Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 22:57
  • Data zakończenia: 18 grudnia 2025 23:08

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na olej
B. Odporność na ciepło
C. Zwiększenie wytrzymałości mechanicznej
D. Niepalność
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 2

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Schodowego
C. Krzyżowego
D. Hotelowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 3

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór wyłącznika z innych opcji jako rozwiązania problemu ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S może wynikać z błędnego zrozumienia funkcji i zastosowań poszczególnych typów wyłączników. Wiele osób może myśleć, że każdy wyłącznik różnicowoprądowy wystarczy, aby zapewnić pełną ochronę przed porażeniem, co jest mylnym przekonaniem. Wyłączniki różnicowoprądowe są zaprojektowane głównie do wykrywania upływności prądu, a nie do przerywania obwodu w przypadku zwarć lub przeciążeń. Zastosowanie wyłącznika, który nie ma odpowiednich parametrów do reagowania na sytuacje awaryjne, może prowadzić do sytuacji, w której nieprawidłowe działanie instalacji elektrycznej będzie miało poważne konsekwencje. W praktyce stosowanie wyłączników nadprądowych w połączeniu z różnicowoprądowymi pozwala na uzyskanie wyższej jakości ochrony. Należy pamiętać, że norma PN-EN 61008-1 określa wymagania dotyczące wyłączników różnicowoprądowych, a także ich zastosowanie w różnych instalacjach elektrycznych. Zrozumienie różnic i funkcji każdego z tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 4

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Jednobiegunowy
B. Krzyżowy
C. Świecznikowy
D. Schodowy
Łącznik krzyżowy to całkiem sprytne urządzenie, które używamy w instalacjach elektrycznych do sterowania światłem z różnych miejsc. Ma cztery zaciski, więc można do niego podłączyć dwa łączniki schodowe i klawisz krzyżowy. Dzięki temu można włączać i wyłączać światło aż z trzech miejsc, co jest przydatne w dużych pomieszczeniach czy korytarzach, gdzie czasem ciężko dojść do włącznika. Używanie łączników krzyżowych według norm, takich jak PN-IEC 60669-1, nie tylko sprawia, że wszystko działa jak należy, ale zapewnia też bezpieczeństwo. Lokalne przepisy mówią, żeby stosować takie rozwiązania tam, gdzie potrzebujemy lepszej kontroli nad oświetleniem. Przykładowo, w korytarzu w domu mamy jeden włącznik przy drzwiach, drugi na schodach, a jak potrzeba to można dorzucić jeszcze jeden w innym miejscu, żeby było wygodniej.

Pytanie 5

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Silnik asynchroniczny
B. Wzbudnik indukcyjny
C. Piec oporowy
D. Silnik uniwersalny
Piec oporowy jest odbiornikiem energii elektrycznej, który charakteryzuje się bardzo wysokim współczynnikiem mocy wynoszącym blisko 1. Oznacza to, że prawie cała energia elektryczna jest przekształcana w ciepło, co czyni go bardzo efektywnym urządzeniem w zastosowaniach grzewczych. W praktyce, piece oporowe są powszechnie wykorzystywane w domach i przemysłu do ogrzewania pomieszczeń, wody oraz w procesach technologicznych wymagających precyzyjnego i kontrolowanego źródła ciepła. Dzięki ich wysokiej efektywności energetycznej, użytkownicy mogą znacząco obniżyć koszty eksploatacyjne. Ponadto, ich działanie jest zgodne z normami efektywności energetycznej, co wpływa na zmniejszenie negatywnego wpływu na środowisko. Warto zwrócić uwagę, że stosowanie pieców oporowych powinno być dostosowane do konkretnego zastosowania, co może wymagać analizy kosztów oraz rozwoju systemów automatyzacji, aby maksymalnie wykorzystać ich potencjał.

