Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 28 stycznia 2026 18:15
  • Data zakończenia: 28 stycznia 2026 18:25

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Wyłącznie świadectwo kwalifikacyjne w zakresie D
B. Świadectwo kwalifikacyjne w zakresie E + pomiary
C. Świadectwo kwalifikacyjne w zakresie E + D + pomiary
D. Jedynie świadectwo kwalifikacyjne w zakresie E
Posiadanie wyłącznie świadectwa kwalifikacyjnego w zakresie D lub E jest niewystarczające do samodzielnego wykonywania pomiarów odbiorczych instalacji elektrycznej. Świadectwo kwalifikacyjne w zakresie D odnosi się do eksploatacji urządzeń, instalacji i sieci elektrycznych, ale nie obejmuje bezpośrednio umiejętności przeprowadzania pomiarów, które są kluczowe dla zapewnienia prawidłowego funkcjonowania instalacji elektrycznej. Odpowiedzi sugerujące, że samo świadectwo w zakresie E wystarczy, aby wykonywać pomiary, ignorują fakt, że pomiary wymagają specyficznych umiejętności i wiedzy technicznej. W praktyce, pomiar izolacji, pomiar prądu oraz pomiar napięcia to podstawowe czynności, które muszą być przeprowadzane przez osobę posiadającą odpowiednie przygotowanie. Dodatkowo, odpowiedź sugerująca, że świadectwo w zakresie E i D z pomiarami jest wystarczające, jest myląca, gdyż nie uwzględnia konieczności specjalistycznej wiedzy z zakresu pomiarów, która jest niezbędna w kontekście norm i przepisów dotyczących praktyki instalacyjnej. W praktyce, dobrze jest również znać obowiązujące przepisy prawa, które regulują wymagania dotyczące bezpieczeństwa i jakości wykonania instalacji elektrycznych. Dlatego kluczowe jest, aby technik elektryk posiadał zarówno odpowiednie świadectwa, jak i umiejętności praktyczne związane z pomiarami.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podczas oględzin instalacji elektrycznej w budynku jednorodzinnym stwierdzono obluzowanie się zacisku Z na głównej szynie uziemiającej budynku. Nieusunięcie tej usterki może być przyczyną

Ilustracja do pytania
A. wzrostu rezystancji przewodu uziemiającego.
B. zmniejszenia się rezystancji uziemienia ochronnego.
C. wzrostu rezystancji uziemienia ochronnego.
D. zmniejszenia się rezystancji uziomu.
Ocena poprawności odpowiedzi wymaga zrozumienia podstawowych zasad dotyczących uziemienia i zachowań elektrycznych w instalacjach. W przypadku odpowiedzi wskazujących na zmniejszenie rezystancji uziemienia ochronnego lub uziomu, warto zauważyć, że obie te koncepcje są błędne w kontekście podanej sytuacji. Obluzowanie zacisku Z prowadzi do trudności w przewodzeniu prądu do ziemi, co nie może skutkować zmniejszeniem rezystancji. Wręcz przeciwnie, gorszy kontakt elektryczny zawsze będzie prowadził do wzrostu rezystancji, co zagraża bezpieczeństwu. Warto również zwrócić uwagę, że uziemienie ochronne i uziom to różne aspekty instalacji. Uziemienie ochronne dotyczy systemów zabezpieczających przed porażeniem, natomiast uziom odnosi się do metalowych elementów zakopanych w ziemi. Ponadto, odpowiedzi dotyczące wzrostu rezystancji przewodu uziemiającego również nie są poprawne. Wzrost rezystancji przewodu uziemiającego nie ma bezpośredniego związku z obluzowaniem zacisku, ale raczej z jego uszkodzeniem, korozją czy niewłaściwym doborem materiałów. Kluczowe jest zrozumienie, że niewłaściwe uziemienie może prowadzić do poważnych problemów w instalacjach elektrycznych, dlatego regularne kontrole i konserwacja są niezbędne dla utrzymania ich w dobrym stanie.

Pytanie 4

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Zarządca obiektu
B. Właściciel obiektu
C. Dostawca energii elektrycznej
D. Producent energii elektrycznej
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 5

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
B. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
C. Natychmiastowe wyłączenie zasilania
D. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 6

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 0,4 s
B. 0,1 s
C. 0,2 s
D. 5,0 s
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 7

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 1,5 mm2
B. 1 mm2
C. 4 mm2
D. 2,5 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 8

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. maksymalnego spadku częstotliwości w sieci zasilającej
B. mocy zainstalowanych urządzeń elektrycznych w instalacji
C. maksymalnej współczynnika przepięć
D. impedancji pętli zwarcia instalacji
Odpowiedzi dotyczące maksymalnego współczynnika przepięć, mocy zainstalowanych urządzeń elektrycznych w instalacji oraz maksymalnego spadku częstotliwości w sieci zasilającej nie są związane z kluczowym zagadnieniem, jakim jest ocena skuteczności ochrony przeciwporażeniowej z wykorzystaniem samoczynnego wyłączenia zasilania. Współczynnik przepięć dotyczy ochrony przed przepięciami, które są zjawiskami związanymi z nagłymi wzrostami napięcia, a nie z bezpieczeństwem ludzi w przypadku uszkodzeń instalacji. Moc zainstalowanych urządzeń jest istotna dla obliczeń obciążenia, ale nie ma bezpośredniego wpływu na skuteczność wyłączania zasilania w przypadku zwarcia. Z kolei spadek częstotliwości w sieci zasilającej odnosi się do parametrów jakości energii elektrycznej, które są bardziej związane z charakterystyką zasilania niż z mechanizmami ochrony przeciwporażeniowej. Te odpowiedzi mogą sugerować, że ochronę przeciwporażeniową należy oceniać jedynie na podstawie wyspecyfikowanych parametrów związanych z instalacją, co jest błędne. Kluczowym aspektem oceny tej ochrony jest bowiem poprawne dobieranie zabezpieczeń na podstawie analizy impedancji pętli zwarcia, co zapewnia szybkie wyłączenie zasilania i minimalizuje ryzyko porażenia prądem. Ignorowanie tego elementu prowadzi do niebezpiecznych sytuacji, w których oszacowane parametry instalacji mogą nie spełniać wymogów bezpieczeństwa.

