Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 07:15
  • Data zakończenia: 17 grudnia 2025 07:18

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 2

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. prawidłowe działanie wyłącznika
B. brak możliwości zadziałania załączonego wyłącznika
C. niemożność załączenia wyłącznika pod obciążeniem
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
W przypadku niewłaściwego podłączenia przewodu PE zamiast N, pojawiają się różne nieporozumienia dotyczące funkcji i działania wyłącznika różnicowoprądowego. Wiele osób może błędnie sądzić, że takie podłączenie nie wpłynie na działanie urządzenia, jednak jest to dalekie od prawdy. Wyłącznik różnicowoprądowy działa na zasadzie porównywania prądów w przewodach fazowym i neutralnym, a jego funkcją jest zabezpieczenie użytkowników przed porażeniem prądem oraz uszkodzeniem urządzeń. Podłączenie PE zamiast N spowoduje, że wyłącznik nie będzie w stanie prawidłowo monitorować różnic prądowych, co jest niezbędne do jego działania. W związku z tym, pojawi się sytuacja, w której wyłącznik nie zadziała w przypadku wystąpienia prądu upływu, co zwiększa ryzyko porażenia prądem. Ponadto, istnieje przekonanie, że wyłącznik będzie działał przy mniejszych prądach upływu, ale to również jest błędne, ponieważ z powodu braku właściwego podłączenia, nie będzie on mógł zareagować w żadnej sytuacji. Takie nieprawidłowe założenia mogą prowadzić do niebezpiecznych konsekwencji, które mogą zagrażać zdrowiu i życiu użytkowników. Ostatecznie, kluczowe jest, aby stosować się do standardów dotyczących instalacji elektrycznych oraz przestrzegać zasad bezpieczeństwa, aby uniknąć tego typu pomyłek.

Pytanie 3

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX2
B. IPX4
C. IPX5
D. IPX3
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 4

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
B. Dodatkowe miejscowe wyrównawcze połączenia ochronne
C. Bardzo niskie napięcie ze źródła bezpiecznego
D. Samoczynne wyłączenie zasilania
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 5

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. B.
B. D.
C. A.
D. C.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia odnośnie do wymagań dotyczących instalacji elektrycznych, szczególnie w kontekście podtynkowego ułożenia w rurkach stalowych. Wiele osób może myśleć, że do wykonania takiej instalacji wystarczy jedynie wiertarka i poziomica, co jest dużym uproszczeniem. Chociaż te narzędzia są cenne, kluczowe są również inne elementy, takie jak bruzdownica, która pozwala na precyzyjne wykonanie bruzd w ścianie. Bez tego narzędzia, ułożenie rurek stalowych staje się wysoce problematyczne, ponieważ brak odpowiednich bruzd może prowadzić do nieestetycznego wykończenia oraz nieprawidłowego mocowania rurek. Ponadto, wybór niewłaściwych materiałów do mocowania rurek, jak np. brak drutu wiązałkowego lub gwoździ, może skutkować nieodpowiednią stabilnością instalacji, co z kolei zagraża bezpieczeństwu użytkowników. Błędem jest również pomijanie znaczenia otwornicy koronowej, która jest niezbędna do wykonania otworów pod puszki instalacyjne, co jest kluczowe dla prawidłowego umiejscowienia elementów instalacji. Zrozumienie tych aspektów jest niezbędne, aby uniknąć typowych błędów myślowych i zapewnić, że instalacja elektryczna będzie nie tylko funkcjonalna, ale także zgodna z obowiązującymi normami bezpieczeństwa.

Pytanie 6

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
B. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Wybór innych odpowiedzi opiera się na mylnych założeniach dotyczących właściwości przewodu oraz jego zastosowania. W przypadku sznura mieszkaniowego pięciożyłowego w izolacji polietylenowej, zrozumienie oznaczeń jest kluczowe. Sznury mieszaniowe zazwyczaj mają zastosowanie w różnych aplikacjach niż przewody oponowe, których elastyczność i odporność na uszkodzenia mechaniczne są ich kluczowymi cechami. Izolacja polietylenowa jest z kolei mniej odporna na wysokie temperatury i substancje chemiczne, co czyni ją mniej odpowiednią do zastosowań, które wymagają wyższej ochrony. W odniesieniu do przewodu pięciożyłowego, nie jest on zgodny z oznaczeniem OMY, które odnosi się do przewodów trzyżyłowych. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej również nie pasuje do opisanego oznaczenia, gdyż przewody warsztatowe są przeznaczone do innych zastosowań, często związanych z przemysłem. Typowe błędy wynikają z nieprawidłowego rozumienia oznaczeń przewodów oraz ich właściwości. Kluczowe znaczenie ma zrozumienie, że wybór odpowiedniego przewodu powinien być oparty na jego zastosowaniu, a także na właściwych normach i standardach branżowych, takich jak PN-EN 50525, które precyzują, jakie przewody powinny być stosowane w określonych warunkach.

