Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 lutego 2026 06:48
  • Data zakończenia: 18 lutego 2026 07:28

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 800W
B. 1150W
C. 350W
D. 450W
Poprawna odpowiedź to 450W, co wynika z analizy sytuacji w układzie z dwoma watomierzami. W1 wskazuje moc ujemną przed zamianą zacisków, co sugeruje, że urządzenie odbierające energię pracuje w trybie, w którym moc oddawana przez źródło przewyższa moc pobieraną przez odbiornik. Po zamianie zacisków, watomierz W1 wykazuje moc 350W, co oznacza, że odbiornik pobiera tę moc od źródła. Z kolei watomierz W2 wskazuje moc 800W, co wskazuje na całkowity pobór mocy przez system. W takim przypadku, aby obliczyć całkowitą moc pobieraną przez odbiornik, należy uwzględnić, że moc wskazywana przez W1 była wcześniej negatywna. Zatem całkowita moc wynosi 350W + 800W = 1150W, jednakże z uwagi na negatywny pomiar W1, rzeczywista moc wynosi 450W. To podejście jest zgodne z zasadami analizy obwodów elektrycznych i pokazuje, jak ważne jest rozumienie wskazań urządzeń pomiarowych oraz ich interpretacja w kontekście działania całego układu. Takie analizy są kluczowe w inżynierii elektrycznej, gdzie dokładność pomiarów i ich interpretacja wpływają na optymalizację pracy systemów energetycznych.

Pytanie 2

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,69
C. 0,57
D. 0,82
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 3

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 4

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. z bitem M8
C. płaski.
D. PH2
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 5

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Prądnicy synchronicznej.
B. Silnika jednofazowego.
C. Dławika.
D. Transformatora jednofazowego.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 6

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 1, N - 3, PE - 4
B. L - 3, N - 4, PE - 1
C. L - 2, N - 3, PE - 4
D. L - 1, N - 4, PE - 3
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 7

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. Instalacja działa poprawnie.
B. Wystąpiła asymetria napięciowa między fazami.
C. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
D. W jednej z faz wystąpił zanik napięcia.
Istnieje wiele powodów, dla których błędne odpowiedzi mogą wydawać się przekonujące, jednak każda z nich ma swoje wady merytoryczne. Zgłaszanie nieprawidłowej kolejności faz jako przyczyny słabszego świecenia diody L2 jest mylące, ponieważ w przypadku takiej sytuacji diody świeciłyby w sposób nieregularny albo mogłyby nie świecić wcale. Widziana asymetria napięciowa jest efektem obciążenia, a nie błędnej konfiguracji faz. Zanik napięcia w jednej z faz może rzeczywiście wpłynąć na świecenie diody, ale jest to sytuacja skrajna, podczas gdy w omawianym przypadku mamy do czynienia z różnym natężeniem prądu w fazach, co prowadzi do obserwowanej asymetrii. Twierdzenie, że instalacja działa poprawnie, jest również zwodnicze, ponieważ sam fakt, że jedna z diod świeci słabiej, sugeruje problemy z równowagą obciążenia. Instalacje elektryczne powinny utrzymywać równomierny rozkład obciążeń, a wszelkie odchylenia powinny być natychmiast analizowane oraz korygowane w celu zapewnienia bezpieczeństwa i efektywności energetycznej. W praktyce monitorowanie obciążeń fazowych oraz ich optymalizacja zgodnie z normami, takimi jak PN-EN 50160, jest kluczowe dla zapewnienia stabilności sieci elektrycznej.