Pytanie 9

W trakcie pracy silnika indukcyjnego przedstawionego na rysunku zauważono bardzo wolno kręcące się skrzydła wentylatora oraz stwierdzono mocne nagrzewanie się obudowy silnika. Która z wymienionych usterek powoduje opisane objawy?

Ilustracja do pytania
A. Poluzowana śruba dociskowa wentylatora.
B. Wyłamanie się kilku łopatek na skrzydle wentylatora.
C. Zużyte łożyska silnika powodujące luz.
D. Wypadnięty wpust blokujący wentylator na wale.
Wybór innych odpowiedzi, takich jak wyłamanie się kilku łopatek na skrzydle wentylatora, poluzowana śruba dociskowa wentylatora czy zużyte łożyska silnika, może wynikać z niepełnego zrozumienia wpływu tych usterek na wydajność wentylacji silnika. Z perspektywy technicznej, wyłamanie łopatek niekoniecznie prowadzi do wolnego obrotu wentylatora, ale raczej do jego nierównomiernej pracy i potencjalnych wibracji, które mogą prowadzić do innych uszkodzeń. Przypadek poluzowanej śruby dociskowej, choć może wpływać na stabilność wentylatora, wciąż pozwala na pewien ruch, a nie całkowite unieruchomienie wentylatora. Zużyte łożyska mogą generować dodatkowe ciepło i nieprawidłowy luz, ale także nie powodują bezpośrednio spowolnienia obrotów wentylatora, co jest kluczowym objawem w analizowanym przypadku. Typowym błędem w ocenie sytuacji jest skupianie się na objawach bez zrozumienia ich przyczyn. Współczesne podejścia do diagnostyki i konserwacji silników podkreślają znaczenie analizy wzorców pracy oraz regularnych przeglądów, co pozwala na wczesne wykrycie i eliminację potencjalnych problemów. Dlatego tak ważne jest, aby w każdym przypadku dokładnie zidentyfikować źródło problemu i unikać pochopnych wniosków.

Pytanie 10

Jakie zabezpieczenie stanowi zainstalowane urządzenie pokazane na zdjęciu?

Ilustracja do pytania
A. Tylko przepięciowe.
B. Różnicowe i nadprądowe.
C. Różnicowe i przepięciowe.
D. Tylko nadprądowe.
Urządzenie pokazane na zdjęciu to wyłącznik różnicowoprądowy z zabezpieczeniem nadprądowym, co czyni odpowiedź 'Różnicowe i nadprądowe' poprawną. Wyłączniki różnicowoprądowe są kluczowymi elementami ochrony instalacji elektrycznych. Ich zadaniem jest wykrywanie upływności prądu, co chroni przed porażeniem prądem oraz pożarami spowodowanymi iskrami. Oznaczenie B10 wskazuje na nadprądowe zabezpieczenie o charakterystyce B, co jest typowe dla obwodów o niewielkich prądach startowych, takich jak obwody oświetleniowe czy gniazdka. Dodatkowo, IΔn 0.03A oznacza, że wyłącznik będzie zadziałał przy prądzie różnicowym 30mA, co jest istotnym progiem dla ochrony ludzi przed niebezpiecznymi skutkami porażenia. W praktyce, stosowanie zarówno zabezpieczeń różnicowych, jak i nadprądowych jest zgodne z normami PN-EN 61008-1 oraz PN-EN 60947-2, co zapewnia bezpieczeństwo instalacji elektrycznych w obiektach mieszkalnych i przemysłowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. stanu szczotek
B. odczytów aparatury kontrolno-pomiarowej
C. intensywności drgań
D. konfiguracji zabezpieczeń
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 13

Które z wymienionych czynności nie należą do zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne?