Pytanie 7

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Wykorzystanie separacji ochronnej.
B. Najwyższy poziom ochrony.
C. Brak ochrony przed wilgocią i pyłem.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 8

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Wybór odpowiedzi 1, 2 lub 3 może wydawać się logiczny, jednak opiera się na błędnym założeniu, że wszystkie punkty będą przewodzić prąd bez względu na ich połączenia. Punkty 1, 2 i 3 są podłączone do elementów metalowych, które powinny zapewniać ciągłość połączenia wyrównawczego. Kluczowym aspektem, który jest często mylnie rozumiany, jest zrozumienie, że izolacyjne materiały, takie jak plastik, nie przewodzą prądu. W przypadku punktu 4, jeśli rura gazowa jest wykonana z materiału nieprzewodzącego, to naturalnym jest, że nie może ona zapewnić ciągłości połączenia. Nieprzewodzące materiały nie mogą być używane jako część systemu wyrównawczego, co często prowadzi do błędnych interpretacji i wyborów. Przykładem błędnych wniosków może być przypuszczenie, że każda rura metalowa, niezależnie od połączeń, zawsze zapewnia ciągłość. Niezrozumienie zasady, według której materiał ma kluczowe znaczenie dla właściwego działania instalacji, może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W branży elektrycznej standardy, takie jak PN-EN 61439, podkreślają znaczenie prawidłowego doboru materiałów oraz sprawowania nad nimi kontroli, co ma istotny wpływ na bezpieczeństwo systemów elektrycznych.

Pytanie 9

Który z przedstawionych zestawów wyłączników nadprądowych należy dobrać do zabezpieczenia obwodów pralki automatycznej i piekarnika w przedstawionej instalacji elektrycznej?

Ilustracja do pytania
A. Zestaw 4.
B. Zestaw 1.
C. Zestaw 2.
D. Zestaw 3.
Jak źle dobierzesz wyłączniki nadprądowe, to może być nieciekawie, zwłaszcza dla urządzeń elektrycznych. Zestaw 1 z wyłącznikiem o za dużej wartości nominalnej nie będzie działał jak trzeba przy przeciążeniu, a to może uszkodzić pralkę albo piekarnik. Wysokie wartości wyłączników potrafią spowolnić reakcję na awarie, co sprzyja przegrzewaniu sprzętów. A Zestaw 4 ma wyłącznik o za niskiej wartości, co wiąże się z częstymi wyłączeniami przy normalnym użytkowaniu – to może być denerwujące dla klientów. Zestaw 3 pokazuje, że dobór wyłączników nie powinien opierać się tylko na ich wartościach, ale też na charakterystyce sprzętów, które mają chronić. Często ludzie nie myślą o prądach startowych czy chwilowych skokach, które mogą być problematyczne przy uruchamianiu silników w pralce. Dobrze dobrany wyłącznik to taki, który odpowiada nie tylko obliczonemu prądowi roboczemu, ale także specyfice pracy danego sprzętu.

Pytanie 10

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 11

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Wyrównawczy.
B. Ochronny.
C. Uziemiający.
D. Neutralny.
Niepoprawne odpowiedzi mogą wynikać z błędnych skojarzeń dotyczących funkcji i oznaczeń przewodów w instalacjach elektrycznych. Odpowiedź "Uziemiający" może być mylnie wybrana przez osoby, które nie rozróżniają pomiędzy funkcjami przewodów. Uziemiający przewód rzeczywiście ma na celu odprowadzenie prądu do ziemi, jednak jego oznaczenie jest inne i nie jest to samo co przewód ochronny PE. Warto zaznaczyć, że przewód neutralny, oznaczany często jako N, służy do prowadzenia prądu powracającego do źródła, a jego rola jest zupełnie inna – nie ma on funkcji ochronnej. Wybór odpowiedzi "Wyrównawczy" również może wprowadzać w błąd, gdyż przewody wyrównawcze mają na celu wyrównanie potencjałów w różnych częściach instalacji, co nie odpowiada funkcji przewodu ochronnego, który ma chronić przed porażeniem. Typowe błędy myślowe obejmują mylenie funkcji przewodów oraz brak znajomości standardów dotyczących oznaczeń. Dlatego ważne jest, aby dokładnie zapoznać się z normami branżowymi i edukować się w zakresie oznaczeń, co przyczyni się do lepszego zrozumienia instalacji elektrycznych oraz zwiększy bezpieczeństwo ich użytkowania.

