Takie nieścisłości prowadzą do mylnych przekonań, że schemat ideowy może zastąpić schemat montażowy. Przykładem błędnego myślenia jest utożsamianie rysunków z ogólnymi zasadami działania urządzeń z dokumentacją wymagającą szczegółowych informacji o montażu. W praktyce, brak wyraźnego schematu montażowego może prowadzić do nieprawidłowego montażu, co z kolei może skutkować awarią systemu lub zagrożeniem dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby każdy projektant instalacji elektrycznych posiadał umiejętność odróżniania schematów montażowych od innych typów dokumentacji, aby uniknąć tych nieporozumień i zapewnić zgodność z normami oraz bezpieczeństwo instalacji.

Pytanie 39

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 40

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź B jest prawidłowa, ponieważ została poprawnie skonfigurowana sonda potencjałowa (Sp) oraz sonda prądowa (Sn) w odpowiednich miejscach, co jest kluczowe dla uzyskania wiarygodnych wyników pomiaru rezystancji uziemienia. Zgodnie z ogólnymi zasadami pomiaru, sonda prądowa powinna być umieszczona w odległości od badanego uziomu, aby zminimalizować wpływ rezystancji gruntu na wynik. Sonda potencjałowa, umieszczona blisko badanego uziomu, pozwala na dokładne mierzenie spadku napięcia, który jest związany z przepływem prądu przez uziom. W praktyce, takie ustawienie sond jest zgodne z normami IEC 62561-1 i IEC 60364, które definiują metody pomiaru uziemienia oraz zasady dotyczące dokładności i bezpieczeństwa. Zastosowanie tych zasad w rzeczywistych pomiarach zapewnia nie tylko dokładność, ale również bezpieczeństwo systemów elektrycznych, dając podstawy do ich dalszej eksploatacji w zakresie ochrony przed przepięciami oraz poprawnego funkcjonowania instalacji elektrycznych.