A. Wykonywanie przeglądów niewymagających demontażu.
B. Uruchamianie i zatrzymywanie urządzeń.
C. Nadzorowanie urządzeń w czasie pracy.
D. Dokonywanie oględzin wymagających demontażu.
Prawidłowo wskazana odpowiedź to „dokonywanie oględzin wymagających demontażu”, bo taka czynność wykracza poza typowe, podstawowe zadania eksploatacyjne zwykłego pracownika obsługującego urządzenia elektryczne. Standardowa obsługa to głównie nadzorowanie pracy urządzeń, reagowanie na sygnały alarmowe, bezpieczne uruchamianie i zatrzymywanie oraz proste przeglądy wizualne bez rozbierania osłon czy obudów. Zgodnie z praktyką zakładową i wymaganiami BHP (np. wynikającymi z instrukcji eksploatacji, przepisów SEP czy ogólnych zasad prac przy urządzeniach pod napięciem), wszelkie czynności wymagające demontażu elementów konstrukcyjnych, zdejmowania osłon, ingerencji w część czynną urządzenia traktuje się już jako prace konserwacyjne, remontowe albo specjalistyczne. Takie prace powinny wykonywać osoby z wyższymi kwalifikacjami, odpowiednimi uprawnieniami eksploatacyjnymi i często z uprawnieniami do prac pod napięciem lub przy wyłączonym, zabezpieczonym urządzeniu. W praktyce wygląda to tak, że operator silnika czy rozdzielnicy kontroluje wskazania przyrządów, nasłuchuje nietypowych dźwięków, sprawdza temperaturę obudowy, kontroluje lampki sygnalizacyjne, ale nie rozbiera urządzenia, żeby zajrzeć do środka. Oględziny z demontażem obudów, zacisków, szyn prądowych to już zadanie dla ekipy utrzymania ruchu, elektryków serwisowych lub działu remontowego. Moim zdaniem to bardzo sensowny podział: minimalizuje ryzyko porażenia, zwarcia, uszkodzenia sprzętu i sprawia, że za bardziej ryzykowne czynności odpowiadają osoby faktycznie do tego przeszkolone i wyposażone w odpowiednie środki ochrony indywidualnej i procedury odłączenia, uziemienia i sprawdzenia braku napięcia.

Pytanie 14

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Moc wydobywana w piecu wzrośnie 1,5 raza.
B. Spadek napięcia na przewodach zasilających zmniejszy się.
C. Spadek napięcia na przewodach zasilających wzrośnie.
D. Moc wydobywana w piecu zmaleje 1,5 raza.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 15

Który z silników o parametrach zamieszczonych w tabeli może pracować zgodnie z przedstawionym układem zasilania bez przerw przy znamionowym obciążeniu?

Parametry znamionowe
Silnik 1.5,5 kW400/690 V Δ/YIP55S22 920 obr./min
Silnik 2.1,5 kW400/690 V Δ/YIP45S11 430 obr./min
Silnik 3.5,5 kW230/400 V Δ/YIP55S12 920 obr./min
Silnik 4.1,5 kW230/400 V Δ/YIP45S21 430 obr./min
Ilustracja do pytania
A. Silnik 2.
B. Silnik 4.
C. Silnik 3.
D. Silnik 1.
Wybór niewłaściwego silnika do układu zasilania może prowadzić do poważnych konsekwencji, w tym do uszkodzenia sprzętu oraz awarii systemu. Silnik 1 oraz Silnik 3, mimo że mają napięcia znamionowe 400/690 V, są przystosowane do pracy w układzie trójkąt/gwiazda, co oznacza, że ich działanie przy napięciu 3 x 400 V może prowadzić do przegrzewania się lub niewłaściwego funkcjonowania. Z kolei Silnik 4, mający napięcie znamionowe 230/400 V, nie jest w stanie efektywnie pracować w takim układzie, co może skutkować zbyt niskim momentem obrotowym i niestabilnością pracy. Typowe błędy wynikają z niepełnego zrozumienia charakterystyki silników oraz ich zastosowań w konkretnych warunkach zasilania. Kluczowe jest, aby technicy i inżynierowie właściwie analizowali parametry zasilania przed doborem silników, aby uniknąć sytuacji, w której urządzenie nie spełnia wymaganych norm operacyjnych. Nieprzemyślany wybór silnika może także prowadzić do zwiększonego zużycia energii oraz skrócenia okresu użytkowania sprzętu. Dlatego tak ważne jest, aby przed podjęciem decyzji o zakupie silnika dokładnie zapoznać się z jego specyfikacją oraz wymaganiami zasilania, aby dokonać świadomego wyboru, który będzie zgodny z najlepszymi praktykami w branży.

Pytanie 16

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 110 V
B. 50 V
C. 70 V
D. 220 V
Wartości takie jak 70 V, 220 V oraz 110 V są nieprawidłowe w kontekście maksymalnego dopuszczalnego napięcia dotykowego. W pierwszym przypadku, przepisy określają, że napięcie dotykowe na częściach dostępnych przewodzących nie może przekraczać 50 V, co ma na celu ochronę przed porażeniem prądem elektrycznym. Odpowiedź 70 V może wynikać z błędnego rozumienia klasyfikacji napięć w instalacjach elektrycznych, gdzie wiele osób myli różne poziomy napięcia roboczego z dopuszczalnymi wartościami napięcia dotykowego. Z drugiej strony, wartości 110 V i 220 V są dalekie od norm, ponieważ przekraczają ustaloną granicę bezpieczeństwa. Wartości te odpowiadają typowym napięciom zasilającym w gniazdkach elektrycznych w wielu krajach, jednak w kontekście napięcia dotykowego nie mają zastosowania. Przekroczenie 50 V w przypadku urządzeń elektrycznych może prowadzić do niebezpiecznych sytuacji, szczególnie w przypadku długotrwałego kontaktu z elementami przewodzącymi. Ważne jest zrozumienie, że projektowanie instalacji elektrycznych powinno opierać się na standardach bezpieczeństwa, które minimalizują ryzyko uszkodzenia ciała w wyniku porażenia prądem. Podstawowym błędem myślowym może być niedocenienie ryzyka, jakie niesie ze sobą nieodpowiednie zabezpieczenie urządzeń elektrycznych, co może prowadzić do tragicznych skutków w przypadku awarii lub uszkodzenia systemu. Stąd kluczowe jest przestrzeganie norm oraz wdrażanie odpowiednich procedur zabezpieczających w każdej instalacji elektrycznej.