Pytanie 12

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 106 mA
B. 208 mA
C. 130 mA
D. 170 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 13

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Nóż monterski, wkrętak, obcinaczki boczne
B. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
C. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
D. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
Użycie niewłaściwych narzędzi do przygotowania przewodów elektrycznych może prowadzić do poważnych problemów związanych z bezpieczeństwem i funkcjonalnością instalacji. Na przykład, nóż monterski, który byłby użyty w pierwszej odpowiedzi, może wydawać się odpowiednim narzędziem do cięcia przewodów, jednak jego stosowanie przy ściąganiu izolacji jest niewskazane. Nóż może łatwo uszkodzić przewód, co prowadzi do osłabienia struktury i może spowodować zwarcie lub inne awarie elektryczne. Podobnie, wkrętak nie odgrywa żadnej roli w procesie przygotowania przewodów, a jego użycie w tym kontekście jest nieadekwatne. W przypadku kolejnej niepoprawnej odpowiedzi, sugerowane obcinaczki czołowe również nie są optymalnym wyborem, ponieważ ich konstrukcja jest przystosowana do innego typu cięcia, co nie zapewni precyzyjnego i bezpiecznego zakończenia przewodów. Użycie zaciskarki końcówek tulejkowych w tej odpowiedzi bez odpowiednich narzędzi do ściągania izolacji również jest niewłaściwe, gdyż nieprzygotowane końce przewodów mogą prowadzić do niepewnych połączeń. Przygotowanie przewodów elektrycznych wymaga zrozumienia, że każde z narzędzi ma swoją specyfikę i przeznaczenie, a ich niewłaściwy dobór jest powszechnym błędem w praktyce. Dobrą praktyką jest zawsze stosowanie narzędzi zgodnych z normami i zaleceniami producentów, co nie tylko zapewnia bezpieczeństwo, ale również efektywność wykonywanych zadań.

Pytanie 14

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Uszkodzona izolacja przewodu fazowego
B. Odłączony przewód ochronny
C. Zamieniony przewód fazowy z neutralnym
D. Zamieniony przewód ochronny z neutralnym
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 15

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
B. Maksymalny prąd zwarciowy
C. Najwyższy czas zadziałania
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 16

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. rozdzielnica główna
B. przyłącze
C. złącze
D. wewnętrzna linia zasilająca
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 17

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 18

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Regulator oświetlenia.
C. Przekaźnik priorytetowy.
D. Regulator temperatury.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 19

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Wiertarkę, punktak, zestaw wkrętaków
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 20

Na rysunku przedstawiono

Ilustracja do pytania
A. pomiar impedancji pętli zwarcia.
B. sprawdzanie ciągłości przewodów ochronnych.
C. badanie skuteczności ochrony podstawowej.
D. pomiar rezystancji izolacji przewodów ochronnych.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 21

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 10 A oraz charakterystykę B
B. Prąd znamionowy 16 A oraz charakterystykę B
C. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
D. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 22

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 11,0 V
C. 12,4 V
D. 12,0 V
Wybór napięcia 11,0 V, 11,3 V lub 12,4 V jako odpowiedzi na postawione pytanie może wynikać z nieporozumień związanych z dynamiką rozładowania akumulatorów oraz ich charakterystyką. Napięcie akumulatora w trakcie rozładowania zmienia się, a jego wartość końcowa jest zależna od wielu czynników, w tym od wartości prądu i czasu rozładowania. Odpowiedzi 11,0 V oraz 11,3 V są zbyt niskie, co może sugerować, że nie uwzględniono rzeczywistego zachowania akumulatora w opisanym czasie i przy danym obciążeniu. Natomiast odpowiedź 12,4 V może wydawać się kusząca, lecz w rzeczywistości jest zbyt wysoka, co wskazuje na brak uwzględnienia prawidłowego spadku napięcia, typowego dla akumulatorów poddanych dużym obciążeniom. Ponadto, niektóre osoby mogą błędnie interpretować wykresy lub nie dostrzegać, że napięcie nie tylko zależy od pojemności, ale również od charakterystyki chemicznej użytego akumulatora oraz warunków jego pracy. Kluczowym błędem jest także pomijanie faktu, że w trakcie rozładowania przy dużym prądzie akumulator nie jest w stanie utrzymać nominalnego napięcia, co prowadzi do zaniżenia prognozowanej wartości. Dlatego niezwykle ważne jest, aby przy takich analizach zawsze odnosić się do danych wykresów oraz zrozumieć, jak różne czynniki wpływają na wydajność i żywotność akumulatorów.