Pytanie 8

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. próg zadziałania wyzwalacza przeciążeniowego
B. wartość prądu wyłączającego
C. czas zadziałania wyzwalacza zwarciowego
D. zwarciową zdolność łączeniową
Wartość prądu wyłączającego jest kluczowa w kontekście samoczynnego wyłączenia zasilania, ponieważ określa poziom prądu, przy którym nadprądowy wyłącznik instalacyjny zareaguje i odłączy obwód. W sieciach TN-S, które charakteryzują się oddzieleniem systemu uziemienia od neutralnego, ważne jest, aby wartość ta była odpowiednio dobrana do warunków ochrony przeciwporażeniowej. Standardy takie jak PN-EN 60947-2 wskazują, że wyłącznik musi działać w określonym czasie, aby zapewnić bezpieczeństwo użytkowników. Przykładowo, dla prądu wyłączającego o wartości 30 mA w obwodach ochronnych, wyłącznik powinien zadziałać w czasie nieprzekraczającym 0,2 sekundy. Oprócz tego, dobór wartości prądu wyłączającego ma również praktyczne zastosowanie w projektowaniu instalacji, gdyż zbyt wysoka wartość może prowadzić do ryzyka porażenia prądem, a zbyt niska do niepotrzebnych wyłączeń. Z tego względu, analiza warunków pracy wyłącznika oraz jego parametrów jest niezbędna dla zapewnienia ochrony użytkowników i minimalizacji ryzyka awarii.

Pytanie 9

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,MR11,G4,G9
B. E27,G4,MR11,G9
C. E27,G9,MR11,G4
D. E27,G4,G9,MR11
Poprawna odpowiedź to E27, MR11, G4, G9, co odzwierciedla rzeczywisty układ trzonków źródeł światła przedstawionych na zdjęciu. Trzonek E27 jest jednym z najpopularniejszych typów stosowanych w oświetleniu domowym, szczególnie w żarówkach LED i tradycyjnych. Jego standardowy gwint umożliwia łatwą wymianę i dostępność na rynku. Trzonek MR11, z mniejszą średnicą, jest często używany w halogenach oraz w punktowym oświetleniu, co sprawia, że jest idealnym rozwiązaniem do akcentowania konkretnych elementów w przestrzeni. G4, z dwiema cienkimi nóżkami, znajduje swoje zastosowanie w lampkach biurkowych oraz w oświetleniu dekoracyjnym, gdzie wymagana jest kompaktowość i niewielkie rozmiary. Z kolei G9, z grubszymi nóżkami, jest często stosowany w nowoczesnym oświetleniu sufitowym i lampach stojących, oferując stabilność i wygodę montażu. Warto pamiętać, że znajomość typów trzonków jest kluczowa przy doborze odpowiednich źródeł światła do różnych zastosowań, co wpływa na efektywność energetyczną oraz estetykę wnętrz.

Pytanie 10

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 6 mm2
C. 10 mm2
D. 16 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 11

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Poprawna odpowiedź to C, ponieważ symbol "I∆" wewnątrz kwadratu jest standardowym oznaczeniem wyłącznika różnicowoprądowego (RCD) na schematach montażowych instalacji elektrycznych. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach ochrony przed porażeniem elektrycznym, a ich główną funkcją jest wykrywanie różnicy w prądzie płynącym do i z urządzenia. W przypadku wykrycia takiej różnicy, która może wskazywać na nieprawidłowe działanie instalacji (np. w wyniku uszkodzenia izolacji), wyłącznik automatycznie odłącza zasilanie, co chroni użytkowników przed niebezpieczeństwem. W praktyce, wyłączniki RCD są szeroko stosowane w budynkach mieszkalnych, komercyjnych oraz przemysłowych, zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61008-1. Zrozumienie znaczenia symboli na schematach jest istotne dla prawidłowego montażu i eksploatacji instalacji elektrycznych, co zapobiega awariom oraz zwiększa bezpieczeństwo użytkowników.

Pytanie 12

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 5 sekund
C. 0,2 sekundy
D. 1 sekundę
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 13

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. impedancja sieci zasilającej jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. rezystancja uziemienia jest zbyt niska
D. rezystancja izolacji miejsca pracy jest zbyt duża
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U<sub>0</sub> = 230 V oraz I<sub>a</sub> = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 14

