Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 20 grudnia 2025 13:29
  • Data zakończenia: 20 grudnia 2025 13:49

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C10
B. C6
C. B10
D. B16
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 2

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Niesymetryczne obciążenie transformatora
B. Przerwa w uzwojeniu pierwotnym
C. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
D. Przerwa w uziemieniu neutralnego punktu
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
B. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
C. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
Wyłączenie silników i transformatorów pracujących przy niewielkim obciążeniu jest kluczowym działaniem, które pozwala na poprawę współczynnika mocy. Współczynnik mocy (PF) odzwierciedla stosunek mocy rzeczywistej do mocy pozornej, a jego optymalizacja ma istotne znaczenie dla efektywności energetycznej. Silniki i transformatory, które działają przy niskich obciążeniach, mogą prowadzić do obniżenia PF, ponieważ wytwarzają dużą ilość mocy biernej. Wyłączenie tych urządzeń, gdy nie są potrzebne, zmniejsza zapotrzebowanie na moc bierną, co w rezultacie poprawia współczynnik mocy całego systemu. W praktyce, przedsiębiorstwa energetyczne często wykorzystują analizatory mocy do monitorowania PF i identyfikowania sprzętu, który można wyłączyć. Poprawa PF może również prowadzić do oszczędności w kosztach energii oraz zmniejszenia obciążeń dla systemu energetycznego, co jest zgodne z najlepszymi praktykami określonymi w normach ISO 50001 dotyczących zarządzania energią.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zmierzone parametry rezystancji cewki stycznika umiejscowionej w obwodzie sterującym silnikiem wynoszą 0 Ω. Na tej podstawie można wnioskować, że

A. cewka stycznika działa prawidłowo
B. przewód neutralny jest odłączony
C. przewód fazowy jest odłączony
D. cewka stycznika jest uszkodzona
Pomiar rezystancji cewki stycznika wynoszący 0 Ω wskazuje na zwarcie w obwodzie, co sugeruje, że cewka stycznika jest uszkodzona. W normalnych warunkach cewka powinna mieć określoną rezystancję, zazwyczaj w zakresie od kilku omów do kilkuset omów, w zależności od specyfikacji. Cewki styczników są projektowane tak, aby w momencie włączenia generować pole magnetyczne, które uruchamia mechanizm zamykający styki. Zwarcie może być skutkiem zniszczenia izolacji lub uszkodzenia uzwojenia. Przykładem zastosowania tej wiedzy jest diagnostyka w układach sterowania silnikami, gdzie uszkodzone cewki mogą prowadzić do awarii całego systemu. W takich sytuacjach zgodnie z najlepszymi praktykami należy wymieniać uszkodzone komponenty, aby zapewnić niezawodność i bezpieczeństwo operacji, a także unikać potencjalnych zagrożeń elektrycznych. Zrozumienie tego zjawiska jest kluczowe dla techników i inżynierów pracujących w dziedzinie automatyki i elektrotechniki.

Pytanie 11

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Dostawca energii elektrycznej
B. Producent energii elektrycznej
C. Właściciel obiektu
D. Zarządca obiektu
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 12

Która z wymienionych operacji jest związana z obsługą przepływu energii elektrycznej w urządzeniu napędowym klasy IV?

A. Mierzenie napięcia zasilającego to urządzenie
B. Zatrzymanie urządzenia w przypadku awarii
C. Zamiana uszkodzonego elementu w urządzeniu
D. Weryfikacja ustawienia zabezpieczenia przed przeciążeniem
Zatrzymanie urządzenia w trybie awaryjnym to naprawdę ważna sprawa, zwłaszcza gdy mówimy o ruchu elektrycznym napędów. Jak coś wyjdzie nie tak, to trzeba reagować od razu, żeby nie uszkodzić sprzętu czy nie narazić kogoś na niebezpieczeństwo. W przypadku urządzeń napędowych klasy IV, które mają często skomplikowane systemy sterujące, to zatrzymanie w trybie awaryjnym to nie tylko dobra praktyka, ale też wymagane przez normy BHP i standardy automatyki. Na przykład, jeśli silnik zaczyna działać nieprawidłowo, to lepiej jest go od razu zatrzymać. Wiele z tych urządzeń ma różne przyciski awaryjnego zatrzymania oraz systemy, które same to robią, gdy coś jest nie tak. To pokazuje, jak kluczowe to działanie jest, jeśli chodzi o zarządzanie ryzykiem. Tak więc, umiejętność szybkiego zatrzymania urządzenia w sytuacjach awaryjnych to podstawa, żeby zapewnić bezpieczeństwo i ochronić sprzęt.