Pytanie 23

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Schemat B jest właściwym wyborem, ponieważ przedstawia instalację elektryczną w sposób, który umożliwia lokalizację ewentualnych braków ciągłości w połączeniach. Elementy takie jak przewody, wyłącznik różnicowoprądowy oraz odbiornik (żarówka) są wyraźnie zaznaczone, co pozwala na łatwe zidentyfikowanie, gdzie może wystąpić przerwa. Praktyczne zastosowanie takiego schematu w diagnostyce instalacji elektrycznych jest nieocenione, szczególnie w kontekście bezpieczeństwa. W przypadku awarii, technik może szybko zlokalizować miejsce przerwy, używając odpowiednich narzędzi, takich jak multimeter lub tester ciągłości. Zgodnie z normami branżowymi, takie schematy są zalecane w dokumentacji instalacyjnej, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości i bezpieczeństwa instalacji elektrycznych. Warto również zauważyć, że dokładna analiza schematu B pozwala na zrozumienie interakcji między różnymi elementami systemu, co jest kluczowe dla skutecznej diagnozy problemów.

Pytanie 24

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 4,0 mm2
B. 25 mm2
C. 16 mm2
D. 10 mm2
Wybór nieodpowiedniego przekroju dla przewodu PE może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. Przykładowo, odpowiedzi sugerujące mniejsze przekroje, takie jak 4,0 mm² lub 10 mm², są niezgodne z normami, ponieważ nie zapewniają wystarczającej nośności prądowej i mogą nie przewodzić prądów zwarciowych, co naraża użytkowników na niebezpieczeństwo. Zbyt mały przekrój przewodu ochronnego zwiększa opór, co może prowadzić do przegrzewania się przewodu i ewentualnych uszkodzeń instalacji. Natomiast wybór 25 mm², choć większy, nie jest uzasadniony w tym przypadku, ponieważ nadmiarowy przekrój nie wpływa na poprawę bezpieczeństwa, a może generować niepotrzebne koszty i komplikacje w instalacji. W praktyce, nadmiarowy przekrój przewodu PE może wprowadzać dodatkowe problemy, takie jak trudności w instalacji czy manipulacji przewodami w ograniczonej przestrzeni. Zrozumienie tych zasad jest kluczowe dla projektantów instalacji elektrycznych, ponieważ bezpieczeństwo instalacji powinno być priorytetem, a stosowanie właściwych przekrojów przewodów jest częścią dobrych praktyk inżynieryjnych. Dlatego kluczowe jest, aby podczas projektowania systemów elektrycznych kierować się obowiązującymi normami oraz zasadami, które zapewniają nie tylko efektywność, ale i bezpieczeństwo użytkowników.

Pytanie 25

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 4.
Ilustracja 1 przedstawia prawidłowy sposób pomiaru rezystancji izolacji między przewodami czynnymi w układzie TN-C, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku tego układu przewód PEN pełni funkcję zarówno przewodu ochronnego, jak i neutralnego. Miernik został podłączony między przewody L1, L2, L3 a przewód PEN, co jest zgodne z normami, które zalecają sprawdzanie izolacji w taki sposób, aby uniknąć potencjalnych zagrożeń związanych z porażeniem prądem elektrycznym. W praktyce, pomiar rezystancji izolacji powinien być przeprowadzany regularnie, szczególnie w instalacjach starszego typu, aby wykryć ewentualne uszkodzenia izolacji, które mogą prowadzić do niebezpiecznych sytuacji. Standardy takie jak PN-IEC 60364-6 oraz PN-EN 61557-2 wyraźnie definiują metody przeprowadzania takich pomiarów, a ich przestrzeganie jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz sprawności systemu. Wykonywanie pomiarów izolacji na etapie odbioru oraz w trakcie eksploatacji jest najlepszą praktyką, która pozwala na wczesne wykrycie problemów i ich usunięcie, co z kolei przekłada się na dłuższą żywotność instalacji.