Pytanie 17

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 200 lx
B. 400 lx
C. 500 lx
D. 300 lx
Inne wartości natężenia oświetlenia, takie jak 200 lx, 400 lx czy 500 lx, nie spełniają standardowych wymagań dla sal lekcyjnych. Wybór wartości 200 lx jest zdecydowanie niewystarczający, ponieważ nie zapewnia odpowiedniego oświetlenia do wykonywania zadań szkolnych. Tak niski poziom natężenia może prowadzić do zmęczenia wzroku i obniżenia efektywności nauki. W przypadku wartości 400 lx i 500 lx, chociaż są one teoretycznie wyższe, mogą przyczynić się do problemów związanych z olśnieniem oraz dyskomfortem wizualnym w dłuższej perspektywie. W praktyce, oświetlenie w klasach powinno być dostosowane do potrzeb uczniów oraz rodzaju wykonywanych zadań, co oznacza, że wartość 300 lx jest kompromisem między wystarczającym oświetleniem a komfortem użytkowania. Często zdarza się, że w wyniku błędnej interpretacji standardów, osoby projektujące oświetlenie w szkołach mogą postawić zbyt wysokie wartości, co nie tylko nie przyniesie korzyści, ale wręcz może zaszkodzić zdrowiu uczniów. W związku z tym kluczowe jest, aby projektanci i decyzjonariusze w edukacji stosowali się do uznanych norm, by stworzyć bezpieczne i efektywne środowisko nauki.

Pytanie 18

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
B. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
C. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
D. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 19

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Spadnie o 10%
B. Wzrośnie o 10%
C. Wzrośnie o 21%
D. Spadnie o 19%
Zrozumienie wpływu zmiany liczby zwojów na przekładnię napięciową transformatora jest kluczowe dla prawidłowego działania układów elektrycznych. Niepoprawne odpowiedzi często wynikają z mylnych założeń dotyczących zasad działania transformatorów. Na przykład, odpowiedzi sugerujące, że przekładnia napięciowa zwiększy się o 10% lub więcej, ignorują fundamentalną zasadę działania transformatora, która mówi o proporcjonalności między liczbą zwojów a napięciem. Przy dodaniu zwojów po stronie niskiego napięcia, wzrasta liczba zwojów uzwojenia, co z kolei zmienia stosunek zwojów z uzwojenia wysokiego napięcia. To prowadzi do zmniejszenia przekładni napięciowej, co jest kluczowym aspektem, który wiele osób pomija. Odpowiedź o zmniejszeniu przekładni o 19% także jest błędna, ponieważ nie bazuje na prostych zasadach matematycznych związanych z obliczeniami przekładni. Przekładnia transformatora nie jest liniową funkcją liczby zwojów; zmiana liczby zwojów w jednym uzwojeniu wpływa na całą relację z innym uzwojeniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują nadmierne uproszczenie problemu lub błędne zakładanie, że zmiana w jednym z uzwojeń nie wpływa na całokształt działania transformatora. W praktyce, odpowiednia analiza wpływu zmian w transformatorach jest niezbędna dla zapewnienia ich efektywności i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 20

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 1 A, Un = 200 V
B. In = 2 A, Un = 200 V
C. In = 1 A, Un = 400 V
D. In = 2 A, Un = 400 V
Wybór nieodpowiednich zakresów cewek prądowych i napięciowych watomierzy może prowadzić do wielu problemów w pomiarach mocy silnika trójfazowego. Przykładowo, wybór cewki prądowej o nominalnej wartości 1 A jest niewłaściwy, ponieważ znamionowy prąd silnika wynosi 1,8 A. Użycie cewki o niższym zakresie może skutkować jej przeciążeniem, co z kolei może prowadzić do uszkodzenia watomierza oraz błędnych odczytów. Dodatkowo, wykorzystanie cewki napięciowej o wartości 200 V w sytuacji, gdy wymagane jest 400 V, będzie prowadziło do niedopasowania zakresów pomiarowych. Tego typu błędy mogą wynikać z niepełnego zrozumienia zasad działania układów trójfazowych oraz ich specyfiki. W praktyce pomiarowej niezwykle istotne jest, aby parametry urządzenia pomiarowego były bezpośrednio związane z parametrami mierzonymi obiektami. Przy wyborze cewki prądowej i napięciowej, istotne jest uwzględnienie nie tylko znamionowych wartości prądu i napięcia, ale również ich zmienności w czasie pracy silnika. Ignorowanie tych zasad prowadzi do ograniczenia dokładności pomiarów, a także może skutkować uszkodzeniem sprzętu, co w dłuższej perspektywie wiąże się z większymi kosztami napraw czy wymiany urządzeń. Dlatego tak ważne jest odpowiednie przeszkolenie w zakresie doboru sprzętu pomiarowego oraz znajomość specyfikacji technicznych silników trójfazowych.

