Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 5 stycznia 2026 14:46
  • Data zakończenia: 5 stycznia 2026 14:54

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 10001100, OUTPUT - 0000
B. INPUT - 01011010, OUTPUT - 1001
C. INPUT - 01011010, OUTPUT - 0110
D. INPUT - 01001001, OUTPUT - 0000
Wybór ustawienia INPUT - 01001001, OUTPUT - 0000 jest właściwy, ponieważ odpowiada on konfiguracji dla sygnału wejściowego 0 ÷ 20 mA, co jest idealne dla czujnika o zakresie 0 ÷ 100°C/0 ÷ 20 mA, oraz dla wyjścia sterownika PLC również ustawionego na 0 ÷ 20 mA. To ustawienie zapewnia poprawne skalowanie sygnałów, unikając nieprawidłowości w odczytach. Dzięki temu możemy być pewni, że dane z czujnika są przekazywane bez zniekształceń do PLC. W praktyce takie rozwiązanie jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie dokładność pomiarów jest kluczowa. Ważne jest, aby zawsze dobierać odpowiednie ustawienia DIP switcha do charakterystyki sygnału, co znacznie zwiększa niezawodność całego systemu. Moim zdaniem, znajomość takich konfiguracji to podstawowa wiedza dla każdego inżyniera automatyka, która pomaga uniknąć błędów w konfiguracji systemów sterowania. Stosowanie standardów jest nie tylko zgodne z dobrymi praktykami, ale także z normami branżowymi, co jest niezwykle istotne w kontekście jakości i bezpieczeństwa pracy urządzeń.

Pytanie 2

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PD
B. PI
C. PID
D. P
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 3

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Ciśnienia.
B. Natężenia przepływu.
C. Temperatury.
D. Natlenienia.
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 4

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy Φ10 wykonane pod montaż czujników indukcyjnych?

A. Przymiar kreskowy.
B. Mikrometr zewnętrzny.
C. Czujnik zegarowy.
D. Suwmiarkę uniwersalną.
Suwmiarka uniwersalna to narzędzie, które świetnie się sprawdza do mierzenia otworów z dokładnością do 0,1 mm. Jest to bardzo wszechstronne urządzenie, które dzięki swojej budowie pozwala na szybkie i dokładne pomiary zarówno zewnętrznych, jak i wewnętrznych wymiarów. W przypadku otworów o średnicy Φ10, suwmiarka pozwala na precyzyjne zmierzenie ich średnicy dzięki specjalnym szczękom pomiarowym umieszczonym na końcu ramion. Moim zdaniem, suwmiarka to podstawowe narzędzie w każdym warsztacie, ale trzeba pamiętać, by stosować ją zgodnie z zaleceniami producenta, ponieważ niewłaściwe użytkowanie może prowadzić do błędnych odczytów. Warto również zaznaczyć, że suwmiarki są dostępne w różnych wersjach - cyfrowej i analogowej. W przemyśle standardem jest stosowanie suwmiarki cyfrowej ze względu na łatwość odczytu i eliminację błędów związanych z interpretacją skali. Pamiętaj też, że dokładność pomiaru zależy nie tylko od narzędzia, ale również od umiejętności i doświadczenia osoby mierzącej.

Pytanie 5

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Dylatacyjny.
B. Rezystancyjny.
C. Termoelektryczny.
D. Pirometryczny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.

Pytanie 6

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica napięcia 2x24 V DC / 230 V AC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Obiektowy separator napięć 24 V DC
D. Zasilacz 230 V AC / 24 V DC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 7

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF.
B. licznika impulsów zliczającego w górę CTU.
C. timera opóźniającego załączenie TON.
D. licznika impulsów zliczającego w dół CTD.
Blok przedstawiony na rysunku to licznik impulsów zliczający w dół, znany jako CTD. Działa on w ten sposób, że na każde zbocze opadające sygnału zegarowego (CD), wartość rzeczywista (CV) licznika zmniejsza się o jeden. Kiedy licznik osiąga wartość zero, wyjście Q zmienia stan, co sygnalizuje osiągnięcie zadanej liczby impulsów. To powszechnie stosowane narzędzie w automatyzacji, szczególnie przy kontrolowaniu sekwencji procesów produkcyjnych. Użycie CTD jest popularne w aplikacjach, gdzie potrzebne jest ścisłe zliczanie elementów, np. w liniach montażowych. Warto pamiętać, że w praktyce liczniki mogą być resetowane za pomocą sygnału RST, co przywraca je do stanu początkowego, umożliwiając rozpoczęcie nowego cyklu zliczania. Liczniki tego typu są nieocenione w systemach, gdzie precyzyjne kontrolowanie ilości jest kluczowe, np. przy pakowaniu produktów. Moim zdaniem, znajomość obsługi takich liczników to podstawa dla każdego inżyniera automatyka, gdyż umożliwia projektowanie skutecznych i niezawodnych systemów sterowania procesem.