Pytanie 26

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,40 V)
B. 230 V (±1,20 V)
C. 230 V (±1,30 V)
D. 230 V (±1,50 V)
Wybór niepoprawnych wartości błędu wskazania pomiaru może wynikać z nieprawidłowej interpretacji klasy dokładności miernika. Klasa 0,5 jest często mylona z innymi klasami, co prowadzi do błędnych obliczeń. Na przykład, przy założeniu błędu ±1,30 V, ±1,20 V czy ±1,40 V, można zauważyć, że te wartości nie odpowiadają rzeczywistej wielkości dodatkowego błędu pomiarowego. Błąd pomiarowy powinien być zawsze obliczany na podstawie procentowej klasy dokładności w odniesieniu do wartości nominalnej, a nie bazować na subiektywnych ocenach czy zaokrągleniach. Tego rodzaju pomyłki mogą prowadzić do sytuacji, w których użytkownicy nie są świadomi rzeczywistego ryzyka, jakie niesie ze sobą stosowanie nieodpowiednich narzędzi pomiarowych. Użycie miernika z niewłaściwą klasą dokładności może skutkować poważnymi konsekwencjami, zwłaszcza w zastosowaniach przemysłowych, gdzie precyzyjne pomiary są kluczowe dla bezpieczeństwa operacji. Warto też zwrócić uwagę na to, że w praktyce inżynierskiej istotne jest nie tylko posiadanie miernika, ale także zrozumienie jego specyfikacji oraz umiejętność ich poprawnej interpretacji zgodnie z dobrą praktyką zawodową.

Pytanie 27

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. watomierza oraz woltomierza
C. woltomierza i amperomierza
D. omomierza i amperomierza
Podczas analizy błędnych odpowiedzi warto zauważyć, że pomiar rezystancji nie może być prawidłowo przeprowadzony wyłącznie za pomocą omomierza i woltomierza, ani tym bardziej wykorzystując watomierz. Omomierz jest narzędziem specjalistycznym przeznaczonym do bezpośredniego pomiaru rezystancji, jednak nie jest on wystarczający, aby uzyskać dokładne wyniki w przypadku bardziej skomplikowanych układów elektrycznych, gdzie istotne są zarówno napięcie, jak i prąd. Z kolei amperomierz sam w sobie nie mierzy rezystancji, lecz natężenie prądu, co w praktyce nie pozwala na bezpośrednie określenie wartości rezystancji bez znajomości napięcia. Wykorzystanie watomierza, który mierzy moc, również nie ma zastosowania w kontekście pomiarów rezystancji, ponieważ nie umożliwia obliczenia wartości R. Typowym błędem myślowym jest przeświadczenie, że jakiekolwiek urządzenie pomiarowe związane z elektrycznością może być użyteczne do pomiaru rezystancji, co jest mylnym rozumieniem zasady działania tych narzędzi. Aby uzyskać prawidłowe wyniki, niezbędne jest zrozumienie podstawowych zasad dotyczących relacji między napięciem, prądem i rezystancją oraz znajomość odpowiednich narzędzi do ich pomiaru.

Pytanie 28

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji przewodów.
C. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
D. Prąd różnicowy wyłącznika różnicowoprądowego.
Pomiar czasu wyłączenia wyłączników instalacyjnych nadprądowych dotyczy parametrów zabezpieczeń w instalacji elektrycznej, które są określane w kontekście ochrony przed przeciążeniem i zwarciem. Czas ten jest zazwyczaj mierzony przy pomocy specjalistycznych urządzeń, takich jak analizatory parametrów sieci czy testery wyłączników, a nie mierników izolacji. Przyrząd prezentowany na zdjęciu nie jest przystosowany do takich pomiarów, co jest częstym błędem myślowym wśród osób rozpoczynających pracę w branży elektrycznej. Z kolei impedancja pętli zwarcia to parametr, który również wymaga dedykowanych narzędzi, takich jak mierniki impedancji. Tego rodzaju pomiary są kluczowe w ocenie skuteczności działania zabezpieczeń, ale nie są związane z pomiarami wykonywanymi miernikiem izolacji. Również prąd różnicowy wyłącznika różnicowoprądowego jest mierzony przy użyciu odpowiednich testerów, a nie mierników izolacji, które nie są w stanie dostarczyć potrzebnych wyników. Przyzwyczajenie do mylenia tych typów pomiarów jest powszechne, ale przysparza problemów w diagnostyce i ocenie stanu instalacji elektrycznych. Zrozumienie różnic pomiędzy tymi parametrami i ich odpowiednimi metodami pomiaru jest fundamentalne dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznych.