Pytanie 21

Którego z przedstawionych na rysunkach przyrządów należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Nieprawidłowe odpowiedzi, które wybrałeś, wskazują na pewne nieporozumienia dotyczące pomiarów rezystancji izolacji. Rysunki A, B i C mogą przedstawiać urządzenia, które są użyteczne w innych aspektach pomiarów elektrycznych, jednak nie są odpowiednie do oceny stanu izolacji. Na przykład, odpowiedzi A i B mogą przedstawiać omomierze, które są przeznaczone do pomiaru bardzo niskich rezystancji, a nie do wysokich wartości, jakie występują w izolacjach. Użycie takiego urządzenia do sprawdzania izolacji może prowadzić do błędnych wniosków, bowiem nie będą one w stanie wykryć potencjalnych problemów, które mogłyby zagrażać bezpieczeństwu użytkowników instalacji. Często spotykanym błędem jest mylenie funkcji poszczególnych urządzeń pomiarowych. Istotne jest zrozumienie, że każdy przyrząd ma swoją specyfikę i zastosowanie w konkretnej dziedzinie. Użycie nieodpowiedniego narzędzia może prowadzić nie tylko do fałszywych wyników, ale także do uszkodzenia samego urządzenia czy instalacji, co podkreśla znaczenie znajomości standardów branżowych, takich jak PN-IEC 60364, które jasno definiują wymagania dotyczące pomiarów izolacji. Warto zatem dokładnie zrozumieć, jakie urządzenia są przeznaczone do jakich zadań, aby w praktyce nie narazić się na niepotrzebne ryzyko.

Pytanie 22

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Opornik
B. Bezpiecznik silnikowy
C. Kondensator
D. Wyłącznik różnicowoprądowy
Rezystor w kontekście silników indukcyjnych trójfazowych zasilanych napięciem jednofazowym nie jest odpowiednim rozwiązaniem, ponieważ jego funkcja ogranicza prąd w obwodzie, co prowadzi do spadku momentu obrotowego i efektywności pracy silnika. Rezystory mogą być stosowane w układach do regulacji prędkości obrotowej, ale nie rozwiązują problemu fazowości, co jest kluczowe dla silników indukcyjnych. Wyłącznik silnikowy, mimo że jest ważnym elementem zabezpieczającym silnik przed przeciążeniem i zwarciem, nie jest rozwiązaniem pozwalającym na zasilanie silnika trójfazowego z jednofazowego źródła. Jego zadaniem jest przede wszystkim ochrona urządzenia, a nie zapewnienie odpowiednich warunków do jego pracy. Podobnie, wyłącznik różnicowoprądowy jest elementem ochronnym, który wykrywa różnicę prądów między przewodami fazowymi a neutralnym, co jest istotne dla bezpieczeństwa użytkowania, ale nie wpływa w żaden sposób na utworzenie niezbędnej trzeciej fazy. Często pojawia się nieporozumienie związane z rolą tych urządzeń w kontekście zasilania silników trójfazowych, co prowadzi do błędnych wniosków. Zrozumienie specyfiki działania silników oraz ich zastosowania wymaga dokładnej analizy funkcji poszczególnych komponentów i ich wpływu na parametry pracy, co jest kluczowe dla efektywności oraz bezpieczeństwa systemów zasilania.

Pytanie 23

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
B. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
C. Montowanie w instalacji wyłącznika różnicowoprądowego
D. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Całkowite zniszczenie wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 26

Jaka jest minimalna wartość natężenia oświetlenia, która powinna być zapewniona w klasie, jeżeli na biurkach uczniów nie są umieszczone monitory ekranowe?

A. 300 lx
B. 200 lx
C. 400 lx
D. 500 lx
Minimalne natężenie światła w klasie, gdzie nie ma monitorów, to 300 lx. Mamy takie przepisy, jak PN-EN 12464-1, które mówią, jakie powinno być oświetlenie w miejscach pracy. W klasach odpowiednie oświetlenie to klucz dla dobrej nauki i komfortu uczniów. 300 lx pomaga skupić się, zmniejsza zmęczenie oczu i sprawia, że łatwiej jest czytać i pisać. W praktyce oznacza to, że w salach powinny być lampy, które równomiernie oświetlają wszystkie miejsca, żeby nie było cieni. Na przykład, można zastosować lampy LED o dobrej mocy. Są one energooszczędne i długotrwałe, a przy tym spełniają normy. Dobre oświetlenie wpływa pozytywnie na przyswajanie wiedzy i ogólne samopoczucie uczniów.

Pytanie 27

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Przerwa w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Zwarcie w obwodzie twornika
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 28

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
B. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
C. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
D. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
W czasie próbnego uruchamiania zgrzewarki oporowej, pomiar czasu poszczególnych faz zgrzewania, sprawdzenie stanu i prawidłowości ustawienia elektrod, czy też działania przełącznika do zgrzewania pojedynczego i ciągłego, są czynnościami, które powinny być wykonywane w celu zapewnienia poprawnego funkcjonowania urządzenia. Pomiar czasu zgrzewania jest istotnym elementem procesu, ponieważ pozwala ocenić, czy zgrzewanie przebiega zgodnie z założonymi parametrami technicznymi. Niewłaściwy dobór czasu zgrzewania może prowadzić do niskiej jakości połączeń, co z kolei może skutkować awariami mechanicznymi. Kolejnym aspektem, który należy uwzględnić, jest kontrola stanu elektrod. Elektrody muszą być w odpowiednim stanie, aby zapewnić właściwe przewodzenie prądu oraz osiągnięcie odpowiednich temperatur zgrzewania. Sprawny przełącznik zgrzewania również odgrywa kluczową rolę, ponieważ umożliwia wybór trybu pracy urządzenia, co jest ważne w zależności od specyfikacji materiałów, które są zgrzewane. Nieprawidłowe wykonanie tych czynności może prowadzić do nieefektywnego zgrzewania, a w skrajnych przypadkach do uszkodzenia urządzenia lub nawet kontuzji operatora. Właściwe przygotowanie i testowanie zgrzewarki oporowej w tych obszarach jest zatem niezbędne dla zapewnienia zarówno efektywności procesu, jak i bezpieczeństwa pracy.