Pytanie 13

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Waromierz
B. Anemometr
C. Pirometr
D. Megaomomierz
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 14

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. 1 – sprawny, 2 – niesprawny.
B. Oba wyłączniki sprawne.
C. Oba wyłączniki niesprawne.
D. 1 – niesprawny, 2 – sprawny.
Odpowiedź 1 – niesprawny, 2 – sprawny jest prawidłowa, ponieważ zgodnie z normami bezpieczeństwa wyłączników różnicowoprądowych, powinny one zadziałać przy określonym prądzie różnicowym. W przypadku wyłącznika EFI-2 25/0,03 wymagana wartość prądu różnicowego wynosi 30 mA. Wyłącznik nr 1 zadziałał przy prądzie 35 mA, co oznacza, że przekracza dopuszczalny poziom i nie jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Natomiast wyłącznik nr 2 zadziałał przy prądzie 25 mA, co jest zgodne z wymaganiami i wskazuje na jego sprawność. W praktyce, poprawne działanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych, ponieważ ich zadaniem jest ochrona przed skutkami prądów uziemiających i porażeniem. Regularne testowanie tych urządzeń zgodnie z normami PN-EN 61008 jest zalecane, aby zapewnić ich niezawodność i efektywność w warunkach użytkowania.

Pytanie 15

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie przewodu ochronnego z obudową
B. zwarcie między przewodem fazowym a neutralnym
C. uszkodzenie w przewodzie fazowym
D. uszkodzenie w grzałce
Wybór odpowiedzi dotyczącej przerwy w grzałce lub przewodzie fazowym nie uwzględnia kluczowego aspektu działania zabezpieczeń nadprądowych. W przypadku przerwy w grzałce, obwód staje się otwarty, co prowadzi do braku przepływu prądu, a zabezpieczenie nie zadziała, ponieważ nie zarejestruje wzrostu prądu. Podobnie, przerwa w przewodzie fazowym powoduje, że obwód również nie jest zamknięty, co skutkuje brakiem przepływu prądu i tym samym brakiem reakcji zabezpieczenia. Na odwrotnym biegunie, zwarcie przewodu ochronnego do obudowy również nie jest właściwym powodem zadziałania zabezpieczenia nadprądowego, ponieważ w takim przypadku przepływ prądu odbywa się przez przewód ochronny, ale statystycznie zbyt niski prąd roboczy nie wywoła wystarczającego wzrostu prądu, aby zabezpieczenie zareagowało. Kluczowym błędem w analizie tych sytuacji jest nieprzemyślane rozumienie, że zabezpieczenia nadprądowe są zaprojektowane do reagowania wyłącznie na nadmiar prądu, a nie na sytuacje, gdzie obwód jest otwarty. Zrozumienie tych zasad jest fundamentalne dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
C. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 18

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. rezystancji uzwojeń
B. charakterystyki stanu jałowego
C. izolacji łożysk
D. drgań
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 19

