Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 29 grudnia 2025 21:29
  • Data zakończenia: 29 grudnia 2025 21:53

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B16
B. B10
C. B25
D. B20
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 2

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
B. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
C. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
D. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 3

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. przewodów elektrycznych wyłącznie przed skutkami zwarć.
B. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
C. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
D. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
Wybór odpowiedzi, która ogranicza zastosowanie wkładek topikowych wyłącznie do ochrony przed przeciążeniami lub zwarciami w urządzeniach energoelektronicznych, jest mylny. W rzeczywistości wkładki te są zaprojektowane do ochrony przewodów elektrycznych, a ich funkcjonalność obejmuje zarówno zabezpieczanie przed przeciążeniami, jak i zwarciami. Odpowiedzi sugerujące, że wkładki topikowe mogą chronić jedynie przed skutkami przeciążeń lub zwarć w urządzeniach, ignorują kluczową rolę, jaką odgrywają w ochronie instalacji elektrycznych jako całości. W praktyce, niewłaściwe zrozumienie funkcji wkładek topikowych może prowadzić do niewłaściwego doboru zabezpieczeń, co zwiększa ryzyko uszkodzenia zarówno przewodów, jak i podłączonych urządzeń. Zgodnie z wytycznymi norm, takich jak PN-EN 60947, wkładki topikowe muszą być odpowiednio dobrane do parametrów instalacji, co podkreśla konieczność zrozumienia ich roli w systemie ochrony elektrycznej. Ignorując te aspekty, można łatwo wprowadzić w błąd, co skutkuje narażeniem na niebezpieczeństwo zarówno użytkowników, jak i sprzętu elektrycznego.

Pytanie 4

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Hydronetkę.
B. Gaśnicę proszkową.
C. Gaśnicę cieczy.
D. Tłumicę.
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 5

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 2 A, Un = 400 V
B. In = 1 A, Un = 400 V
C. In = 2 A, Un = 200 V
D. In = 1 A, Un = 200 V
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 6

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6301
D. 6001
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 7

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
B. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
C. Montowanie w instalacji wyłącznika różnicowoprądowego
D. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 8

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TT
B. IT
C. TN-S
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 9

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07VV-U 5G2,5
C. H03V2V2H2-F 2X2,5
D. H07RR-F 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 10

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 11

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SPZ
B. SCO
C. SRN
D. SZR
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 12

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
C. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 13

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu Z
B. Wyłącznik nadprądowy typu B
C. Bezpiecznik typu aR
D. Bezpiecznik typu aM
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 14

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm². Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
B. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
C. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.
D. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.
Wybór odpowiedzi polegającej na rozkuwaniu tynku w miejscu uszkodzenia, zamontowaniu dodatkowej puszki oraz połączeniu żył jest najbardziej zalecanym sposobem naprawy uszkodzonego przewodu elektrycznego. Tego rodzaju działania są zgodne z obowiązującymi normami oraz najlepszymi praktykami w branży elektrycznej. W sytuacji, gdy przewód został uszkodzony, niezbędne jest zapewnienie odpowiednich warunków do naprawy, co może wiązać się z otwarciem ściany. Instalując dodatkową puszkę, zwiększamy bezpieczeństwo i ułatwiamy przyszłe prace serwisowe. Połączenie żył w puszce umożliwia także zastosowanie złączek, co jest rekomendowane w przypadku napraw elektrycznych. Dzięki temu połączenia są bardziej trwałe i estetyczne, a ryzyko ich przypadkowego usunięcia bądź zwarcia zostaje zminimalizowane. Takie podejście jest zgodne z europejskimi normami instalacji elektrycznych, które nakładają obowiązek używania osprzętu instalacyjnego w celu zwiększenia bezpieczeństwa użytkowania instalacji elektrycznych. W praktyce, zastosowanie dodatkowej puszki stanowi również zabezpieczenie przed przyszłymi uszkodzeniami mechanicznymi. Już na etapie projektowania, warto uwzględnić takie rozwiązania, by minimalizować ryzyko nieprzewidzianych awarii.