Pytanie 8

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PID
C. P
D. PD
Regulator PI, czyli proporcjonalno-całkujący, jest często stosowany w układach regulacji, ponieważ łączy zdolność szybkiej reakcji na zmiany z precyzyjnym osiąganiem wartości zadanej. Na prezentowanym wykresie widzimy, że odpowiedź skokowa regulatora ma początkowy skok, który odpowiada części proporcjonalnej (P), a następnie liniowe narastanie, co jest charakterystyczne dla części całkującej (I). Dzięki temu regulator PI jest w stanie nie tylko szybko zareagować na zmiany, ale również wyeliminować uchyb ustalony, co jest jego kluczową zaletą w stosunku do regulatorów P. W praktyce oznacza to, że PI jest często używany w systemach, gdzie dokładność jest kluczowa, na przykład w regulacji temperatury czy prędkości obrotowej. W wielu aplikacjach przemysłowych stosuje się algorytmy PI ze względu na ich prostotę i efektywność, a także łatwość implementacji w układach cyfrowych. Warto też zaznaczyć, że dobór parametrów regulatora PI, takich jak wzmocnienie proporcjonalne i czas całkowania, jest kluczowy dla osiągnięcia optymalnej wydajności systemu. Optymalizacja tych parametrów często bazuje na metodach takich jak Ziegler-Nichols, które pozwalają na szybkie i skuteczne dostrojenie regulatora do specyfiki danego układu.

Pytanie 9

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 2
Ilustracja do odpowiedzi B
C. Narzędzie 4
Ilustracja do odpowiedzi C
D. Narzędzie 3
Ilustracja do odpowiedzi D
Wiele osób mylnie uznaje, że każde narzędzie o ostrzu i uchwycie nadaje się do zdejmowania izolacji, ale w tym przypadku tylko jedno z nich – narzędzie numer 1 – nie służy do takiego celu. To obcinak do rur z tworzyw sztucznych, wykorzystywany głównie przez hydraulików i monterów instalacji wodnych lub pneumatycznych. Narzędzia 2, 3 i 4 to różne wersje ściągaczy izolacji (automatycznych lub ręcznych), przeznaczone do pracy z przewodami elektrycznymi. Obcinak z pierwszego zdjęcia ma półokrągłe ostrze i mechanizm dźwigniowy, który generuje dużą siłę cięcia – w kontakcie z kablem elektrycznym nie ściągnie izolacji, tylko całkowicie go przetnie. Typowym błędem początkujących monterów jest używanie takich narzędzi, bo „dobrze leżą w dłoni”, jednak efekt to przecięte żyły lub uszkodzona powłoka zewnętrzna. W praktyce elektrycznej do przewodów wielożyłowych stosuje się precyzyjne ściągacze z regulacją średnicy i automatycznym dopasowaniem do przekroju. Dzięki nim można zdjąć izolację z pojedynczej żyły bez ryzyka przerwania drutu. Właśnie dlatego w tym pytaniu poprawną odpowiedzią jest narzędzie nr 1 – to nie sprzęt elektryka, tylko hydraulika.

Pytanie 10

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. hakowy.
B. oczkowy.
C. dynamometryczny.
D. imbusowy.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.

Pytanie 11

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. H oraz L
B. 5 oraz L
C. O oraz L
D. 2 oraz L
Świetnie, że wybrałeś odpowiedź 5 oraz L. W schematach elektrycznych falowników często występuje potrzeba podłączenia termistora w celu zabezpieczenia silnika przed przegrzaniem. Zgodnie z dobrymi praktykami, termistor podłącza się do specjalnie dedykowanego wejścia, które w tym przypadku to zacisk 5, skonfigurowany jako wejście termistora. Zacisk ten współpracuje z zaciskiem L, który pełni rolę zacisku wspólnego dla wejść programowalnych. Takie połączenie zapewnia falownikowi możliwość monitorowania temperatury silnika i uruchamiania procedur zabezpieczających w razie potrzeby, co jest kluczowe dla wydłużenia żywotności sprzętu. W praktyce, poprawne podłączenie termistora pozwala na automatyczne wyłączanie falownika w momencie wykrycia przekroczenia dopuszczalnej temperatury. Jest to zgodne z normami bezpieczeństwa i standardami przemysłowymi, które kładą nacisk na minimalizację ryzyka uszkodzeń sprzętu i zapewnienie bezpieczeństwa w miejscu pracy. Jeśli interesujesz się elektryką, warto pogłębić wiedzę na temat różnych rodzajów czujników temperatury oraz ich zastosowań w przemyśle.

Pytanie 12

Które przyłącze procesowe jest zastosowane w przedstawionym czujniku?