Który z dwójników służy do zabezpieczania tyrystorów przed przepięciami komutacyjnymi?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór odpowiedzi, który nie wskazuje na dwójnik RC, może prowadzić do nieporozumień w zakresie ochrony tyrystorów przed przepięciami komutacyjnymi. Ochrona tyrystorów jest kluczowym zagadnieniem w elektronice mocy, gdyż ich wyłączenie może generować znaczące przepięcia. Rezystory i kondensatory pełnią różne funkcje w układach elektronicznych, a ich niewłaściwe użycie może prowadzić do uszkodzeń komponentów. Wiele osób błędnie uważa, że tyrystory można zabezpieczyć stosując jedynie rezystory lub kondensatory osobno, co jest nieprawidłowe. Rezystor sam w sobie nie zareaguje na nagłe zmiany napięcia, a kondensator, chociaż jest w stanie absorbować energię, nie zredukuje energii wyzwalanej przez szybko zmieniające się napięcie. Dlatego kluczowe jest zrozumienie, że jedynie ich połączenie w formie dwójnika RC odpowiada za skuteczną ochronę. W praktyce, nieprawidłowy dobór elementów lub ich brak może prowadzić do niepożądanych zjawisk, takich jak przepięcia, które mogą uszkodzić zarówno tyrystory, jak i inne elementy obwodu. Niezrozumienie tego zagadnienia może skutkować nieefektywnością całego układu elektronicznego oraz zwiększoną awaryjnością systemów, w których stosowane są tyrystory.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Pirometru
B. Tensometru mostkowego.
C. Higrometru termo.
D. Prądnicy tachometrycznej.
Wybór innych przyrządów pomiarowych, takich jak termohigrometr, mostek tensometryczny czy pirometr, jest niewłaściwy w kontekście pomiaru prędkości obrotowej wałów silników. Termohigrometr służy do pomiaru temperatury i wilgotności powietrza, co nie ma związku z prędkością obrotową. Mostek tensometryczny, z kolei, jest używany do pomiaru napięcia i odkształceń w materiałach, a nie do pomiaru prędkości. Pirometr jest urządzeniem stosowanym do pomiaru temperatury ciał na podstawie promieniowania podczerwonego, co również nie ma zastosowania w kontekście prędkości obrotowej. Typowe błędy myślowe, które mogą prowadzić do takich wyborów, to nieprawidłowe skojarzenie funkcji przyrządów z ich zastosowaniami. W praktyce, skuteczne pomiary prędkości obrotowej wymagają zastosowania odpowiednich narzędzi, takich jak prądnica tachometryczna, które działają na zasadzie bezpośredniego pomiaru. Zrozumienie roli i funkcji różnych przyrządów pomiarowych jest kluczowe dla efektywnego i precyzyjnego monitorowania parametrów pracy maszyn.

Pytanie 22

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Zwarcie w uzwojeniu komutacyjnym
B. Przerwa w obwodzie twornika
C. Zwarcie w obwodzie twornika
D. Przerwa w uzwojeniu wzbudzenia
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 23

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Organ inspekcji technicznej
B. Dostawca energii elektrycznej
C. Użytkownicy mieszkań
D. Właściciel lub zarządca nieruchomości
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. AC-1
B. DC-2
C. AC-3
D. DC-4
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 27

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Przekładnie i skrzynki przekładniowe
B. Termostaty i czujniki temperatury
C. Grzałki oraz spirale grzejne
D. Szczotkotrzymacze oraz szczotki węglowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 28

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy sodowe
B. świetlówki
C. lampy rtęciowe
D. żarówki
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 29

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Rozruch próbny urządzenia
B. Pomiar rezystancji uzwojeń stojana
C. Pomiar napięcia zasilania
D. Sprawdzenie stanu ochrony przeciwporażeniowej
W kontekście badań eksploatacyjnych silnika elektrycznego, każda z wymienionych czynności ma swoje znaczenie, ale nie wszystkie są klasyfikowane jako badania samych silników. Pomiar rezystancji uzwojeń stojana jest jednym z najważniejszych badań, które pozwala na ocenę stanu izolacji. Uszkodzenie izolacji może prowadzić do zwarć, co z kolei zagraża nie tylko funkcjonowaniu silnika, ale także bezpieczeństwu użytkowników. Rozruch próbny urządzenia jest kluczowy dla sprawdzenia, czy silnik działa zgodnie z jego specyfikacją i czy nie występują nieprawidłowości w jego pracy. Z kolei sprawdzenie stanu ochrony przeciwporażeniowej jest fundamentalne dla zapewnienia bezpieczeństwa elektrycznego, a jego pominięcie może prowadzić do poważnych wypadków. Wydaje się więc, że pomiar napięcia zasilania powinien być również postrzegany jako istotny, jednak poprzez skoncentrowanie się na nim, można przeoczyć istotne detale związane z samym stanem silnika. W rzeczywistości, badania eksploatacyjne skupiają się głównie na diagnostyce i analizie wewnętrznej stanu silnika, co oznacza, że pomiar napięcia, mimo że ważny w kontekście zasilania, nie dostarcza informacji o zdrowiu silnika. Właściwe podejście do badań eksploatacyjnych wymaga zrozumienia, które czynności mają kluczowe znaczenie dla oceny wewnętrznych komponentów silnika, a które są związane z jego zasilaniem i eksploatacją w kontekście zewnętrznym.