Pytanie 15

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H07RR-F 4G2,5
B. H03V2V2-F 3X2,5
C. H07VV-U 4G2,5
D. H03V2V2H2-F 3X2,5
W przypadku odpowiedzi H07VV-U 4G2,5, choć również jest to przewód wielożyłowy, nie jest on elastyczny, co jest kluczowe w zastosowaniach, gdzie przewód narażony jest na ruch i zginanie, jak w przypadku przenośnych silników. Przewód H03V2V2H2-F 3X2,5 ma jedynie trzy żyły, co nie odpowiada wymaganiom dla trójfazowych urządzeń, których zasilanie wymaga minimum czterech żył, w tym jednej neutralnej. Ostatecznie, H03V2V2-F 3X2,5, podobnie jak H03V2V2H2-F, nie spełnia wymagań dotyczących mocy i liczby żył dla silników trójfazowych. Wybór niewłaściwego przewodu może prowadzić do przegrzewania się instalacji, a tym samym do zagrożeń dla bezpieczeństwa osób pracujących w pobliżu. Niedostateczne zrozumienie oznaczeń przewodów elektrycznych może skutkować poważnymi błędami w doborze odpowiednich elementów instalacji elektrycznej. Kluczowym elementem w tym kontekście jest znajomość specyfikacji dotyczących przewodów, w tym ich przeznaczenia, rodzaju izolacji oraz zastosowania. W praktyce nieprzestrzeganie tych zasad może prowadzić do awarii sprzętu oraz potencjalnych wypadków.

Pytanie 16

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. transformator bezpieczeństwa
B. autotransformator
C. rezystor w układzie szeregowym
D. dzielnik napięcia
Transformator bezpieczeństwa jest kluczowym elementem zasilania obwodów SELV (Separated Extra Low Voltage), który zapewnia izolację i bezpieczeństwo użytkowników. Takie zasilanie charakteryzuje się niskim napięciem, co minimalizuje ryzyko porażenia prądem oraz innych niebezpieczeństw. Transformator bezpieczeństwa działa poprzez separację obwodu niskonapięciowego od sieci zasilającej, dzięki czemu nie ma bezpośredniego połączenia ze źródłem wysokiego napięcia. Przykładem zastosowania transformatorów bezpieczeństwa mogą być systemy oświetlenia w obiektach użyteczności publicznej, gdzie zapewnia się wysokie bezpieczeństwo, zwłaszcza w miejscach narażonych na kontakt z wodą, takich jak łazienki czy baseny. Zastosowanie transformatora bezpieczeństwa jest zgodne z normami, takimi jak IEC 60364 oraz dyrektywami Unii Europejskiej, które podkreślają znaczenie stosowania urządzeń zapewniających bezpieczeństwo elektryczne. Dzięki tym rozwiązaniom można znacząco zredukować ryzyko wypadków związanych z elektrycznością.

Pytanie 17

Który z przedstawionych na rysunkach przewodów przeznaczony jest do wykonywania instalacji mieszkaniowej wtynkowej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Przewód z rysunku C sprawdzi się do instalacji elektrycznej w mieszkaniu. Jest zrobiony z dobrych materiałów i ma odpowiednią izolację z tworzyw sztucznych. Dzięki temu jest odporny na różne warunki atmosferyczne i uszkodzenia. Używanie takich przewodów w mieszkaniach jest zgodne z normami, takimi jak PN-IEC 60364, które mówią o bezpieczeństwie i ochronie przed prądem. W praktyce często można je spotkać przy gniazdkach i oświetleniu, bo są naprawdę niezbędne w każdej instalacji elektrycznej. Wybór odpowiedniego przewodu to kluczowa sprawa dla bezpieczeństwa. Powinny być też dobrze oznakowane i spełniać wymogi dotyczące przepływu prądu, co ma znaczenie dla efektywności energetycznej i zmniejsza ryzyko awarii.