Parametry techniczne czujnika

- Ekonomiczny przetwornik ciśnienia

- Zakres pomiarowy: 0 ... 1 bar / 0 ... 250 bar

- Dokładność: 0,3%

- Przyłącze procesowe: G¼"

- Sygnał wyjściowy: 4 ... 20 mA

- Przyłącze elektryczne: wtyczka kątowa

- Temperatura medium: -25 ... 85 °C

- Zasilanie: 9 ... 30 V DC

Ilustracja do pytania
A. Wewnętrzny gwint 1/4"
B. Wewnętrzny gwint 1/8”
C. Zewnętrzny gwint 1/4”
D. Zewnętrzny gwint 1/8”
Dokładnie, ten czujnik ma przyłącze procesowe o gwincie zewnętrznym G¼”, który jest powszechnie stosowany w przemysłowych aplikacjach pomiaru ciśnienia. Ten typ przyłącza jest często wybierany ze względu na jego niezawodność i kompatybilność z różnymi systemami. G¼” to standardowy gwint metryczny, co oznacza, że jest szeroko stosowany na całym świecie, dzięki czemu łatwo znaleźć odpowiednie przejściówki czy złączki. Warto zauważyć, że gwint ten zapewnia dobrą szczelność i jest odporny na wysokie ciśnienia, co czyni go idealnym wyborem dla przetworników ciśnienia. W praktyce, wybór odpowiedniego przyłącza procesowego jest kluczowy, aby zapewnić prawidłowe działanie czujnika i uniknąć problemów z przeciekami. Dlatego też zrozumienie, jakie przyłącze jest używane, jest niezbędne dla inżynierów i techników podczas instalacji i konserwacji systemów pomiarowych. W branży przyjęło się, że wybierając komponenty instalacji, takie jak czujniki, zwraca się szczególną uwagę na zgodność przyłączy, co ułatwia montaż i późniejszą obsługę układu.

Pytanie 13

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. dławiący.
C. redukujący.
D. zwrotny.
Zawór redukujący to kluczowy element w systemach pneumatycznych, gdzie niezbędne jest utrzymanie stałego ciśnienia, niezależnie od wahań w ciśnieniu zasilania. Tego rodzaju zawory działają na zasadzie redukcji ciśnienia wlotowego do określonego poziomu, co jest niezbędne dla bezpieczeństwa i efektywności pracy układu. W praktyce, zawór redukujący można spotkać w różnych aplikacjach przemysłowych, takich jak systemy sterowania maszyn czy linie produkcyjne, gdzie wymagana jest precyzyjna kontrola ciśnienia. Dobre praktyki branżowe sugerują instalowanie zaworów redukujących w miejscach, gdzie ciśnienie zasilania może ulegać znacznym wahaniom, co mogłoby prowadzić do niekontrolowanych zmian w działaniu siłowników lub innych komponentów pneumatycznych. Warto również zauważyć, że zawory te często są wyposażone w manometry do monitorowania ciśnienia po redukcji, co pozwala na precyzyjną kontrolę i ewentualne dostosowanie ustawień. Wybór odpowiedniego zaworu redukującego, spełniającego normy takie jak ISO 4414, jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności całego systemu. Takie rozwiązania są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i wielu innych sektorach, gdzie precyzyjna kontrola ciśnienia jest krytyczna dla działania urządzeń.

Pytanie 14

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. A
B. P
C. B
D. T
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 15

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4 ÷ 20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne półprzewodnikowe.
B. bimetalowe.
C. termoelektryczne.
D. rezystancyjne metalowe.
Czujniki Pt100 to jedne z najpopularniejszych elementów do pomiaru temperatury w systemach automatyki. Są to czujniki rezystancyjne metalowe, co oznacza, że ich działanie opiera się na zjawisku zmiany rezystancji metalu wraz ze zmianą temperatury. W przypadku Pt100, materiałem czujnika jest platyna, co zapewnia wysoką stabilność i liniowość pomiarów. Stąd nazwa Pt (od platyny) i 100 (rezystancja wynosząca 100 omów w temperaturze 0°C). Przetworniki z sygnałem wyjściowym 4 ÷ 20 mA są standardem przemysłowym, pozwalającym na przesyłanie danych z czujnika do systemu sterującego na duże odległości, przy minimalnych zakłóceniach. Z mojego doświadczenia, takie połączenie daje wysoką dokładność i niezawodność w różnych aplikacjach, od przemysłu spożywczego po energetykę. Przy projektowaniu systemów warto zwrócić uwagę na kalibrację czujników i kompatybilność z używanymi przetwornikami, co może znacznie zwiększyć efektywność i dokładność pomiarów. Warto też pamiętać, że czujniki Pt100 są szeroko stosowane, co ułatwia serwis i dostępność części zamiennych.