Pytanie 6

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. przekaźnik termobimetalowy.
B. wyłącznik silnikowy.
C. cyklokonwertor.
D. czujnik kolejności i zaniku faz.
Czujnik kolejności i zaniku faz jest kluczowym elementem w układach zasilania silników trójfazowych. Jego podstawowym zadaniem jest monitorowanie obecności oraz kolejności faz, co ma istotne znaczenie dla prawidłowej pracy silników elektrycznych. W sytuacji, gdy jedna z faz zniknie lub dojdzie do zmian w kolejności, czujnik natychmiast odcina zasilanie, co zapobiega uszkodzeniu silnika. Przykładowo, w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki pracy, użycie czujnika pozwala na zwiększenie bezpieczeństwa i niezawodności systemu. W standardzie PN-EN 60204-1, który dotyczy bezpieczeństwa urządzeń elektrycznych w maszynach, podkreślono znaczenie ochrony silników przed negatywnymi skutkami zasilania. Dodatkowo, czujniki te mogą być wyposażone w dodatkowe funkcje, takie jak sygnalizacja optyczna stanu pracy, co ułatwia diagnostykę i konserwację systemów zasilania.

Pytanie 7

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 1, N z 3, 2 z 4
B. L z 3, N z 2, 1 z 4
C. L z 4, N z 1, 2 z 3
D. L z 1, N z 4, 2 z 3
Poprawna odpowiedź, czyli połączenie L z 1, N z 4 oraz 2 z 3, jest zgodna z zasadami sztuki monterskiej i zapewnia prawidłowe funkcjonowanie obwodu oświetleniowego. W tej konfiguracji przewód fazowy (L) łączy się z przełącznikiem (1), co pozwala na załączanie i wyłączanie oświetlenia w sposób kontrolowany. Przewód neutralny (N), który jest kluczowy dla pełnego obiegu prądu, łączy się z oświetleniem (4), co zapewnia jego poprawne działanie. Połączenie przewodów w puszce rozgałęźnej (2 z 3) jest również istotne, gdyż umożliwia efektywne zarządzanie obwodem oraz minimalizuje straty energii. Warto zauważyć, że zgodność z normami, takimi jak PN-IEC 60364, które dotyczą instalacji elektrycznych, zapewnia bezpieczeństwo i efektywność energetyczną. Takie połączenie jest również stosowane w praktyce podczas montażu instalacji oświetleniowych w budynkach mieszkalnych i komercyjnych, co potwierdza jego praktyczną użyteczność.

Pytanie 8

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Symbol C. reprezentuje łącznik schodowy, który jest kluczowym elementem w instalacjach elektrycznych, szczególnie w kontekście zarządzania oświetleniem w obiektach mieszkalnych i komercyjnych. Łącznik schodowy pozwala na włączanie i wyłączanie światła z dwóch różnych miejsc, co jest niezwykle praktyczne w przypadku długich korytarzy czy klatek schodowych. W standardowej instalacji, łącznik schodowy jest umieszczany w miejscach, gdzie użytkownik może potrzebować dostępu do włączania światła zarówno z dołu, jak i z góry schodów. Stosowanie tego symbolu jest zgodne z normami IEC 60617 oraz polskimi normami PN-EN 60617, które regulują oznaczanie symboli elektrycznych. W praktyce, stosowanie łączników schodowych poprawia komfort użytkowania oraz zwiększa bezpieczeństwo, eliminując konieczność poruszania się w ciemności. Warto również zauważyć, że łącznik schodowy można łączyć z innymi elementami instalacji, takimi jak łączniki krzyżowe, co pozwala na jeszcze większą elastyczność w projektowaniu systemów oświetleniowych.

Pytanie 9

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Nóż monterski, wkrętak, obcinaczki boczne
B. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
C. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
D. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
Obcinaczki boczne, przyrząd do ściągania izolacji oraz zaciskarka końcówek tulejkowych są niezbędnymi narzędziami przy przygotowaniu przewodów LY do montażu elektrycznego. Obcinaczki boczne służą do precyzyjnego przycinania przewodów, co jest istotne, aby uzyskać równe i czyste końce, co z kolei minimalizuje ryzyko uszkodzenia izolacji oraz zapewnia solidne połączenia. Przyrząd do ściągania izolacji umożliwia bezpieczne usunięcie izolacji z końcówek przewodów bez ryzyka ich uszkodzenia. Dzięki temu można łatwo przygotować przewody do dalszego montażu, gwarantując, że przewody będą miały odpowiednią długość i będą gotowe do połączenia. Zaciskarka końcówek tulejkowych jest kluczowa w procesie montażu, gdyż pozwala na pewne i trwałe połączenie przewodu z końcówką. Przestrzeganie standardów branżowych, takich jak PN-EN 60204-1 dotyczący bezpieczeństwa maszyn, podkreśla znaczenie stosowania odpowiednich narzędzi, co wpływa na jakość wykonania instalacji elektrycznych. W praktyce, wykorzystanie tych narzędzi wpływa na efektywność pracy oraz bezpieczeństwo użytkownika.