Pytanie 18

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W sąsiedztwie pokrywy wentylatora
B. Na końcu obudowy w rejonie napędu
C. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
D. W centralnej części obudowy blisko skrzynki przyłączeniowej
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 19

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Ocena czystości filtrów powietrza chłodzącego
B. Weryfikacja połączeń stykowych
C. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
D. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
No, każda inna opcja, którą podałeś, ma jakieś uzasadnienie w kontekście bezpieczeństwa układu napędowego. Na przykład, kontrola połączeń stykowych to jeden z najważniejszych elementów sprawdzania stanu technicznego. Jeśli połączenia są źle zainstalowane albo uszkodzone, mogą spowodować różne problemy, jak przepięcia czy awarie całego systemu. Wiadomo, że powinno się to regularnie sprawdzać, bo to dobre praktyki inżynieryjne, a także są normy, takie jak IEC 60204, które mówią o bezpieczeństwie sprzętu elektrycznego. Czystość filtrów powietrza chłodzącego też ma znaczenie, bo brudne filtry mogą ograniczać przepływ powietrza, co prowadzi do przegrzania komponentów i ich uszkodzenia. Utrzymanie ich w czystości to coś, co zaleca się w dokumentacji technicznej i co mówią producenci przekształtników. No i kontrola zabezpieczeń nadprądowych i zmiennozwarciowych też jest bardzo ważna. Te elementy chronią system przed uszkodzeniem, jeśli pojawi się za dużo prądu lub zwarcie. Jak nie przestrzegasz tych zasad, to może być naprawdę niebezpiecznie, więc każda z tych czynności jest istotna w kontekście sprawdzania stanu układów napędowych.

Pytanie 20

Czym charakteryzują się urządzenia oznaczone znakiem pokazanym na rysunku?

Ilustracja do pytania
A. Mają podwójną lub wzmocnioną izolację.
B. Wymagają ogrodzeń, jako ochrony przeciwporażeniowej.
C. Muszą być zasilane bardzo niskim napięciem bezpiecznym.
D. Muszą być umieszczane poza zasięgiem ręki.
Odpowiedź, że "Mają być zasilane bardzo niskim napięciem bezpiecznym" jest jak najbardziej trafna. Urządzenia z symbolem klasy III, który widnieje na rysunku, powinny być zasilane niskim napięciem, nieprzekraczającym 50V w prądzie przemiennym i 120V w prądzie stałym. Nazywamy to SELV, czyli ewentualnie niskim napięciem bezpiecznym. Dzięki temu ryzyko porażenia prądem jest znacznie mniejsze. W praktyce znajdziemy takie urządzenia wszędzie tam, gdzie ludzie często mają z nimi do czynienia, jak na przykład w sprzęcie medycznym czy lampach. Kluczowe jest, żeby przy projektowaniu instalacji elektrycznych z użyciem tych urządzeń przestrzegać norm bezpieczeństwa, jak PN-EN 61140. Co więcej, fakt, że nie trzeba ich uziemiać, bardzo ułatwia ich montaż i sprawia, że są super uniwersalne w różnych zastosowaniach przemysłowych i komercyjnych.

Pytanie 21

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po zadziałaniu zabezpieczeń
B. Po przeciążeniu urządzenia
C. Po naprawie zabezpieczeń
D. Po modernizacji instalacji
Prawidłowa odpowiedź "Po modernizacji instalacji" jest zgodna z przyjętymi standardami i dobrymi praktykami w zakresie bezpieczeństwa instalacji elektrycznych. Modernizacja instalacji, w tym zmiany w układzie, dodanie nowych obwodów lub urządzeń oraz wymiana komponentów, może wprowadzić nowe ryzyko. Dlatego po każdej modernizacji konieczne jest przeprowadzenie pomiarów kontrolnych, aby upewnić się, że instalacja spełnia wymogi norm i jest bezpieczna w użytkowaniu. Pomiary te obejmują sprawdzenie ciągłości przewodów, co jest niezbędne do zapewnienia, że nie ma przerw w obwodach, oraz pomiary rezystancji izolacji, które pomagają ocenić stan izolacji przewodów. Dodatkowo, sprawdzenie samoczynnego wyłączania napięcia jest kluczowe dla ochrony przed porażeniem elektrycznym. Przykładem zastosowania tej wiedzy jest sytuacja, w której po zainstalowaniu nowych gniazdek lub oświetlenia, technik elektryk przeprowadza te kontrole, aby zagwarantować, że wszelkie zmiany nie wpłynęły negatywnie na bezpieczeństwo instalacji.