Pytanie 16

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

Lp.Zakres pracTermin wykonania
1Śruby mocująceSprawdzenie momentu dokręceniaPo pierwszej godzinie pracy
2ZbiornikOpróżnianie zbiornikaPo każdej pracy dłuższej niż 1 h
3Filtr ssawnyCzyszczenieCo 100 h
WymianaW razie konieczności
4OlejWymianaPo pierwszych 100 h
Co 300 h
Sprawdzanie stanuRaz w tygodniu
A. Co 300 godzin.
B. Co godzinę.
C. Co 100 godzin.
D. Raz w tygodniu.
To, że wybrałeś odpowiedź 'Co 100 godzin' jako prawidłową, świadczy o twojej umiejętności prawidłowego analizowania harmonogramów konserwacyjnych. W tabeli wyraźnie podano, że czyszczenie filtra ssawnego powinno się odbywać co 100 godzin pracy. To nie jest przypadkowy wybór; jest to część standardowych procedur konserwacyjnych, które pomagają w utrzymaniu optymalnej wydajności maszyn. Regularne czyszczenie filtra ssawnego co 100 godzin pozwala na uniknięcie problemów związanych z zanieczyszczeniem systemu, takich jak zmniejszenie mocy ssania czy awarie pompy. Z mojego doświadczenia wynika, że takie podejście znacząco wydłuża żywotność sprzętu i zmniejsza koszty związane z naprawami. W branży powszechnie stosuje się zasadę, że regularna konserwacja jest tańsza i bardziej efektywna niż naprawy awaryjne. Dlatego warto zawsze pamiętać o harmonogramie konserwacji i nie pomijać żadnych jego punktów. Filtry są kluczowym elementem systemów ssawnych i ich stan ma bezpośredni wpływ na wydajność całego układu. Stąd też, takie regularne czyszczenie jest nie tylko zalecane, ale wręcz konieczne dla zachowania pełnej funkcjonalności urządzeń. Odpowiednia konserwacja to również dbałość o bezpieczeństwo eksploatacji, co w dłuższej perspektywie przekłada się na lepsze wyniki finansowe i operacyjne.

Pytanie 17

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DG-w
B. DY-w
C. LY-w
D. DS-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 18

Jaka jest właściwa kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Zainstalować nowy zawór.
  4. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
A.
  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
B.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
  3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
  4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
C.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  4. Zainstalować nowy zawór.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
D.
A. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 3. Za pomocą klucza maszynowego odkręcić zawór kulowy. 4. Zainstalować nowy zawór. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
B. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Zainstalować nowy zawór. 4. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
C. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
D. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu. 4. Za pomocą klucza maszynowego odkręcić zawór kulowy. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
Analizując błędne odpowiedzi, zauważamy kilka typowych błędów, które mogą prowadzić do poważnych problemów podczas wymiany elektropneumatycznego zaworu kulowego. Po pierwsze, w niektórych odpowiedziach pominięto krok odłączenia przewodów elektrycznych i pneumatycznych przed odkręceniem zaworu kulowego. Jest to poważny błąd, ponieważ pozostawienie podłączonych przewodów podczas demontażu może prowadzić do uszkodzenia instalacji, a nawet porażenia prądem. Kolejność czynności ma znaczenie, ponieważ zapewnia, że żadna część systemu nie jest pod napięciem ani ciśnieniem, co mogłoby stanowić zagrożenie. Kolejnym często spotykanym błędem jest odwrotny montaż zaworu przed podłączeniem przewodów. Taka sekwencja może powodować problemy z prawidłowym dopasowaniem elementów i utrudniać dostęp do połączeń, co z kolei może wpłynąć na szczelność i niezawodność całego układu. Dobre praktyki w branży nakazują, aby zawsze najpierw odłączyć i podłączyć przewody, zanim zajmiemy się mechanicznym montażem lub demontażem. Warto także pamiętać o przestrzeganiu zasady wyłączania i włączania zasilania mediów jako pierwszego i ostatniego kroku, co jest kluczowe dla bezpieczeństwa pracy. Właściwa sekwencja czynności zgodna z przyjętymi standardami przemysłowymi nie tylko zapewnia bezpieczeństwo, ale także optymalizuje czas i efektywność pracy, minimalizując ryzyko nieplanowanych przestojów i uszkodzeń systemu.

Pytanie 19

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. bimetalowe.
C. rezystancyjne metalowe.
D. rezystancyjne półprzewodnikowe.
Odpowiedź, że czujniki Pt100 są rezystancyjnymi metalowymi czujnikami, jest całkowicie poprawna. Pt100 to jeden z najpopularniejszych typów czujników temperatury stosowanych w przemyśle, a ich nazwa pochodzi od platyny (Pt) używanej w ich konstrukcji oraz wartości nominalnej oporu 100 omów w temperaturze 0°C. Czujniki rezystancyjne, znane również jako RTD (Resistance Temperature Detector), działają na zasadzie zmiany oporu elektrycznego wraz ze zmianą temperatury. Platyna jest wykorzystywana w tych czujnikach ze względu na jej stabilność chemiczną, liniowość charakterystyki oraz dokładność pomiaru. Przetworniki z sygnałem wyjściowym 4–20 mA są standardem w przemyśle, ponieważ umożliwiają precyzyjne przesyłanie wartości pomiarowej na duże odległości z minimalnymi stratami. Dzięki temu, w systemach automatyki, można dokładnie monitorować i kontrolować procesy technologiczne. Warto też wspomnieć, że dzięki specjalnym wersjom czujników Pt100 można mierzyć temperatury w zakresie od -200°C do 850°C, co czyni je niezwykle wszechstronnymi. Moim zdaniem, pracując w automatyce, warto wiedzieć, jakie czujniki są stosowane w różnych aplikacjach, ponieważ każda sytuacja wymaga innego podejścia i narzędzi, a wiedza o działaniu i specyfikacji czujników Pt100 to podstawa w wielu branżach technologicznych.