Pytanie 10

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z aluminium w formie linki
C. Z miedzi w formie linki
D. Z aluminium w formie drutu
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 11

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 12

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystancji uziemień metodą kompensacyjną.
B. rezystywności gruntu metodą bezpośrednią.
C. rezystywności gruntu metodą pośrednią.
D. rezystancji uziemień metodą techniczną.
Wybór innych odpowiedzi sugeruje pewne nieporozumienia dotyczące metod pomiaru rezystancji i rezystywności gruntu oraz ich zastosowań. Rezystywność gruntu, na przykład, odnosi się do właściwości materiału, który wpływa na przewodnictwo elektryczne, jednak do jej pomiaru stosuje się metody różniące się od pomiaru rezystancji uziemienia. Odpowiedzi sugerujące pomiar rezystywności metodą bezpośrednią lub pośrednią zakładają, że rysunek dotyczy pomiaru właściwości gruntu zamiast pomiaru samego uziemienia, co jest nieprawidłowe. Pomiar rezystywności gruntu ma swoje zastosowanie w badaniach geotechnicznych i inżynierii lądowej, ale nie jest tożsamy z oceną efektywności systemów uziemiających. Z kolei odpowiedź dotycząca metody kompensacyjnej, która jest wykorzystywana w specyficznych warunkach pomiarowych, również nie odnosi się do przedstawionego rysunku. W praktyce, błędne wybranie metody pomiarowej może prowadzić do poważnych konsekwencji, takich jak niewłaściwe zabezpieczenie instalacji elektrycznych, co może skutkować zagrożeniem dla osób oraz mienia. Zrozumienie różnic między tymi metodami oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego wykonywania pomiarów w inżynierii elektrycznej.

Pytanie 13

Co oznacza przeciążenie instalacji elektrycznej?

A. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
B. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
C. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
D. Przekroczeniu wartości prądu znamionowego danej instalacji
Wielu ludzi myli przeciążenie z innymi sprawami, co często prowadzi do nieporozumień, jeśli chodzi o bezpieczeństwo w elektryce. Na przykład, podłączenie dwóch faz razem to nie to samo co przeciążenie, ale może doprowadzić do poważnych awarii, jak zwarcia, które mogą zaszkodzić urządzeniom. Zjawisko fali przepięciowej po burzy to zupełnie co innego i dotyczy nagłych skoków napięcia, a nie prądu. Takie przepięcia mogą uszkodzić sprzęt, lecz nie mają nic wspólnego z przeciążeniem, które dotyczy prądu, a nie napięcia. Również nagłe zmiany napięcia w sieci nie są tym samym co przeciążenie, bo to drugie bierze się z zbyt dużego poboru prądu, a nie z jego napięcia. Zrozumienie tych różnic jest ważne dla tych, którzy projektują i dbają o instalacje elektryczne, żeby nie narażać się na ryzyko poważnych awarii i zagrożeń. Przy tworzeniu instalacji warto trzymać się norm jak PN-EN 61000, które mówią o obciążeniach prądowych oraz o tym, jak unikać przepięć.