Pytanie 29

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Ex9BP-N 4P C10
B. FRCdM-63/4/03
C. Z-MS-16/3
D. SM 25-40
Oznaczenie Z-MS-16/3 odnosi się do wyłącznika silnikowego, który jest kluczowym elementem w instalacjach elektrycznych zasilających silniki. Wyłączniki silnikowe są zaprojektowane, aby zabezpieczać silniki przed przeciążeniem, zwarciem oraz innymi nieprawidłowościami w pracy. Z-MS-16/3 to przykład wyłącznika, który może być stosowany w instalacjach przemysłowych, gdzie ochrona silników jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. Wyłączniki te działają na zasadzie automatycznego wyłączenia zasilania w przypadku wykrycia nieprawidłowego prądu, co zapobiega uszkodzeniom zarówno silnika, jak i samej instalacji elektrycznej. W praktyce, ich zastosowanie jest szczególnie istotne w aplikacjach takich jak pompy, wentylatory, kompresory czy maszyny robocze. Przykładowo, w przypadku silnika napędzającego dużą maszynę, zastosowanie Z-MS-16/3 pozwala na szybkie odłączenie zasilania, co minimalizuje ryzyko kosztownych awarii i przestojów. Ponadto, wyłączniki te powinny być zgodne z normami IEC 60947-4-1, co zapewnia ich wysoką jakość oraz niezawodność.

Pytanie 30

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. Na tynku.
B. W listwach elektroinstalacyjnych.
C. Pod tynkiem.
D. W kanałach przypodłogowych.
Wybór odpowiedzi związanej z układaniem przewodów w listwach elektroinstalacyjnych, na tynku lub w kanałach przypodłogowych jest błędny z kilku powodów. Zastosowanie listw elektroinstalacyjnych, choć zapewnia łatwy dostęp do przewodów, nie jest zgodne z zasadami estetyki oraz bezpieczeństwa w nowoczesnych projektach budowlanych. Listwy są często narażone na uszkodzenia mechaniczne, a ich obecność w pomieszczeniach może prowadzić do nieestetycznego wyglądu oraz problematycznego dostępu do przewodów w przypadku ich awarii. Umieszczanie przewodów na tynku to kolejna nieodpowiednia praktyka, ponieważ przewody są wtedy narażone na działanie czynników zewnętrznych, co może prowadzić do ich szybszego zużycia oraz wzrostu ryzyka zwarcia. Poza tym, układanie przewodów w kanałach przypodłogowych, choć stosowane w niektórych przypadkach, również nie jest zalecane, zwłaszcza w budynkach mieszkalnych, gdzie można zastosować bardziej estetyczne i bezpieczne rozwiązania, takie jak ułożenie przewodów pod tynkiem. Kluczowym błędem jest myślenie, że dostępność przewodów w przypadku ich awarii jest ważniejsza niż ich długoterminowa ochrona i estetyka. Wymogi dotyczące instalacji w budynkach mieszkalnych przewidują, że przewody powinny być ukryte, co nie tylko poprawia wygląd wnętrza, ale także zwiększa bezpieczeństwo użytkowników.

Pytanie 31

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi może wynikać z niezrozumienia podstawowych różnic pomiędzy różnymi typami opraw oświetleniowych. Oprawy oznaczone jako A, C i D mogą wydawać się odpowiednie z perspektywy ich wyglądu, jednak nie posiadają one charakterystycznej konstrukcji rastrowej. Często błędnie sądzimy, że każda oprawa, która rozprasza światło, spełnia funkcje rastrowe. Oprawy z innymi typami osłon, mogą być wyposażone w przesłony, które jedynie zmniejszają natężenie światła, ale nie rozpraszają go w sposób równomierny. Istotnym aspektem jest fakt, że oświetlenie rastrowe jest projektowane z myślą o minimalizacji olśnienia, co jest realizowane przez zastosowanie odpowiednich materiałów i struktury. Ponadto, nieodpowiednie zrozumienie tych zasad może prowadzić do wyboru opraw, które nie tylko nie spełniają oczekiwań użytkowników, ale mogą także wprowadzać w błąd w kontekście spełniania norm dotyczących jakości oświetlenia w miejscach pracy. Dlatego kluczowe jest, aby przed podjęciem decyzji o wyborze oprawy oświetleniowej, dokładnie zapoznać się z ich właściwościami oraz przeznaczeniem, aby uniknąć typowych błędów związanych z niewłaściwym doborem oświetlenia.