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego - klasy II
B. pośredniego - klasy V
C. przeważnie pośredniego - klasy IV
D. bezpośredniego - klasy I
Wybór odpowiedzi wskazującej na przeważające oświetlenie bezpośrednie lub klasy niższe w kontekście oprawy oświetleniowej na rysunku jest konsekwencją nieprawidłowego zrozumienia podstawowych zasad klasyfikacji opraw oświetleniowych. Oświetlenie bezpośrednie, które zazwyczaj klasyfikuje się jako klasa I lub II, polega na emisji światła bezpośrednio z oprawy na obiekty bez pośrednictwa dodatkowych powierzchni. Takie podejście jest właściwe dla przestrzeni, gdzie konieczne jest skoncentrowane źródło światła, jednak w przypadku rysunku, oprawa została zaprojektowana w sposób, który eliminowałby ryzyko olśnienia oraz nadmiernej koncentracji światła w jednym punkcie. W efekcie, klasy IV i V, które obejmują oświetlenie przeważnie pośrednie oraz pośrednie, są bardziej odpowiednie dla zrównoważonego rozkładu oświetlenia. Pomijając tę subtelność, można wpaść w pułapkę myślenia, że wszystkie oprawy muszą emitować światło w sposób bezpośredni, co jest błędnym założeniem. Należy również uwzględnić, że standardy oświetleniowe, takie jak EN 12464, jednoznacznie wskazują na korzyści płynące z zastosowania opraw pośrednich w kontekście poprawy ergonomii oraz komfortu wizualnego, co jest kluczowe w środowiskach pracy oraz przestrzeniach publicznych.

Pytanie 15

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru rezystancji uziemienia.
B. pomiaru impedancji pętli zwarciowej.
C. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
D. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 16

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NC + 1NO
B. 3NC + 2NO + 1NC
C. 3NO + 2NO + 1NC
D. 3NO + 2NC + 1NO
Wybór odpowiedzi 3NO + 2NO + 1NC jest poprawny, gdyż dokładnie odpowiada wymaganiom wynikającym z analizy schematu elektrycznego. Stycznik Q21, aby prawidłowo realizować swoje funkcje, potrzebuje trzech zestyków normalnie otwartych (3NO), które służą do załączania trzech faz silnika, co jest standardowym rozwiązaniem w instalacjach trójfazowych. Dodatkowo, dwa zestyków normalnie otwartych (2NO) są niezbędne do funkcji sterowania, co jest zgodne z powszechnie stosowanymi normami w automatyce, aby zminimalizować ryzyko awarii oraz zapewnić odpowiednie zarządzanie procesem. Zestyk normalnie zamknięty (1NC) jest kluczowy dla funkcji zabezpieczających lub sygnalizacyjnych, co pozwala na zastosowanie dodatkowych zabezpieczeń, takich jak wyłączniki awaryjne lub sygnalizatory stanu. Taki układ zapewnia nie tylko efektywność działania, ale także bezpieczeństwo w eksploatacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 17

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
B. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
C. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
D. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 18

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 3,8 Ω
C. 6,6 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 19

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 20

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. LNY
B. YKY
C. NYM
D. YDY
Przewód YKY jest specjalnie zaprojektowany do stosowania na zewnątrz budynków. Głównym atutem tego przewodu jest jego izolacja i powłoka ochronna, które zapewniają odporność na warunki atmosferyczne, takie jak deszcz, śnieg czy promieniowanie UV. Dzięki zastosowaniu polwinitowej izolacji oraz dodatkowej powłoki ochronnej, przewód YKY spełnia wymagania norm dotyczących instalacji zewnętrznych. Ważne jest, aby podczas montażu przewodów na zewnątrz budynków stosować materiały certyfikowane i przetestowane pod kątem wytrzymałości na ekstremalne warunki środowiskowe. Przewód YKY jest również odporny na uszkodzenia mechaniczne, co czyni go idealnym wyborem do stosowania na otwartej przestrzeni, gdzie mogą występować różnego rodzaju zagrożenia fizyczne. Z mojego doświadczenia wynika, że przewody te są powszechnie używane w instalacjach ogrodowych, oświetleniowych oraz w miejscach, gdzie wymagana jest niezawodność i trwałość przez długi czas.

Pytanie 21

Do jakiej kategorii zaliczają się kable współosiowe?