Pytanie 14

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Przeciwogniową.
B. Do montażu gniazd i wyłączników.
C. Podtynkową hermetyczną.
D. Natynkową hermetyczną.
Prawidłowa odpowiedź to "Natynkowa hermetyczna", co jest zgodne z charakterystyką puszki instalacyjnej PHS-1, która ma zabezpieczenie IP44. Oznaczenie to wskazuje, że puszka jest odporna na ciała stałe o średnicy większej niż 1 mm oraz na krople wody padające pod różnymi kątami. Puszki natynkowe hermetyczne są powszechnie stosowane w miejscach, gdzie występuje ryzyko kontaktu z wilgocią, co czyni je idealnym rozwiązaniem w instalacjach przemysłowych oraz w obiektach użyteczności publicznej. Ich budowa, w tym dławice bezgwintowe i zaciski gwintowe izolowane, zapewnia nie tylko bezpieczeństwo, ale również łatwość montażu. Stosowanie takich puszek zgodnie z normami IEC 60529 oraz PN-EN 60670-1 przyczynia się do zwiększenia bezpieczeństwa instalacji elektrycznych, a także minimalizuje ryzyko uszkodzeń spowodowanych warunkami atmosferycznymi. Przykłady zastosowania obejmują obiekty budowlane narażone na działanie czynników zewnętrznych, takie jak tereny przemysłowe, magazyny, a także instalacje w ogrodach i na zewnątrz budynków.

Pytanie 15

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór symbolu A., C. lub D. może prowadzić do nieprawidłowych wniosków na temat możliwości montażu opraw oświetleniowych. Na przykład, symbol A. może sugerować, że oprawy oświetleniowe są odpowiednie do montażu na podłożach palnych, co jest sprzeczne z podstawowymi zasadami bezpieczeństwa pożarowego. Montowanie oprawy na powierzchniach palnych zwiększa ryzyko wystąpienia pożaru, zwłaszcza w sytuacji, gdy oprawa generuje wysoką temperaturę. W praktyce, wiele osób może mylnie uważać, że wszystkie oprawy oświetleniowe są uniwersalne i mogą być instalowane w dowolnych warunkach. To podejście jest błędne, ponieważ wiele norm branżowych, takich jak PN-EN 60598, wyraźnie wskazuje, że instalacje powinny być dostosowane do specyfiki pomieszczeń oraz ich przeznaczenia. Wybór błędnego symbolu może wynikać z niedostatecznej wiedzy na temat klasyfikacji materiałów palnych oraz właściwego montażu opraw. Ponadto, niektóre oprawy mogą być zaprojektowane do pracy w trudnych warunkach, co wymaga dodatkowych zabezpieczeń. Dlatego przed dokonaniem wyboru, zawsze warto zapoznać się z dokumentacją techniczną oraz konsultować się z wykwalifikowanym specjalistą w dziedzinie instalacji elektrycznych.

Pytanie 16

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. niebieski
B. szary
C. zielony
D. żółty
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 17

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie zasilany prądem w przeciwnym kierunku
B. Silnik będzie funkcjonować w trybie jałowym
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 18

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Napięcie przebicia diody prostowniczej to kluczowy parametr, który odgrywa istotną rolę w projektowaniu układów elektronicznych. Odczytywane w punkcie A, napięcie przebicia wskazuje na moment, w którym dioda zaczyna przewodzić prąd w kierunku wstecznym, co może prowadzić do jej uszkodzenia, jeśli nie jest odpowiednio zabezpieczona. W praktyce, zrozumienie tego zjawiska jest niezbędne podczas projektowania układów z diodami prostowniczymi, takich jak zasilacze impulsowe czy układy zabezpieczeń. Warto pamiętać o standardach, takich jak IEC 60747, które definiują charakterystyki diod, w tym ich napięcie przebicia. Właściwe zastosowanie wartości napięcia przebicia w projektach pozwala na uniknięcie awarii i zwiększa niezawodność urządzeń. Zastosowanie tego w praktyce, na przykład w zasilaczach, pozwala na dobór odpowiednich komponentów, co jest kluczowe dla długoterminowej stabilności systemów elektronicznych.