Pytanie 22

Jakie powinno być maksymalne wskazanie amperomierza do pomiaru natężenia prądu w instalacji zasilanej napięciem 230/400 V o częstotliwości 50 Hz, zasilanej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, n = 70%, cosφ = 0,96?

A. 1A
B. 4A
C. 3A
D. 2A
Wybór niewłaściwego zakresu pomiarowego amperomierza może prowadzić do poważnych błędów w pomiarach oraz potencjalnych uszkodzeń sprzętu. Na przykład, zbyt niski zakres pomiarowy, jak 1A czy 2A, nie uwzględnia rzeczywistego natężenia prądu, które może przekroczyć te wartości, zwłaszcza w przypadku rozruchu silnika, gdzie prąd może być znacznie wyższy niż nominalny. Takie podejście jest niebezpieczne, ponieważ może prowadzić do uszkodzeń amperomierza lub podzespołów instalacji. Dodatkowo, nie uwzględniając współczynnika mocy, można błędnie ocenić rzeczywiste natężenie prądu, co również wpływa na dokładność pomiaru. Przy pomiarach w instalacjach elektrycznych ważne jest również przestrzeganie dobrych praktyk, takich jak stosowanie urządzeń o odpowiednich parametrach technicznych oraz zapewnienie marginesu bezpieczeństwa, co jest kluczowe dla ochrony zarówno urządzeń, jak i osób pracujących w pobliżu instalacji. Wybór amperomierza powinien być zatem oparty na rzetelnych obliczeniach oraz analizie wszystkich czynników wpływających na obciążenie instalacji.

Pytanie 23

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
C. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
D. zasilania ich z gniazd z ochronnym bolcem uziemiającym
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 24

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Związane z ochroną zdrowia i życia ludzi
B. Codzienne, wskazane w instrukcji eksploatacji
C. Związane z ochroną urządzeń przed zniszczeniem
D. Okresowe, określone w planie przeglądów
Odpowiedź wskazująca na konieczność wydania polecenia przy okresowych przeglądach instalacji elektrycznych do 1 kV jest zgodna z obowiązującymi standardami oraz regulacjami prawnymi w zakresie bezpieczeństwa eksploatacji urządzeń elektrycznych. Okresowe przeglądy, wpisane w planie przeglądów, mają na celu weryfikację stanu technicznego instalacji oraz wykrywanie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Wydanie polecenia w tym kontekście jest niezbędne, aby formalnie zlecić te działania odpowiedniemu personelowi, który ma kompetencje oraz uprawnienia do ich przeprowadzenia. Przykładem zastosowania może być sytuacja, w której po przeprowadzeniu przeglądu instalacji wykryto nieprawidłowości, co wymaga szybkiego podjęcia działań naprawczych w celu uniknięcia awarii. Warto również podkreślić, że systematyczne przeglądy są rekomendowane przez Polskie Normy oraz przepisy prawa budowlanego, co potwierdza ich istotność w kontekście bezpieczeństwa elektrycznego.

Pytanie 25

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
B. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
C. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
D. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 26

Co oznacza symbol IP44 w kontekście ochrony urządzeń elektrycznych?