Pytanie 20

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 1,50 V
B. 6,00 V
C. 15,00 V
D. 0,15 V
Wskaźnik zatrzymał się na wartości 30% pełnego zakresu, a ponieważ zakres maksymalny Umax wynosi 5 V, obliczenie jest proste: 30% × 5 V = 1,5 V. Oznacza to, że woltomierz wskazuje napięcie 1,50 V. Takie urządzenia działają liniowo, więc skala jest proporcjonalna – każdy podział odpowiada tej samej części zakresu pomiarowego. W praktyce, przy pomiarach napięcia stałego (DC), należy zawsze ustawić zakres nieco wyższy niż przewidywane napięcie, żeby nie przeciążyć miernika. Z mojego doświadczenia: analogowe woltomierze są świetne do obserwacji zmian napięcia w czasie – wskazówka reaguje płynnie, co pozwala wychwycić wahania, czego nie widać na miernikach cyfrowych. W laboratoriach i warsztatach często stosuje się przeliczanie proporcjonalne właśnie w taki sposób – np. jeśli zakres to 10 V, a wskazanie wynosi 25%, to napięcie to 2,5 V. Drobna uwaga praktyczna – wskazanie powinno być odczytywane dokładnie na wprost, aby uniknąć błędu paralaksy.

Pytanie 21

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 4,2 m
B. 6,4 m
C. 2,2 m
D. 8,5 m
Dobrze to rozgryzłeś. Wysokość podnoszenia cieczy przy prędkości obrotowej n = 1850 1/min i wydajności 550 m³/h to 4,2 m. Z wykresu widać, że dla tej wartości obrotów, krzywa charakterystyczna pompy przecina się w okolicach 4,2 m na osi wysokości podnoszenia. Takie oszacowanie jest zgodne z zasadami projektowania i doboru pomp w praktyce inżynierskiej. Ważne jest, aby zrozumieć, jak parametry takie jak prędkość obrotowa i wydajność wpływają na działanie pompy. W przypadku pomp, ich charakterystyki są kluczowym elementem pozwalającym określić, jak będą działały w różnych warunkach. Znajomość tej zależności jest istotna podczas projektowania systemów pompowych, gdzie należy dążyć do pracy w optymalnym punkcie charakterystyki. Dobrze dobrana pompa zapewnia nie tylko efektywne działanie, ale także mniejsze zużycie energii, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i oszczędności energii w przemyśle.

Pytanie 22

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i amperomierza.
B. woltomierza i miernika natężenia przepływu powietrza.
C. termometru i woltomierza.
D. termometru i miernika natężenia przepływu powietrza.
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 23

Do montażu przewodów do złączki przedstawionej na zdjęciu należy użyć

Ilustracja do pytania
A. klucza nasadowego.
B. wkrętaka krzyżowego.
C. wkrętaka płaskiego.
D. klucza oczkowego.
Użycie wkrętaka płaskiego do montażu przewodów w złączkach jest standardową procedurą w wielu zastosowaniach elektrycznych. Wkrętak płaski, znany również jako śrubokręt płaski, idealnie pasuje do śrub z prostymi nacięciami, które są często stosowane w tego typu złączkach. Tego typu śruby są powszechnie używane ze względu na swoją prostotę i dostępność. Praktyka ta jest wspierana przez wiele standardów branżowych, które zalecają stosowanie odpowiednich narzędzi do konkretnego typu śrub, aby uniknąć ich uszkodzenia i zapewnić bezpieczne połączenie. Moim zdaniem, warto zainwestować w dobrej jakości wkrętak płaski, który ułatwi pracę i zwiększy jej efektywność. Przykładem mogą być instalacje elektryczne w domu, gdzie często spotykamy się z koniecznością montażu przewodów w rozdzielnicach czy puszkach przyłączeniowych. Dobrze dobrane narzędzie nie tylko przyspiesza pracę, ale również minimalizuje ryzyko uszkodzenia urządzeń czy przewodów.

Pytanie 24

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. silnik prądu stałego.
B. multimetr cyfrowy.
C. opornik dekadowy.
D. autotransformator.
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 25

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. NPN NC
B. NPN NO
C. PNP NC
D. PNP NO
Czujnik przedstawiony na schemacie działa w konfiguracji NPN NC, co oznacza, że jego wyjście jest normalnie zamknięte i otwiera się, gdy sygnał jest wykryty. W układzie NPN tranzystor działa jako przełącznik między wyjściem a masą (0 V), co jest typowe w aplikacjach, gdzie urządzenie zasilane jest dodatnim napięciem. W praktyce, takie rozwiązanie jest powszechnie wykorzystywane w przemyśle automatyki, gdzie wymagana jest wysoka niezawodność i precyzja. Czujniki NPN są często stosowane w połączeniu z systemami PLC, które są zaprojektowane do pracy z sygnałami niskiego poziomu. Warto również wspomnieć, że konfiguracja NC (normally closed) jest używana w aplikacjach, gdzie bezpieczeństwo jest kluczowe, ponieważ ewentualne uszkodzenie przewodu prowadzi do otwarcia obwodu, co łatwo można wykryć. Standardy branżowe, takie jak IEC 60947-5-2, określają zasady dla czujników zbliżeniowych, zapewniając zgodność i bezpieczeństwo w różnorodnych aplikacjach.