A. Telekomunikacyjnych
B. Grzewczych
C. Oponowych
D. Kabelkowych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 22

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. SMYp
B. YDYt
C. OMYp
D. HDGs
Wybór niewłaściwych typów przewodów do instalacji elektrycznej w drewnianych ścianach, takich jak OMYp, SMYp czy YDYt, może prowadzić do poważnych problemów. Przewód OMYp, mimo że jest elastyczny i używany w instalacjach wewnętrznych, nie jest przystosowany do użycia w środowisku, gdzie istnieje ryzyko uszkodzeń mechanicznych oraz pożaru, co czyni go nieodpowiednim do drewnianych konstrukcji. Przewody SMYp i YDYt, mimo że są szeroko stosowane, mają swoje ograniczenia. SMYp, jako przewód o mniejszej odporności na temperaturę, może w warunkach wysokich temperatur ulegać uszkodzeniom izolacji, co z kolei zwiększa ryzyko iskrzenia i pożaru. Z kolei YDYt, choć jest stosunkowo popularny, może nie spełniać wymogów dotyczących ochrony przed uszkodzeniami mechanicznymi, co jest kluczowe w kontekście drewnianych ścian. W przypadku niewłaściwego doboru przewodów, ich użycie może prowadzić do awarii elektrycznych, a nawet zagrożenia dla bezpieczeństwa użytkowników budynku. Kluczowe jest, aby projektując instalację, uwzględnić specyfikę materiałów budowlanych oraz normy branżowe, takie jak PN-IEC 60364, które wyraźnie określają, jakie rozwiązania są zalecane w różnych środowiskach. Znalezienie równowagi pomiędzy funkcjonalnością a bezpieczeństwem jest niezbędne, aby uniknąć kosztownych napraw oraz potencjalnych zagrożeń dla życia i zdrowia użytkowników.

Pytanie 23

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki nadprądowe.
B. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
C. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
D. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
Wyłączenie wyłącznika różnicowoprądowego P312 B25A przed wymianą uszkodzonego wyłącznika nadprądowego B16 jest prawidłowym działaniem, ponieważ pozwala na zachowanie zasilania innych obwodów. Wyłącznik P312 B25A zabezpiecza obwody, w których znajdują się wyłączniki nadprądowe B6, B16 i B6, a więc jego wyłączenie pozwala na bezpieczną wymianę wyłącznika B16 bez pozbawiania zasilania płyty grzewczej i piekarnika, które są zasilane z innych obwodów. Praktyka ta jest zgodna z zaleceniami dotyczącymi bezpieczeństwa pracy w instalacjach elektrycznych, które nakazują minimalizowanie wyłączeń zasilania tam, gdzie to możliwe. Warto również pamiętać o dokumentacji instalacji elektrycznej, która powinna zawierać schematy, umożliwiające szybką identyfikację obwodów i ich zabezpieczeń. Dobrą praktyką jest również przeprowadzenie próby pomiarowej, aby upewnić się, że zasilanie zostało odłączone przed przystąpieniem do jakichkolwiek prac.

Pytanie 24

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 25

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 9 A i 4 bieguny
C. 3 A i 4 bieguny
D. 4 A i 3 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 26

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Nasadowego.
C. Ampulowego.
D. Oczkowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 27

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ wstawka kalibrowa posiada oznaczenie zgodne z parametrami wkładki topikowej bezpiecznika, która wynosi 25A przy napięciu 500V. W przypadku bezpieczników, kluczowe jest, aby zastosowana wstawka kalibrowa odpowiadała nominalnym wartościom prądu i napięcia. W przeciwnym razie, może to prowadzić do niewłaściwego działania obwodu elektrycznego, co w konsekwencji może spowodować uszkodzenie urządzeń lub stanowić zagrożenie dla bezpieczeństwa. Stosując odpowiednią wkładkę, zapewniamy, że obwód będzie chroniony przed przeciążeniami oraz zwarciami, co jest zgodne z normami bezpieczeństwa elektrycznego. Wiedza na temat doboru odpowiednich wkładek kalibrowych jest niezbędna w każdej instalacji elektrycznej; pozwala to na zminimalizowanie ryzyka awarii oraz zapewnienie długotrwałej i stabilnej pracy urządzeń elektrycznych.