A. Ochronę przed pełnym zanurzeniem w wodzie
B. Ochronę przed bezpośrednim działaniem promieni słonecznych
C. Ochronę przed pyłem oraz działaniem pary wodnej
D. Ochronę przed ciałami stałymi większymi niż 1 mm oraz przed bryzgami wody z dowolnego kierunku
Symbol IP44 w kontekście ochrony urządzeń elektrycznych oznacza, że urządzenie jest zabezpieczone przed ciałami stałymi o średnicy większej niż 1 mm oraz przed bryzgami wody z dowolnego kierunku. Jest to standardowy sposób klasyfikacji stopnia ochrony zapewnianej przez obudowy urządzeń elektrycznych, określany przez normę IEC 60529. Pierwsza cyfra '4' oznacza, że urządzenie jest chronione przed cząstkami stałymi większymi niż 1 mm, co jest istotne w kontekście ochrony przed kurzem, pyłem czy nawet niewielkimi owadami. Druga cyfra '4' wskazuje na ochronę przed wodą bryzgającą z dowolnego kierunku, co jest istotne w środowiskach, gdzie urządzenie może być narażone na deszcz lub inne źródła wilgoci, ale nie jest przewidziane do zanurzenia. Tego rodzaju ochrona jest szczególnie ważna w przypadku instalacji zewnętrznych lub w miejscach o podwyższonej wilgotności, gdzie niezawodność sprzętu elektrycznego jest kluczowa dla bezpieczeństwa i ciągłości pracy. W praktyce, wybór odpowiedniej klasy IP pozwala na dostosowanie urządzenia do specyficznych warunków pracy, zapewniając jego długowieczność i niezawodność, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 27

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. koło pasowe
B. wlot powietrza
C. klatka wirnika
D. czujnik temperatury
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 28

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. MMS-32S – 4A
B. PKZM01 – 0,63
C. MMS-32S – 1,6A
D. PKZM01 – 1
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 29

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. AC-3
B. AC-1
C. DC-2
D. DC-4
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 30

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik małej mocy.
B. Łącznik silnikowy bez zabezpieczeń termicznych.
C. Rozłącznik izolacyjny z widoczną przerwą.
D. Odłącznik instalacyjny.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 31

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Obniżenie napięcia roboczego
B. Zwiększenie obciążalności prądowej instalacji
C. Zwiększenie rezystancji pętli zwarcia
D. Osłabienie wytrzymałości mechanicznej przewodów
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 32

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 5 lat
B. 2 lata
C. 3 lata
D. 4 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 33

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 24 miesiące
B. 12 miesięcy
C. 35 miesięcy
D. 60 miesięcy
Oględziny domowej instalacji elektrycznej powinno się robić co 60 miesięcy. To, co mówią polskie normy, jak PN-IEC 60364, jest dość jasne. Regularne przeglądy są mega ważne, bo zapewniają bezpieczeństwo użytkowników i sprawiają, że instalacja działa bez problemów. W ciągu tych pięciu lat warto, żeby właściciele domów robili dokładne inspekcje. To znaczy, że powinno się nie tylko patrzeć na to, jak wygląda instalacja, ale też zmierzyć najważniejsze parametry elektryczne. Można na przykład sprawdzić przewody, gniazdka, wyłączniki, a także zobaczyć, czy zabezpieczenia działają, jak powinny. Z własnego doświadczenia wiem, że regularne przeglądy mogą zapobiegają awariom i pomagają zaoszczędzić na rachunkach za prąd, co w obecnych czasach ma znaczenie. Ciekawe, że przepisy mogą się różnić, zwłaszcza w budynkach publicznych, gdzie te zasady są często bardziej restrykcyjne.

Pytanie 34

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 2,5 mm2
B. 1,5 mm2
C. 4,0 mm2
D. 6,0 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 35

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
B. przerwę w uzwojeniu U1 — U2
C. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
D. zwarcie międzyzwojowe w uzwojeniu W1 — W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 36

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. usunąć zaciski probiercze
B. powiększyć średnicę przewodu odgromowego
C. wydłużyć uziom szpilkowy
D. zwiększyć średnicę zwodów w instalacji odgromowej
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 37

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Ułożyć dodatkową warstwę izolacyjną na podłożu
B. Zainstalować transformator redukcyjny
C. Wykonać lokalne połączenia wyrównawcze
D. Połączyć obudowę z przewodem ochronnym
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 38