Pytanie 26

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. magnetycznego.
B. indukcyjnego.
C. optycznego.
D. pojemnościowego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 27

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 1, I3 = 1.
B. I2 = 0, I3 = 1.
C. I2 = 1, I3 = 0.
D. I2 = 0, I3 = 0.
Odpowiedź, że I2 = 1, I3 = 0, jest prawidłowa z kilku powodów. W układach automatyki pneumatycznej, czujniki takie jak B1 i B2 monitorują położenie elementów wykonawczych, tutaj siłownika. Przy wsuniętym tłoczysku, czujnik B1 powinien być aktywowany, co oznacza, że na wejściu I2 pojawia się stan wysoki (1). Czujnik B2, z kolei, monitoruje położenie wysuniętego tłoczyska, a ponieważ tłoczysko jest wsunięte, B2 pozostaje nieaktywny, co oznacza stan niski (0) na wejściu I3. Praktycznym zastosowaniem takiego układu jest kontrolowanie sekwencji pracy maszyny, gdzie kluczowe jest, aby kolejne kroki były podejmowane tylko wtedy, gdy poprzednie zostały prawidłowo zakończone. Standardy branżowe, takie jak IEC 61131 dotyczące programowania sterowników PLC, zalecają precyzyjne monitorowanie stanów wejść i wyjść, aby zapewnić bezpieczną i efektywną pracę systemu. Moim zdaniem, zrozumienie, jak działa taka logika, jest fundamentem w projektowaniu stabilnych i niezawodnych systemów automatyki. Warto także zwrócić uwagę na to, że stan czujnika B1 jako aktywny przy wsuniętym tłoczysku to dobra praktyka, która pomaga w łatwym diagnozowaniu ewentualnych problemów.

Pytanie 28

Czujnik indukcyjny służy do detekcji elementów

A. plastikowych.
B. szklanych.
C. drewnianych.
D. metalowych.
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 29

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 0110
B. input SW1 - 01001001, output SW2 - 0000
C. input SW1 - 10001100, output SW2 - 0000
D. input SW1 - 01011010, output SW2 - 1001
Ustawienia separatora dla czujnika muszą być dokładne, aby system działał poprawnie. W przypadku błędnych ustawień, jak w odpowiedziach 1, 2 i 4, w systemie mogą pojawić się istotne błędy pomiarowe. Na przykład, ustawienie SW1 na 01011010 i SW2 na 1001 nie pokrywa właściwego zakresu prądowego, co może prowadzić do niedokładnych odczytów. Podobnie, konfiguracja SW1 na 10001100 i SW2 na 0000 jest nieodpowiednia, ponieważ nie w pełni odpowiada wymaganiom dla zakresu 0÷20 mA. To często spotykany błąd, gdy użytkownik nie dostosowuje ustawień do specyfikacji czujnika i sterownika, co skutkuje błędami w interpretacji danych. Każde urządzenie wymaga precyzyjnej kalibracji i dostosowania, co jest kluczowe w inżynierii systemów automatyki. Również ustawienie SW1 na 01011010 i SW2 na 0110 może być mylące, gdyż nie obejmuje prawidłowego zakresu dla sygnałów. Dobrą praktyką jest zawsze odwoływanie się do dokumentacji technicznej przed dokonaniem ustawień, aby uniknąć niezgodności i zapewnić optymalną pracę systemu.

Pytanie 30

Na ilustracji przedstawiono

Ilustracja do pytania
A. separator sygnałów USB.
B. zadajnik cyfrowo-analogowy.
C. elektroniczny czujnik ciśnienia.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 31

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. pojemnościowy.
B. indukcyjny.
C. optyczny.
D. magnetyczny.
Odpowiedź optyczny jest prawidłowa, ponieważ w systemach bezpieczeństwa często stosuje się bariery świetlne, które opierają się na technologii optycznej. Tego typu czujniki składają się z nadajnika i odbiornika, które tworzą niewidzialną linię światła, najczęściej podczerwonego. Kiedy coś lub ktoś przecina tę linię, system jest w stanie natychmiast zareagować, na przykład zatrzymać maszynę, co jest kluczowe dla zapewnienia bezpieczeństwa pracowników. W wielu zakładach przemysłowych bariery optyczne są standardem, ponieważ pozwalają na szybkie i skuteczne wykrywanie obecności osób w niebezpiecznych strefach. Co więcej, dzięki różnorodnym konfiguracjom, można je dostosować do specyficznych potrzeb danego stanowiska pracy. Moim zdaniem, zastosowanie technologii optycznej w takich rozwiązaniach jest jednym z najlepszych przykładów na to, jak nowoczesna technologia wpływa na poprawę warunków bezpieczeństwa w przemyśle. Nowoczesne standardy BHP często wymagają stosowania takich rozwiązań, co podkreśla ich znaczenie w dzisiejszym środowisku pracy.