Pytanie 29

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O średnicy dwa razy mniejszej, połączonymi szeregowo
B. O średnicy dwa razy mniejszej, połączonymi równolegle
C. O przekroju dwa razy mniejszym, połączonymi szeregowo
D. O przekroju dwa razy mniejszym, połączonymi równolegle
Podczas analizy nieprawidłowych odpowiedzi warto zauważyć, że łączenie drutów o mniejszej średnicy szeregowo prowadzi do wzrostu całkowitej oporności, co w przypadku transformatora jest niekorzystne. Zwiększona oporność zmniejsza przepływ prądu, a tym samym powoduje spadek wydajności transformatora. W rezultacie, transformator może nie działać w optymalnych warunkach, co prowadzi do przegrzewania, a w skrajnych przypadkach do uszkodzeń. Z kolei stosowanie drutów o średnicy dwa razy mniejszej, połączonych równolegle, umożliwia zredukowanie oporności, co jest kluczowe dla efektywności działania. Dodatkowo, dobór drutów o polu przekroju poprzecznym, które jest dwa razy mniejsze, w połączeniu szeregowym, a nie równoległym, mógłby doprowadzić do nierównomiernego rozkładu prądów w zwojach, co jest niepożądane w kontekście równowagi elektromagnetycznej transformatora. Kluczowym błędem myślowym, który prowadzi do nieprawidłowych wniosków, jest nie uwzględnienie wpływu oporności na przepływ prądu oraz zniekształceń, jakie mogą wystąpić w wyniku niewłaściwego połączenia. W kontekście norm branżowych, w praktykach rewitalizacji transformatorów stosuje się przede wszystkim złote zasady dotyczące zachowania równowagi parametrów elektrycznych i mechanicznych, co jest absolutnie kluczowe dla długotrwałego działania i bezpieczeństwa urządzeń.

Pytanie 30

Przy wymianie uszkodzonych rezystorów regulacyjnych silnika pracującego w układzie połączeń zamieszczonym na rysunku nie można dopuścić do

Ilustracja do pytania
A. zwarcia rezystora w obwodzie twornika.
B. powstania przerwy w obwodzie wzbudzenia.
C. zwarcia rezystora w obwodzie wzbudzenia.
D. powstania przerwy w obwodzie twornika.
Pomimo znalezienia się w kontekście wymiany rezystorów regulacyjnych, niektóre odpowiedzi nie odzwierciedlają istoty działania obwodów w silniku elektrycznym. Twierdzenie o zwarciu rezystora w obwodzie twornika może wydawać się uzasadnione, jednak należy zauważyć, że zwarcie może prowadzić do nadmiernych prądów, co z kolei może uszkodzić inne elementy obwodu, ale nie prowadzi bezpośrednio do zatrzymania silnika. Również powstanie przerwy w obwodzie twornika, choć problematyczne, nie jest tak krytyczne, jak przerwa w obwodzie wzbudzenia. Obwód twornika, w przeciwieństwie do obwodu wzbudzenia, ma pewną rezerwę operacyjną; w przypadku jego przerwy silnik może nadal pracować przez krótki czas, zanim dojdzie do całkowitego zatrzymania. Z kolei obwód wzbudzenia, odpowiedzialny za generowanie pola magnetycznego, jest fundamentem działania silnika, a jego przerwa skutkuje natychmiastowym brakiem tego pola, co prowadzi do zatrzymania silnika. W kontekście praktycznym, nieprawidłowe podejście do wymiany elementów w obwodzie wzbudzenia może skutkować poważnymi konsekwencjami, takimi jak uszkodzenie silnika lub całego systemu. Dlatego niezwykle ważne jest, aby podczas wymiany komponentów przywiązywać odpowiednią wagę do struktury obwodu i jego funkcji, stosując się do standardów branżowych, które podkreślają znaczenie ciągłości obwodu wzbudzenia.