Pytanie 32

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. czasu działania wyzwalacza zwarciowego
B. wartości prądu wyłączającego
C. maksymalnej wielkości prądu zwarciowego
D. progu zadziałania wyzwalacza przeciążeniowego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 33

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór wyłącznika z innych opcji jako rozwiązania problemu ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S może wynikać z błędnego zrozumienia funkcji i zastosowań poszczególnych typów wyłączników. Wiele osób może myśleć, że każdy wyłącznik różnicowoprądowy wystarczy, aby zapewnić pełną ochronę przed porażeniem, co jest mylnym przekonaniem. Wyłączniki różnicowoprądowe są zaprojektowane głównie do wykrywania upływności prądu, a nie do przerywania obwodu w przypadku zwarć lub przeciążeń. Zastosowanie wyłącznika, który nie ma odpowiednich parametrów do reagowania na sytuacje awaryjne, może prowadzić do sytuacji, w której nieprawidłowe działanie instalacji elektrycznej będzie miało poważne konsekwencje. W praktyce stosowanie wyłączników nadprądowych w połączeniu z różnicowoprądowymi pozwala na uzyskanie wyższej jakości ochrony. Należy pamiętać, że norma PN-EN 61008-1 określa wymagania dotyczące wyłączników różnicowoprądowych, a także ich zastosowanie w różnych instalacjach elektrycznych. Zrozumienie różnic i funkcji każdego z tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 34

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Ciągłość przewodów.
B. Prąd upływu.
C. Kolejność faz zasilających.
D. Rezystancję uziemienia odbiornika.
Wybór odpowiedzi o ciągłości przewodów i innych parametrach jest nietrafiony. Tester, który widzisz, służy tylko do sprawdzania kolejności faz i nic więcej. Na przykład, ciągłość przewodów sprawdzamy zazwyczaj multimetrem, żeby mieć pewność, że wszystko jest podłączone i nie ma przerw w obwodzie. To kluczowe, zwłaszcza w instalacjach, bo przerwy mogą namieszać w działaniu systemu. Jak chodzi o rezystancję uziemienia, to nie zmierzysz jej tym testerem. Potrzebujesz specjalnych narzędzi do uziemienia, żeby upewnić się, że wszystko jest bezpieczne i zgodne z normami. Prąd upływu też wymaga użycia właściwych urządzeń, więc to ważne, żeby mieć świadomość, co każde narzędzie robi i do czego służy. Niepoprawne przypisanie funkcji do testerów może prowadzić do poważnych błędów w diagnozowaniu i naprawach.

Pytanie 35

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze niskoprężne.
B. Żarowe.
C. Półprzewodnikowe.
D. Wyładowcze wysokoprężne.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 36

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Transformatora jednofazowego.
B. Dławika.
C. Prądnicy synchronicznej.
D. Silnika jednofazowego.
Odpowiedzi, które wskazują na inne maszyny elektryczne, zawierają szereg nieprawidłowych założeń, które mogą prowadzić do mylnych wniosków. Na przykład, silnik jednofazowy jest często mylony z dławikiem, jednak te dwa urządzenia mają diametralnie różne funkcje. Dławik jest elementem pasywnym, który ma na celu ograniczenie prądu w obwodach elektrycznych, co nie ma związku z zapisanymi parametrami na tabliczce, które dotyczą aktywnego urządzenia, jakim jest silnik. Transformator jednofazowy to kolejne niewłaściwe skojarzenie, ponieważ jego główną funkcją jest zmiana napięcia, a nie generowanie ruchu mechanicznego, jak w przypadku silnika. Parametry takie jak moc, prąd czy napięcie, które są kluczowe dla silnika, nie są odpowiednie dla transformatora. Prądnica synchroniczna, z kolei, jest maszyną, która generuje energię elektryczną, a nie wykorzystuje jej do wytwarzania ruchu, co również wyklucza ją jako właściwą odpowiedź. Mylnym wnioskom często towarzyszy brak zrozumienia różnic w działaniu różnych urządzeń elektrycznych oraz ich zastosowania. Aby poprawnie zidentyfikować typ maszyny, ważne jest, aby zrozumieć, jakie funkcje pełnią poszczególne elementy i jakie są ich charakterystyczne parametry. W praktyce, znajomość tych różnic jest niezbędna do skutecznego projektowania oraz doboru odpowiednich urządzeń w inżynierii elektrycznej.