Pytanie 32

Który układ łagodnego rozruchu (softstart) należy zastosować do silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. ATS01N125
B. ATS01N103
C. ATS01N212
D. ATS01N109
Wybór układu ATS01N125 jest trafny ze względu na kilka kluczowych czynników. Po pierwsze, ten model softstartu posiada obudowę o stopniu ochrony IP67, co oznacza, że jest całkowicie odporny na kurz i może być zanurzony w wodzie do pewnej głębokości. W przypadku środowisk o wysokim zapyleniu, taki poziom ochrony jest absolutnie niezbędny, aby zapewnić długotrwałą i niezawodną pracę urządzenia. Ponadto, ATS01N125 jest przystosowany do pracy z silnikami o mocy 2,2 kW przy napięciu 1x230 V, co w pełni zaspokaja wymagania dla silnika 1-fazowego o mocy 0,3 kW. Moim zdaniem, dobór odpowiedniego stopnia ochrony IP to standardowa praktyka inżynierska, która zwiększa bezpieczeństwo i trwałość instalacji. Warto również pamiętać, że stosowanie softstartów pomaga w łagodnym uruchamianiu silników, zmniejszając obciążenie mechaniczne i przedłużając żywotność całego układu. Na rynku można znaleźć wiele rozwiązań, ale zawsze warto kierować się nie tylko mocą, ale i środowiskowymi wymaganiami, aby unikać problemów z eksploatacją.

Pytanie 33

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Twoja odpowiedź jest prawidłowa, ponieważ wykres nr 2 doskonale oddaje zasadę działania regulatora z histerezą. W momencie, gdy temperatura spada poniżej dolnej granicy histerezy (89°C), wyjście przekaźnikowe zostaje włączone, co uruchamia element grzewczy. Dzięki temu temperatura znowu wzrasta do poziomu górnej granicy histerezy (91°C), po czym przekaźnik zostaje wyłączony. Takie działanie zapewnia stabilność pracy systemu, unikając zbyt częstych przełączeń, co mogłoby prowadzić do zużycia elementów mechanicznych. W praktycznych zastosowaniach, takich jak ogrzewanie pomieszczeń czy procesy przemysłowe, takie podejście zapewnia efektywność energetyczną i dłuższą żywotność urządzeń. Dobór odpowiedniej histerezy jest kluczowy, aby zbalansować komfort i oszczędność energii. Standardy w branży automatyki, jak np. normy IEC, podkreślają znaczenie tego typu rozwiązań, szczególnie gdy mowa o sterownikach PLC. Warto również pamiętać, że histereza może być różna w zależności od specyficznych wymagań systemu. Moim zdaniem, zrozumienie tej koncepcji to podstawa w pracy z systemami sterowania, gdyż pozwala unikać nadmiernego zużycia energii i przedłuża żywotność urządzeń.

Pytanie 34

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka płaskiego.
B. klucza imbusowego.
C. wkrętaka krzyżowego.
D. klucza płaskiego.
Poprawna odpowiedź to klucz płaski. Na zdjęciu widać typowe przyłącze pneumatyczne z gwintem zewnętrznym i sześciokątną częścią korpusu, które umożliwia jego montaż lub demontaż za pomocą klucza płaskiego lub oczkowego. Ten kształt sześciokąta jest właśnie po to, by narzędzie dobrze przylegało do powierzchni i nie uszkodziło gwintu ani obudowy. W praktyce technicznej, szczególnie w pneumatyce i hydraulice, takie złącza występują w dużych ilościach, np. przy siłownikach, rozdzielaczach i przewodach ciśnieniowych. Klucz płaski pozwala uzyskać odpowiedni moment dokręcenia bez ryzyka zniszczenia gniazda, co bywa problemem przy użyciu kombinerek czy wkrętaków. Moim zdaniem warto pamiętać, by zawsze dobrać właściwy rozmiar klucza (np. 12 mm, 14 mm), a przed demontażem odłączyć źródło sprężonego powietrza – to drobiazg, ale często pomijany w warsztacie. Dobrą praktyką jest też użycie niewielkiej ilości taśmy teflonowej przy ponownym montażu, żeby zapewnić szczelność połączenia.