Pytanie 31

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. C16
B. B20
C. C10
D. B16
Wybór innego wyłącznika, takiego jak B20, C10 czy C16, może wynikać z niewłaściwego zrozumienia zasad działania wyłączników automatycznych i ich zastosowania w kontekście ochrony przeciwporażeniowej. Wyłącznik B20, z prądem znamionowym 20 A, ma zbyt wysoką wartość dla zdefiniowanej impedancji pętli zwarcia 2,5 Ω, co może prowadzić do zbyt długiego czasu zadziałania przy wystąpieniu zwarcia. To zwiększa ryzyko porażenia ludzi, co jest niezgodne z zaleceniami normy PN-EN 60947-2, która określa wymagania dotyczące zabezpieczeń w instalacjach elektrycznych. Wybór C10 oraz C16, które są wyłącznikami typu C, również może być mylący, ponieważ są one przeznaczone głównie do obwodów z wysokimi prądami rozruchowymi, takimi jak silniki, a nie do typowych instalacji oświetleniowych czy gniazdowych. W związku z tym, wyłączniki te mogą zadziałać z opóźnieniem, co jest nieakceptowalne w kontekście ochrony przed porażeniem prądem. W praktyce, dobór odpowiednich wyłączników do instalacji elektrycznych powinien być oparty na analizie impedancji pętli zwarcia oraz wymagań dotyczących czasów zadziałania, aby zapewnić właściwe bezpieczeństwo.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaka może być przyczyna pojawienia się ujemnych wartości w przebiegu napięcia na odbiorniku o charakterze rezystancyjno-indukcyjnym zasilanym z prostownika, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Uszkodzenie jednego z tyrystorów.
B. Nieprawidłowa praca układu sterującego.
C. Uszkodzenie diody.
D. Zmiana parametrów odbiornika.
Właściwie to ujemne wartości napięcia na odbiorniku rezystancyjno-indukcyjnym mogą się zdarzyć z różnych powodów, ale nie wszystkie powody są trafne. Na przykład zmiana parametrów odbiornika może coś namieszać, ale sama w sobie nie spowoduje ujemnych napięć. Odbiorniki pracują w określonym zakresie i ich zmiana raczej nie sprawi, że nagle dostaniemy napięcie ujemne. Co do tyrystorów, to one też nie są głównym winowajcą, bo działają w innych układach, a nie w prostownikach diodowych. Jak zepsuje się tyrystor, to może zajść przegrzanie, ale nie będzie to miało wpływu na kierunek prądu. A układ sterujący, chociaż może wprowadzać zamieszanie, też nie wyjaśnia ujemnych napięć. Warto te różnice zrozumieć, żeby lepiej diagnozować i naprawiać systemy elektroniczne.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Dokręcanie przewodów w złączach.
B. Wymiana wkładek bezpiecznikowych.
C. Wykonywanie pomiaru rezystancji izolacji instalacji.
D. Zamiana gniazdek.
Wymiana gniazd wtyczkowych oraz dokręcanie przewodów w zaciskach są czynnościami, które w przypadku instalacji niewyłączonych spod napięcia stanowią poważne ryzyko. Gniazda wtyczkowe są częścią obwodu, który jest pod napięciem, a ich wymiana może prowadzić do niekontrolowanego dostępu do elementów pod napięciem, co z kolei zwiększa ryzyko porażenia prądem. Normy PN-IEC 60364 jasno określają, że wszelkie prace wymagające dostępu do takich elementów powinny być przeprowadzane po wyłączeniu zasilania, aby zapewnić bezpieczeństwo pracowników. Dokręcanie przewodów w zaciskach, zwłaszcza w układzie TN, również stwarza potencjalne zagrożenie, gdyż może prowadzić do niezamierzonego zwarcia lub uszkodzenia izolacji przewodów, co w efekcie może spowodować pożar lub inne poważne incydenty elektryczne. Pomiar rezystancji izolacji instalacji to kolejna czynność, która nie powinna być przeprowadzana w warunkach, gdy instalacja jest pod napięciem, ponieważ nie tylko zagraża to bezpieczeństwu osoby wykonującej pomiar, ale także może prowadzić do uszkodzenia sprzętu pomiarowego. Wszelkie prace elektryczne powinny być prowadzone zgodnie z zasadami bezpieczeństwa i normami branżowymi, co wymaga dezaktywacji zasilania przed przystąpieniem do jakiejkolwiek interwencji w instalacji elektrycznej.

Pytanie 36

Która z wymienionych prac modernizacyjnych w instalacji elektrycznej niskiego napięcia wymaga zastosowania maszyny przedstawionej na ilustracji?

Ilustracja do pytania
A. Rozbudowa instalacji elektrycznej podłogowej.
B. Wykonanie instalacji elektrycznej natynkowej.
C. Wymiana przyłącza ziemnego.
D. Przebudowa przyłącza napowietrznego.
Wymiana przyłącza ziemnego to zadanie, które wymaga precyzyjnych i głębokich wykopów, aby móc prawidłowo zainstalować nowe kable elektryczne. Maszyna przedstawiona na ilustracji, czyli koparka łańcuchowa, jest idealnym narzędziem do tego celu, ponieważ umożliwia wykopanie rowów o odpowiedniej głębokości i szerokości, co jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności instalacji elektrycznej. Przykładowo, podczas wymiany przyłącza ziemnego, należy zachować szczególną ostrożność, aby unikać uszkodzenia istniejących instalacji podziemnych, takich jak rury wodociągowe czy gazowe. W standardach branżowych, takich jak PN-EN 50110, podkreśla się znaczenie dokładności i staranności w wykonywaniu takich prac, aby zminimalizować ryzyko awarii oraz zapewnić długotrwałość nowej instalacji. W praktyce, wykopy powinny być planowane z wyprzedzeniem, a teren powinien być odpowiednio oznakowany, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa pracy i ochrony środowiska.

Pytanie 37

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Weryfikacja stabilności połączeń elementów napędowych
B. Ocena stanu pierścieni ślizgowych i komutatora
C. Sprawdzenie stopnia nagrzewania obudowy
D. Kontrola stanu szczotek oraz szczotkotrzymaczy
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.

Pytanie 38

Które z wymienionych czynności przy instalacjach elektrycznych do 1 kV wymagają wydania polecenia?