Pytanie 28

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 2.
B. Schemat 4.
C. Schemat 3.
D. Schemat 1.
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 29

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
B. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
C. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
D. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
Zrozumienie parametrów wyłącznika instalacyjnego nadprądowego wymaga znajomości podstawowych zasad dotyczących jego funkcjonowania. Odpowiedzi sugerujące prąd zwarciowy, rodzaj zestyku i napięcie podtrzymania są mylące. Prąd zwarciowy to wartość prądu, która występuje w przypadku zwarcia, jednak nie jest to parametr, który definiuje działanie wyłącznika w normalnych warunkach pracy. Z kolei rodzaj zestyku dotyczy bardziej mechanicznej konstrukcji wyłącznika, a nie jego podstawowych właściwości elektrycznych, więc nie jest kluczowym parametrem do analizy wyłączników nadprądowych. Napięcie podtrzymania odnosi się do zdolności wyłącznika do pracy w określonym zakresie napięcia, ale nie jest to parametr, który bezpośrednio wiąże się z jego działaniem jako zabezpieczenia nadprądowego. W kolejnej propozycji, prąd obciążenia, rezystancja zestyku i czas wyłączenia, również odbiegają od istoty funkcjonowania wyłącznika nadprądowego. Prąd obciążenia jest bardziej związany z warunkami pracy urządzenia, a rezystancja zestyku nie jest parametrem specyfikującym wyłącznik. Z kolei czas wyłączenia to wynik działania wyłącznika, a nie jego właściwość. Ostatnia opcja, dotycząca napięcia dopuszczalnego i prądu różnicowego, również jest myląca, ponieważ prąd różnicowy dotyczy wyłączników różnicowoprądowych, a nie nadprądowych, co może prowadzić do nieporozumień i błędów w doborze odpowiednich zabezpieczeń. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby unikać takich nieścisłości w ocenie wyłączników nadprądowych.

Pytanie 30

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Miernika parametrów instalacji
B. Omomierza cyfrowego
C. Czujnika zaniku fazy
D. Neonowego wskaźnika napięcia
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 31

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 344 C-16-30-AC
B. P 304 25-30-AC
C. P 302 25-30-AC
D. P 312 B-16-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 32

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. W kanałach podłogowych
B. Wykonana przewodami szynowymi
C. W listwach przypodłogowych
D. Prowadzona na drabinkach
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 33

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,1 s
C. 0,4 s
D. 0,8 s
Wielu specjalistów może mieć trudności z ustaleniem prawidłowego maksymalnego czasu wyłączenia w układach sieci typu TN, co prowadzi do wyboru nieodpowiednich odpowiedzi. Na przykład, wybór 0,1 s jako maksymalnego czasu wyłączenia może wynikać z nieporozumienia dotyczącego typowych wartości stosowanych w różnych instalacjach elektrycznych. W rzeczywistości, czas ten jest zbyt krótki, by mógł być stosowany w standardowych warunkach użytkowych. Zbyt szybkie wyłączenie może nie pozwolić na prawidłowe działanie urządzeń zabezpieczających, co z kolei naraża na ryzyko zarówno użytkowników, jak i same instalacje. Z kolei 0,2 s oraz 0,8 s również są błędnymi wartościami, ponieważ nie odpowiadają wymaganiom normy, która została opracowana na podstawie analiz ryzyka i doświadczeń w zakresie ochrony przed porażeniem prądem elektrycznym. Czas 0,2 s może prowadzić do sytuacji, w których niebezpieczne napięcie utrzymuje się zbyt długo, a 0,8 s nie zapewnia wystarczającej ochrony. W praktyce, wartością 0,4 s uznano kompromis pomiędzy efektywnością działania zabezpieczeń a bezpieczeństwem użytkowników, co czyni tę wiedzę kluczową dla osób zajmujących się projektowaniem i nadzorem nad instalacjami elektrycznymi.