Pytanie 19

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. YDY 5×2,5 mm2
B. DY 2,5 mm2
C. LY 2,5 mm2
D. YLY 7×2,5 mm2
Odpowiedzi 'DY 2,5 mm2', 'YDY 5×2,5 mm2' oraz 'YLY 7×2,5 mm2' są błędne z różnych powodów. Oznaczenie 'DY' odnosi się do przewodów dwużyłowych z izolacją polwinitową, co nie jest zgodne z treścią pytania, które dotyczy przewodu jednożyłowego. Używanie oznaczeń dwużyłowych w kontekście jednożyłowym prowadzi do nieporozumień, zwłaszcza gdy mowa o zastosowaniach wymagających konkretnego przekroju i liczby żył. Z kolei oznaczenia 'YDY' oraz 'YLY' sugerują przewody wielożyłowe, co jest sprzeczne z wymaganiami zadania. Oznaczenia te wskazują na przewody z wieloma żyłami, co w kontekście jednożyłowego kabla jest niewłaściwe. Typowe błędy myślowe prowadzące do tych odpowiedzi mogą wynikać z nieścisłego zrozumienia klasyfikacji przewodów. Warto pamiętać, że dobór odpowiedniego przewodu elektrycznego powinien zawsze opierać się na specyfikacji technicznej oraz normach branżowych, jak PN-EN 60228. Nieprzestrzeganie tych zasad może prowadzić do poważnych problemów w instalacjach elektrycznych, takich jak przegrzewanie przewodów, co z kolei może prowadzić do pożarów lub awarii sprzętu.

Pytanie 20

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 4.
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 21

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. IT
B. TN-S
C. TT
D. TN-C-S
Wybór innych odpowiedzi, takich jak TN-S, IT oraz TT, nie jest poprawny, ponieważ każda z tych opcji odnosi się do innego układu zasilania, który nie odpowiada przedstawionemu na rysunku schematowi. W układzie TN-S przewody neutralne i ochronne są zawsze oddzielne i nie ma w nim przewodu PEN, który mógłby być rozdzielany. Tego rodzaju konstrukcja jest stosunkowo często używana w nowoczesnych instalacjach, jednak w kontekście omawianego rysunku nie może być uznana za właściwą. Z kolei układ IT charakteryzuje się izolacją od ziemi, co w przypadku rozdziału przewodu PEN jest wręcz niewłaściwe. W systemach IT nie ma możliwości, aby przewód ochronny był łączony z neutralnym w sposób opisany w pytaniu. Ostatnia z propozycji, TT, zakłada, że przewód ochronny jest uziemiony lokalnie, co również wyklucza obecność przewodu PEN w omawianym kontekście. Powszechnym błędem w wyborze odpowiedzi jest nieznajomość funkcji poszczególnych przewodów i ich roli w różnych systemach zasilania. Warto zwrócić uwagę, że niepoprawne rozumienie i stosowanie tych układów może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz sprzętu elektrycznego. Dlatego ważne jest, aby dokładnie zaznajomić się z różnicami między tymi układami oraz ich zastosowaniem w różnych sytuacjach.

Pytanie 22

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik świecznikowy
B. Łącznik schodowy pojedynczy
C. Łącznik schodowy podwójny
D. Łącznik krzyżowy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 23

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony uzupełniającej.
B. Ochrony podstawowej.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony przez zastosowanie bardzo niskiego napięcia.
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 24

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Biurową.
B. Punktową.
C. Uliczną.
D. Przenośną.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 25

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Schematy montażowe są kluczowym elementem w projektowaniu instalacji elektrycznych, a ich nieprawidłowe zrozumienie może prowadzić do poważnych błędów montażowych. Odpowiedzi A, B i D nie przedstawiają schematu montażowego, co skutkuje ich niepoprawnością. Odpowiedzi te mogą przedstawiać inne typy rysunków, takie jak schematy ideowe, które z kolei koncentrują się na przedstawieniu funkcji urządzeń i ich wzajemnych połączeń bez wskazywania szczegółów montażowych, lub diagramy blokowe, które ilustrują ogólną koncepcję systemu. Takie nieścisłości prowadzą do mylnych przekonań, że schemat ideowy może zastąpić schemat montażowy. Przykładem błędnego myślenia jest utożsamianie rysunków z ogólnymi zasadami działania urządzeń z dokumentacją wymagającą szczegółowych informacji o montażu. W praktyce, brak wyraźnego schematu montażowego może prowadzić do nieprawidłowego montażu, co z kolei może skutkować awarią systemu lub zagrożeniem dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby każdy projektant instalacji elektrycznych posiadał umiejętność odróżniania schematów montażowych od innych typów dokumentacji, aby uniknąć tych nieporozumień i zapewnić zgodność z normami oraz bezpieczeństwo instalacji.