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podnapięciowego.
B. Nadnapięciowego.
C. Nadprądowego.
D. Podczęstotliwościowego.
Wybór odpowiedzi na temat przekaźników wymaga zrozumienia ich funkcji oraz zastosowań w systemach automatyki. Odpowiedzi takie jak nadprądowy, podczęstotliwościowy oraz nadnapięciowy odnoszą się do różnych typów przekaźników, które działają w innych warunkach i mają różne funkcje. Przekaźnik nadprądowy, na przykład, jest używany do ochrony obwodów przed przeciążeniem; aktywuje się, gdy natężenie prądu przekroczy ustalony próg. Z kolei przekaźnik nadnapięciowy działa wtedy, gdy napięcie wzrośnie powyżej bezpiecznego poziomu. Oba te typy przekaźników są kluczowe dla zabezpieczenia układów elektrycznych, jednak ich działanie nie jest związane z niskim napięciem, co jest kluczowym aspektem w kontekście przekaźników podnapięciowych. Przekaźniki podczęstotliwościowe są rzadziej spotykane i służą do detekcji niskich częstotliwości sygnałów, co nie ma bezpośredniego związku z problematyką napięcia. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w kontekście projektowania obwodów i systemów kontrolnych. W praktyce, nieodpowiedni dobór przekaźników może prowadzić do awarii systemów, co podkreśla znaczenie wiedzy na temat ich działania i zastosowania w różnych sytuacjach inżynieryjnych.

Pytanie 39

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Autotransformator
B. Rozrusznik
C. Falownik
D. Softstart
Falownik to urządzenie elektroniczne, które pozwala na płynną regulację obrotów silników indukcyjnych poprzez modulację częstotliwości i napięcia zasilającego. Dzięki zastosowaniu falowników, można precyzyjnie dostosować prędkość obrotową silnika do aktualnych potrzeb aplikacji, co jest szczególnie istotne w procesach przemysłowych, gdzie zmiana prędkości ma kluczowe znaczenie dla efektywności działania. Na przykład, w systemach transportowych, takich jak przenośniki taśmowe, regulacja prędkości pozwala na optymalizację przepływu materiałów. Falowniki są zgodne z normami IEC 61800, które określają wymagania dotyczące regulacji napędów elektrycznych. Ponadto, zastosowanie falowników wpływa na zmniejszenie zużycia energii, co jest zgodne z aktualnymi trendami w kierunku zrównoważonego rozwoju i efektywności energetycznej. Dzięki swojej wszechstronności, falowniki są wykorzystywane w różnych gałęziach przemysłu, w tym w automatyce budynkowej, klimatyzacji i wentylacji, co czyni je niewątpliwie najlepszym wyborem do regulacji obrotów silników indukcyjnych.

Pytanie 40

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody z miedzi beztlenowej
B. Przewody aluminiowe
C. Przewody do instalacji wewnętrznych
D. Przewody o podwyższonej odporności na UV
Wybór odpowiednich przewodów do instalacji zewnętrznych jest kluczowy, aby zapewnić ich trwałość i bezpieczeństwo. Przewody aluminiowe, choć lżejsze i tańsze, są mniej odporne na korozję i mają niższą przewodność elektryczną w porównaniu do przewodów miedzianych. Aluminiowe przewody mogą być stosowane w niektórych przypadkach, ale wymagają szczególnej uwagi podczas montażu, aby zminimalizować ryzyko utleniania się i utraty połączeń. Przewody z miedzi beztlenowej charakteryzują się wysoką przewodnością i są często stosowane w audiofilskich zastosowaniach, gdzie zależy nam na minimalizacji strat sygnału. Jednak w kontekście instalacji zewnętrznych ich odporność na czynniki atmosferyczne nie różni się znacząco od standardowych przewodów miedzianych. Przewody do instalacji wewnętrznych są projektowane z myślą o innych warunkach eksploatacyjnych. Nie są one przystosowane do odporności na promieniowanie UV, zmiany temperatury czy wilgotności. Użycie takich przewodów na zewnątrz może prowadzić do ich szybkiej degradacji, co z kolei zwiększa ryzyko awarii systemu. Dlatego ważne jest, aby zawsze stosować przewody odpowiednie do specyficznych warunków środowiskowych, w jakich będą eksploatowane.