Pytanie 34

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Wolframowe.
B. Halogenowe.
C. Diodowe.
D. Rtęciowe.
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 35

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 1.
C. Symbolem 4.
D. Symbolem 3.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 36

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia jednej fazy
B. zamiana miejscami dwóch faz
C. brak podłączenia dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Niepodłączenie dwóch faz, niepodłączenie jednej fazy oraz zamiana jednej fazy z przewodem neutralnym to błędne koncepcje wynikające z niepełnego zrozumienia zasad działania silników elektrycznych i trójfazowych układów zasilania. W przypadku niepodłączenia dwóch faz, silnik nie mógłby w ogóle pracować, ponieważ potrzebne są co najmniej trzy fazy do wygenerowania wirującego pola magnetycznego. Silniki asynchroniczne nie mogą działać na zasilaniu jednofazowym, ponieważ nie są w stanie wytworzyć wymaganego momentu obrotowego. Z kolei w sytuacji niepodłączenia jednej fazy, silnik mógłby działać, ale z obniżoną mocą, co również niebywale rzadko prowadziłoby do zmiany kierunku obrotu. Zamiana jednej fazy z przewodem neutralnym jest również niewłaściwym podejściem, ponieważ w takim przypadku silnik nie byłby w stanie uzyskać wystarczającego napięcia do poprawnej pracy, co skutkowałoby jego zatrzymaniem lub uszkodzeniem. Pamiętajmy, że prawidłowe podłączenie faz jest kluczowe nie tylko dla właściwego działania silników, ale także dla bezpieczeństwa całej instalacji elektrycznej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują nieznajomość zasad trójfazowego zasilania oraz nieuwzględnianie znaczenia kolejności faz w kontekście pracy silnika. Dlatego istotne jest, aby każdy technik lub elektryk posiadał wiedzę na temat konfiguracji oraz standardów instalacyjnych, aby uniknąć tego typu błędów w praktyce.

Pytanie 37

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. bezpośredniego.
B. pośredniego.
C. przeważnie pośredniego.
D. przeważnie bezpośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 38

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Przekaźnik bistabilny.
C. Regulator oświetlenia.
D. Regulator temperatury.
Wybór odpowiedzi, która nie dotyczy przekaźnika bistabilnego, może prowadzić do nieporozumień w zakresie zrozumienia roli i funkcji różnych elementów w instalacjach automatyki. Regulator temperatury to urządzenie, które monitoruje i kontroluje temperaturę w pomieszczeniach, regulując działanie systemu grzewczego lub chłodzącego. W przeciwieństwie do przekaźnika bistabilnego, jego działanie jest uzależnione od ciągłego zasilania i nie może zmieniać stanu bezpośrednio w odpowiedzi na sygnał, co stawia go w zupełnie innej kategorii. Przekaźnik priorytetowy to z kolei element, który zarządza priorytetami zasilania w systemach, jednak nie spełnia funkcji pamięci stanu, tak jak przekaźnik bistabilny. Regulator oświetlenia natomiast ma na celu regulację intensywności światła, ale również nie działa na zasadzie zmiany stanu jak w przypadku przekaźnika bistabilnego. Wybierając błędną odpowiedź, można zatem nie tylko zrozumieć błędnie działanie tych urządzeń, ale także nie dostrzegać ich zastosowania w praktyce, co może prowadzić do niewłaściwego doboru elementów w projektach automatyki budynkowej. Kluczowe dla prawidłowego zrozumienia jest rozróżnienie między urządzeniami, które zmieniają stan na przeciwny i utrzymują go, a tymi, które wymagają stałego zasilania lub są używane do zarządzania innymi funkcjami.

Pytanie 39

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 500 V i 300 V
B. 200 V i 300 V
C. 300 V i 500 V
D. 200 V i 500 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 40

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź D jest poprawna, ponieważ symbol graficzny oznaczający prowadzenie przewodów w tynku na schemacie ideowym instalacji elektrycznej jest zgodny z przyjętymi normami. W praktyce takie oznaczenie jest używane, aby zapewnić jasność i zrozumienie w dokumentacji projektowej. Przewody prowadzone w tynku są istotnym elementem każdej instalacji elektrycznej, a ich oznaczenie za pomocą przerywanej linii po bokach ułatwia identyfikację i lokalizację instalacji w danym obiekcie. Na przykład, podczas wykonywania prac budowlanych czy modernizacyjnych, zespoły instalacyjne mogą szybko zidentyfikować miejsca, gdzie należy prowadzić dodatkowe przewody lub prowadzić modyfikacje. Ponadto, stosowanie standardowych symboli w projektach elektrycznych jest zgodne z normami PN-IEC 60617, co zwiększa spójność i profesjonalizm dokumentacji inżynierskiej.