A. Okresowe, określone w planie przeglądów.
B. Związane z ratowaniem urządzeń przed zniszczeniem.
C. Związane z ratowaniem zdrowia i życia ludzkiego.
D. Codzienne, określone w instrukcji eksploatacji.
Poprawnie wskazana odpowiedź odnosi się do bardzo konkretnego wymagania eksploatacyjnego: przy instalacjach elektrycznych do 1 kV polecenia pisemne (albo formalnie udzielone polecenia ustne zgodnie z procedurą zakładową) dotyczą przede wszystkim prac okresowych, zaplanowanych w harmonogramie przeglądów i konserwacji. Chodzi o roboty, które nie są rutynową, codzienną obsługą, tylko ingerują w stan instalacji – np. przeglądy rozdzielnic, sprawdzanie połączeń śrubowych, czyszczenie torów prądowych, wymiana zabezpieczeń, próby funkcjonalne urządzeń zabezpieczeniowych. Tego typu czynności powinny być objęte planem przeglądów, a każde wykonanie takiego przeglądu powinno mieć podstawę w postaci polecenia, najlepiej na piśmie. Wynika to zarówno z zasad BHP, jak i z ogólnych wymagań wynikających z przepisów eksploatacji urządzeń energetycznych (w praktyce zakłady opierają się na rozporządzeniach dotyczących eksploatacji urządzeń, instalacji i sieci oraz na instrukcjach organizacji bezpiecznej pracy). Dobrą praktyką jest, żeby takie polecenie precyzowało zakres prac, miejsce, czas, skład zespołu, środki ochrony indywidualnej, sposób wyłączenia i zabezpieczenia obwodów, a także sposób sprawdzenia braku napięcia i uziemienia. W realnych warunkach zakładowych wygląda to tak, że np. raz do roku wykonuje się przegląd instalacji oświetleniowej w hali produkcyjnej: kierownik wydaje polecenie, wyznacza osobę odpowiedzialną, a ekipa pracuje według tego dokumentu, ma jasno określone, co może robić, a czego nie. Moim zdaniem bez takiego sformalizowania szybko robi się bałagan, trudno potem udowodnić, kto co zrobił, kiedy i na jakich warunkach. Dodatkowo polecenia przy pracach okresowych pozwalają prześledzić historię eksploatacji instalacji, co jest bardzo przydatne przy awariach, audytach albo odbiorach UDT czy wewnętrznych kontrolach BHP. To wszystko razem powoduje, że właśnie prace okresowe, ujęte w planie przeglądów, wymagają formalnego wydania polecenia i są podstawowym elementem bezpiecznej eksploatacji instalacji do 1 kV.

Pytanie 39

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie obciążalności prądowej instalacji
B. Obniżenie napięcia roboczego
C. Zwiększenie rezystancji pętli zwarcia
D. Osłabienie wytrzymałości mechanicznej przewodów
Wybór niepoprawnych odpowiedzi, takich jak zmniejszenie wytrzymałości mechanicznej przewodów, zwiększenie rezystancji pętli zwarcia czy zmniejszenie napięcia roboczego, jest wynikiem nieporozumień dotyczących właściwości przewodów elektrycznych. Zmniejszenie wytrzymałości mechanicznej przewodów nie ma miejsca przy wymianie na przewody DY, gdyż te przewody są zaprojektowane z myślą o zwiększonej odporności na uszkodzenia mechaniczne. W rzeczywistości, przewody DY często oferują lepszą ochronę przed uszkodzeniami dzięki zastosowaniu odpowiednich materiałów izolacyjnych, co jest kluczowe w instalacjach podtynkowych. Zwiększenie rezystancji pętli zwarcia to kolejny mit, ponieważ zmiana przewodów na DY, które mają lepsze parametry elektryczne, w rzeczywistości może przyczynić się do zmniejszenia rezystancji pętli zwarcia, a nie jej zwiększenia. Zmniejszenie napięcia roboczego również nie jest efektem wymiany na przewody DY, jako że napięcie robocze w instalacji zależy od źródła zasilania oraz obciążenia, a nie od rodzaju zastosowanego przewodu. Właściwe zrozumienie tych kwestii jest kluczowe dla projektowania i modernizacji instalacji elektrycznych, dlatego tak ważne jest stosowanie sprawdzonych rozwiązań oraz przestrzeganie norm i dobrych praktyk branżowych.

Pytanie 40

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne szeregowo do silników
B. Podłączyć dławiki indukcyjne równolegle do silników
C. Podłączyć kondensatory równolegle do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie dławików indukcyjnych równolegle do silników nie jest skuteczną metodą kompensacji mocy biernej, ponieważ dławiki wytwarzają moc bierną indukcyjną. Ich zastosowanie w tej konfiguracji zwiększałoby zapotrzebowanie na moc bierną, co prowadziłoby do dalszego obciążenia sieci zasilającej i zwiększenia kosztów energii. Wprowadzenie kondensatorów szeregowo do silników również jest niewłaściwe, ponieważ tak skonfigurowane kondensatory nie mogą efektywnie kompensować mocy biernej silników indukcyjnych, gdyż ich działanie jest ograniczone do specyficznych warunków prądowych, co zmniejsza efektywność kompensacji. Działanie dławików indukcyjnych szeregowo z silnikami wprowadza dodatkowe straty mocy i może prowadzić do niestabilnych warunków pracy. Typowym błędem myślowym jest przyjmowanie, że urządzenia indukcyjne mogą być wspomagane przez inne urządzenia indukcyjne lub na zasadzie szeregowego połączenia. W praktyce, do efektywnej kompensacji mocy biernej w systemach z silnikami indukcyjnymi, niezbędne jest zastosowanie kondensatorów w konfiguracji równoległej, co pozwala na stabilizację mocy biernej i poprawę współczynnika mocy w instalacjach przemysłowych.