Pytanie 26

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-4, II-3, III-2, IV-1
C. I-1, II-4, III-2, IV-3
D. I-2, II-4, III-1, IV-3
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 27

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Asynchroniczny klatkowy
C. Synchroniczny
D. Szeregowy prądu stałego
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 28

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź C jest poprawna, ponieważ zgodnie z systemem TN-S, przewód ochronny PE (przewód uziemiający) i przewód neutralny N (przewód zerowy) muszą być rozdzielone na całej długości instalacji. W tym systemie przewód PE jest przeznaczony wyłącznie do celów ochronnych, co zapobiega ryzyku przypadkowego wprowadzenia prądu do obwodów neutralnych. Poprawne rozdzielenie tych przewodów ma kluczowe znaczenie dla bezpieczeństwa użytkowników, ponieważ zmniejsza ryzyko porażenia prądem. W praktyce oznacza to, że w rozdzielni elektrycznej przewody te powinny być traktowane jako odrębne, co jest zgodne z normami PN-IEC 60364 oraz PN-EN 50110, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W instalacjach TN-S, przewód PE powinien być odpowiednio uziemiony, co znacznie poprawia ochronę przed zwarciami i innymi awariami. Warto zauważyć, że standardy te są stosowane w wielu krajach, co podkreśla ich uniwersalność i znaczenie dla zachowania wysokiego poziomu bezpieczeństwa. Przykładem zastosowania tego rozwiązania są budynki użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 29

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 4
B. 1
C. 2
D. 3
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 30

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Jednodrutowy nieuzbrojony.
B. Jednożyłowy uzbrojony.
C. Wielodrutowy nieuzbrojony.
D. Wielożyłowy uzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 31

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Wtynkowych
B. Napowietrznych
C. Nadtynkowych
D. Podtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 32

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
B. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
C. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 33

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Rozłącznik.
C. Bezpiecznik.
D. Przekaźnik termobimetalowy.
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 34

Rysunek przedstawia schemat

Ilustracja do pytania
A. stycznika.
B. wyłącznika różnicowoprądowego.
C. przekaźnika.
D. łącznika wielofunkcyjnego.
Poprawna odpowiedź to stycznik, co znajduje potwierdzenie w charakterystycznym schemacie jego połączeń. Cewka stycznika oznaczona jako A1 i A2 służy do załączania i wyłączania obwodu elektrycznego zdalnie, co jest kluczowe w automatyce i sterowaniu. Styki L1, L2, L3, będące stykami głównymi, są przeznaczone do załączania obwodów mocy, co jest niezbędne w instalacjach elektrycznych o dużych obciążeniach. Styki pomocnicze T1, T2, T3 oraz NC (normalnie zamknięty) pozwalają na dodatkowe funkcje, takie jak sygnalizacja czy zabezpieczenia automatyczne. Zastosowanie styczników w automatyce przemysłowej jest szerokie; od prostych układów sterujących po złożone systemy automatyzacji, styczniki są niezbędnymi elementami w wielu aplikacjach. Zgodnie z normami IEC 60947, dobór stycznika powinien uwzględniać zarówno parametry elektryczne, jak i warunki pracy, co zapewnia bezpieczeństwo i niezawodność układów. Warto zauważyć, że stosowanie styczników zamiast przełączników ręcznych zwiększa komfort pracy i możliwość automatyzacji procesów.