Pytanie 37

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 1NO + 2NC
B. 3NC + 2NO + 1NC
C. 3NO + 2NO + 1NC
D. 3NC + 1NO + 2NC
Wybór niewłaściwej odpowiedzi często wynika z braku dokładnej analizy schematu elektrycznego oraz niepełnego zrozumienia funkcji zestyków w układzie. Istnieje kilka kluczowych błędów, które mogą prowadzić do nieprawidłowych wniosków. Po pierwsze, zestyk normalnie zamknięty (NC) nie powinien być nadużywany w układach, w których wymagane jest równoczesne włączenie kilku urządzeń; ich zadaniem jest raczej zapewnienie bezpieczeństwa poprzez odcięcie zasilania w przypadku awarii. W sytuacjach, gdzie pojawia się konieczność aktywacji kilku elementów, zestyk normalnie otwarty (NO) jest bardziej odpowiedni, ponieważ zapewnia ciągłość obwodu przy włączonym styczniku. Ponadto, niektóre odpowiedzi mogą sugerować nadmiar zestyków NC w układzie, co prowadzi do skomplikowania działania i może powodować problemy przy uruchamianiu urządzeń. Regularna analiza schematów i stosowanie się do dobrych praktyk, takich jak, na przykład, dobór elementów zgodnie z ich specyfikacją techniczną oraz normami bezpieczeństwa, jest niezbędne dla zapewnienia prawidłowego działania wszystkich komponentów układu. W każdym przypadku, kluczowe jest przemyślane podejście do projektowania i realizacji układów elektrycznych, które powinno łączyć teorię z praktyką, pozwalając na osiągnięcie optymalnych rezultatów.

Pytanie 38

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Przekaźnik przeciążeniowy.
B. Rozłącznik bezpiecznikowy.
C. Ochronnik przeciwprzepięciowy.
D. Wyłącznik silnikowy.
Wybranie innego urządzenia zamiast wyłącznika silnikowego pokazuje, że chyba nie do końca rozumiesz, jak działają różne elementy obwodu elektrycznego. Na przykład przekaźnik przeciążeniowy jest odpowiedzialny za wykrywanie nadmiaru prądu, ale nie włącza silnika. On tylko chroni, a nie uruchamia. Rozłącznik bezpiecznikowy z kolei rozłącza obwód, żeby ochronić przed przeciążeniem, ale nie działa tak dynamicznie jak wyłącznik silnikowy. Ochronnik przeciwprzepięciowy ma inną rolę, bo tylko zabezpiecza przed nagłymi wzrostami napięcia, a nie zarządza zasilaniem silnika. Wybór niewłaściwych elementów może prowadzić do poważnych problemów w systemach elektrycznych, dlatego każdy element powinien być dobrany odpowiednio do jego funkcji i zastosowania. W praktyce, jeśli pomylisz rolę wyłącznika silnikowego, to mogą pojawić się błędne decyzje projektowe, co jest niezgodne z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 39

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 1.
C. Symbolem 3.
D. Symbolem 4.
Zrozumienie symboliki używanej w dokumentacji technicznej jest kluczowe dla zapewnienia właściwej komunikacji między inżynierami i technikami. Oznaczenie instalacji prowadzonej na drabinkach kablowych symbolami innymi niż Symbol 2 prowadzi do błędnej interpretacji schematów. Na przykład, wybór symbolu 1, 3 lub 4 może wynikać z mylenia drabinek kablowych z innymi rodzajami instalacji, co jest powszechnym błędem. Symbol 1 może przedstawiać inny typ prowadzenia kabli, taki jak korytka kablowe, które są używane w innych kontekstach, a nie na drabinkach, co może prowadzić do nieprawidłowego montażu. Dodatkowo, symbol 3 może być zarezerwowany dla instalacji o zupełnie innym zastosowaniu, co powoduje dodatkowe zamieszanie. Z kolei symbol 4, jeśli jest używany w niewłaściwym kontekście, może prowadzić do poważnych błędów w projektowaniu i realizacji instalacji. Typowe błędy myślowe, takie jak pomijanie różnic między symbolami a ich kontekstem zastosowania, mogą skutkować nieefektywnym zarządzaniem projektami oraz zwiększonym ryzykiem w trakcie realizacji zadań. Kluczowe jest, aby znać nie tylko konkretne symbole, ale również ich zastosowanie i kontekst, co pozwala na uniknięcie poważnych nieporozumień w pracy z dokumentacją techniczną.

Pytanie 40

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Nóż monterski
C. Płaskoszczypce
D. Zagniatarka
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.