Pytanie 35

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. brązowym.
C. czerwonym.
D. niebieskim.
Odpowiedź niebieska jest poprawna, ponieważ w systemach elektrycznych zgodnych z normą PN-EN 60446 kolorem niebieskim oznacza się przewody neutralne, czyli te, które są podłączone do bieguna neutralnego zasilania. Praktycznie w każdym przypadku, gdy mamy do czynienia z instalacją elektryczną, neutralne przewody w kolorze niebieskim są kluczowe dla prawidłowego funkcjonowania systemu. Przykładowo, podczas instalacji przemienników częstotliwości, przewód L2 często jest przewodem neutralnym, który uziemia i stabilizuje układ. Ważne jest, aby pamiętać, że właściwe oznaczenie przewodów nie tylko ułatwia serwisowanie, ale przede wszystkim zapewnia bezpieczeństwo i zgodność z przepisami. Moim zdaniem, umiejętność rozpoznawania i prawidłowego łączenia przewodów to fundamentalna umiejętność każdego elektryka, dlatego warto przyłożyć do tego szczególną uwagę. Dobre oznaczenie przewodów to także mniejsze ryzyko pomyłki w przyszłości, co jest jednym z podstawowych standardów w branży elektrycznej.

Pytanie 36

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. interfejsu komunikacyjnego.
C. modułu wyjściowego.
D. modułu wejściowego.
Świetnie, zrozumiałeś funkcję tego urządzenia! ADMC-1801 działa jako moduł wejściowy w systemie sterowania PLC. Moduły wejściowe są kluczowe w zbieraniu danych z różnych czujników i urządzeń w celu monitorowania stanu systemu. W tym przypadku ADMC-1801 jest połączony z czujnikiem PT100, który mierzy temperaturę. Moduły wejściowe przetwarzają sygnały z czujników na sygnały cyfrowe, które PLC może analizować. Dzięki temu można efektywnie kontrolować procesy przemysłowe. Dobre praktyki w branży wskazują na używanie odpowiednich modułów wejściowych, aby zapewnić dokładność i niezawodność danych. Praktyczne zastosowanie takich modułów jest szerokie, od automatyki budynkowej po zaawansowane systemy produkcyjne. Upewnienie się, że moduł wejściowy jest poprawnie skonfigurowany i skalibrowany, jest kluczowe dla prawidłowego działania całego systemu. Moim zdaniem, zrozumienie roli modułów wejściowych jest fundamentem w nauce o systemach PLC.

Pytanie 37

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. cięcia przewodów.
C. ściągania izolacji.
D. zaciskania wtyków RJ45.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 38

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

A. amperomierza.
B. woltomierza.
C. omomierza.
D. watomierza.
Woltomierz to narzędzie, które jest nieodzowne, jeśli chcemy zmierzyć napięcie elektryczne w obwodzie, jak na przykład napięcie zasilające cewkę elektrozaworu. Działa on na zasadzie pomiaru różnicy potencjałów między dwoma punktami obwodu. To urządzenie jest skonstruowane tak, by miało wysoką rezystancję, co minimalizuje wpływ na mierzony układ. Kiedy przykładasz woltomierz do cewki, mierzysz napięcie, które dostarczane jest do tego elementu, a nie przepływ prądu czy moc. W praktyce, woltomierze są używane w technice elektrycznej i elektronicznej do diagnozowania i monitorowania systemów, co pozwala na szybką identyfikację ewentualnych problemów z zasilaniem. Standardy przemysłowe, takie jak IEC 61010, określają wymagania bezpieczeństwa i dokładności dla takich urządzeń, co jest istotne w pracy profesjonalistów dbających o bezpieczeństwo i efektywność systemów elektrycznych. Moim zdaniem, każdy kto pracuje z elektryką powinien znać podstawy użycia woltomierza, bo to podstawa w diagnozowaniu problemów z zasilaniem.

Pytanie 39

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wejściowego.
C. modułu wyjściowego.
D. interfejsu komunikacyjnego.
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 40

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 3.
Ilustracja do odpowiedzi A
B. Przewód 4.
Ilustracja do odpowiedzi B
C. Przewód 1.
Ilustracja do odpowiedzi C
D. Przewód 2.
Ilustracja do odpowiedzi D
Niepoprawny wybór przewodu do połączenia silnika z przemiennikiem częstotliwości to częsty błąd, który może skutkować poważnymi zakłóceniami i uszkodzeniem urządzeń. Przewody typu 2, 3 i 4 nie są przeznaczone do przesyłania energii elektrycznej w obwodach silnoprądowych. Przewód 2 to kabel sygnałowy lub telekomunikacyjny o cienkiej żyle i ekranie, stosowany w systemach automatyki niskoprądowej – jego przekrój jest zbyt mały, a izolacja nie jest odporna na wysokie napięcia impulsowe pochodzące z falownika. Przewody 3 i 4 to skrętki komputerowe typu UTP lub FTP, przeznaczone do transmisji danych (Ethernet), a nie do zasilania. Ich izolacja nie wytrzymuje obciążeń prądowych rzędu kilku amperów na fazę, a brak odpowiedniego oplotu ekranowego powoduje emisję i odbiór zakłóceń elektromagnetycznych, które mogą zakłócić pracę przemiennika i sterowników PLC. W praktyce takie błędne połączenie prowadzi do resetowania falowników, przegrzewania się przewodów i generowania błędów w układzie sterowania. Dlatego zgodnie z wymaganiami norm PN-EN 50525 i PN-EN 60204-1 należy stosować przewody ekranowane o odpowiednim przekroju i klasie odporności EMC – tak jak w przewodzie 1.