Pytanie 35

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (0 ÷ 10) %
B. (40 ÷ 60) %
C. (90 ÷ 100) %
D. (60 ÷ 90) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 36

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. ZL-N
B. ZL-PE
C. ZL-L
D. ZL-PE(RCD)
Odpowiedź ZL-PE(RCD) jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia powinien uwzględniać zarówno przewód fazowy (L), jak i przewód ochronny (PE), a dodatkowo obecność wyłącznika różnicowoprądowego (RCD), który może wpływać na wynik pomiaru. W praktyce, aby uzyskać wiarygodne wyniki, konieczne jest zastosowanie funkcji, która uwzględnia te warunki. Pomiar impedancji pętli zwarcia ma kluczowe znaczenie dla zapewnienia bezpieczeństwa elektrycznego i powinien być wykonywany zgodnie z obowiązującymi normami, takimi jak PN-EN 61010 czy PN-HD 60364. Użycie funkcji ZL-PE(RCD) pozwala na dokładne określenie wartości impedancji, co jest istotne w kontekście doboru odpowiednich zabezpieczeń oraz weryfikacji poprawności instalacji. Dzięki temu można zminimalizować ryzyko porażenia prądem oraz zapewnić prawidłowe działanie systemów ochronnych, co jest szczególnie ważne w obiektach użyteczności publicznej oraz w instalacjach przemysłowych.

Pytanie 37

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. W rury wciągnięto niewłaściwą liczbę przewodów.
B. W instalacji nieprawidłowo połączono przewód ochronny.
C. Zastosowano niewłaściwy typ łącznika instalacyjnego.
D. Błędnie połączono przewody instalacji do zacisków żyrandola.
Zastosowanie niewłaściwego typu łącznika instalacyjnego w przedstawionej instalacji elektrycznej jest istotnym błędem, który może prowadzić do nieprawidłowego działania obwodu. W przypadku, gdy łącznik jest podłączony w sposób, który uniemożliwia jego prawidłowe funkcjonowanie, obwód pozostaje zamknięty, co skutkuje ciągłym świeceniem żarówek. Zgodnie z normami PN-IEC 60364, łączniki powinny być dobierane w zależności od specyfikacji instalacji oraz jej przeznaczenia. W praktyce oznacza to, że przy montażu instalacji elektrycznej musimy upewnić się, że wybrany łącznik jest zgodny z wymaganiami technicznymi oraz typem instalacji. Na przykład, w przypadku obwodów oświetleniowych, należy zastosować łączniki, które umożliwiają włączanie i wyłączanie obwodu w sposób, który nie wprowadza zamkniętego układu. Wybór odpowiednich komponentów ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy instalacji, dlatego warto korzystać z produktów renomowanych producentów, które spełniają odpowiednie normy i standardy branżowe.

Pytanie 38

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
B. Silnik będzie zasilany prądem przeciwnym
C. Silnik będzie pracował w stanie jałowym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 39

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Użycie wyłącznika o zbyt długim czasie reakcji
B. Wykorzystywanie urządzeń o zbyt dużej mocy
C. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
D. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
Częściowe zwarcie między przewodem L a PE to jedna z najczęstszych przyczyn, przez które wyłącznik różnicowoprądowy (RCD) może zadziałać. Tego typu zwarcie grozi niebezpiecznymi sytuacjami, bo prąd upływowy może pojawiać się na obudowach urządzeń, co zagraża bezpieczeństwu osób je używających. Te wyłączniki są zaprojektowane, żeby w momencie wykrycia różnicy prądów automatycznie przerywać obwód, co oznacza, że prąd może płynąć do ziemi przez niezamierzony kanał, na przykład przez osobę dotykającą urządzenia. Dlatego warto regularnie testować RCD, co jest zalecane przez normy, takie jak PN-EN 60947-2. To naprawdę ważne dla naszej ochrony przed porażeniem w instalacjach elektrycznych. Jeśli masz problemy z RCD, dobrze byłoby zlecić sprawdzenie instalacji elektrycznej profesjonalnemu elektrykowi, żeby zidentyfikował problem i usunął przyczynę zwarcia, co pozwoli nam bezpiecznie korzystać z urządzeń elektrycznych.

Pytanie 40

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Czasu działania wyłącznika RCD
B. Rezystancji uziemienia
C. Rezystancji izolacji
D. Prądu zadziałania wyłącznika RCD
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.