Pytanie 30

W pomieszczeniu zainstalowano 40 żarówek o mocy 75 W każda. Jakiego wyłącznika nadprądowego powinno się użyć do zabezpieczenia jednofazowej instalacji oświetleniowej zasilanej napięciem 230 V?

A. B6
B. C10
C. B16
D. C6
Odpowiedź B16 jest poprawna, ponieważ dobór wyłącznika nadprądowego powinien być uzależniony od całkowitego obciążenia instalacji. W tym przypadku mamy do czynienia z 40 żarówkami o mocy 75 W każda, co daje łącznie 3000 W. Przy napięciu zasilania wynoszącym 230 V, całkowity prąd pobierany przez te żarówki można obliczyć za pomocą wzoru: I = P / U, co w naszym przypadku daje I = 3000 W / 230 V ≈ 13 A. Wyłącznik B16 zapewnia odpowiedni margines bezpieczeństwa, ponieważ jest w stanie obsłużyć prąd do 16 A, co oznacza, że może znieść chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu żarówek. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenie jest głównie rezystancyjne, co jest typowe dla instalacji oświetleniowych. W praktyce, zastosowanie wyłącznika B16 w tym przypadku spełnia normy PN-IEC 60898-1, które regulują dobór zabezpieczeń nadprądowych, zapewniając jednocześnie bezpieczeństwo użytkowników oraz ochronę instalacji.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów rezystancji izolacji przewodów
B. Pomiarów oraz weryfikacji spadków napięć
C. Oględzin związanych z ochroną przeciwpożarową
D. Badania zabezpieczeń przed dotykiem pośrednim
Badania okresowe instalacji elektrycznej są niezbędnym elementem zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemów elektroenergetycznych. Pomiar rezystancji izolacji przewodów to kluczowy element tych badań, który pozwala na ocenę integralności izolacji. Niska rezystancja może wskazywać na uszkodzenia izolacji, co stwarza ryzyko porażenia prądem lub awarii systemu. Sprawdzanie ochrony przed dotykiem pośrednim, które ma na celu zminimalizowanie ryzyka kontaktu z elementami na potencjale uziemienia, również jest istotne w kontekście analiz okresowych. Oględziny dotyczące ochrony przeciwpożarowej, które obejmują ocenę układów elektrycznych pod kątem możliwości zapłonu lub zwarcia, są zgodne z normami bezpieczeństwa. Z kolei pomiar i sprawdzanie spadków napięć, chociaż ważne w kontekście analizy wydajności i jakości energii elektrycznej, nie jest częścią standardowego zakresu badań okresowych. Użytkownicy mogą mylnie uznać, że każde badanie związane z instalacją elektryczną powinno być uwzględnione w okresowych przeglądach, jednak różnica w celach tych badań jest kluczowa dla ich odpowiedniego przeprowadzenia. Właściwe podejście do badań określa, które pomiary są kluczowe dla dbałości o bezpieczeństwo oraz funkcjonalność instalacji.

Pytanie 33

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 37,72 A
B. 30,82 A
C. 38,64 A
D. 32,66 A
Wybór złej odpowiedzi może wynikać z różnych nieporozumień. Przede wszystkim, warto ogarnąć, że temperatura wpływa na to, jak dobrze przewody przewodzą prąd. W przypadku PVC, im wyższa temperatura, tym obciążalność jest niższa. Niektórzy ludzie mogą myśleć, że obciążalność zostaje taka sama lub spada tylko minimalnie, co nie prowadzi do dobrych obliczeń. A jak się zapomni o normach jak PN-IEC 60364, można łatwo pominąć ważne zasady przy projektowaniu. W praktyce, zwłaszcza w instalacjach przemysłowych, gdzie przewody mogą być mocno nagrzane, istotne jest, żeby dostosować obciążalność do rzeczywistych warunków. Ignorowanie tych rzeczy może skończyć się niebezpiecznie, nawet uszkodzeniami przewodów, co w skrajnych sytuacjach oznacza ryzyko pożaru. Myśląc, że temperatura powietrza nie robi dużej różnicy, można wprowadzić w błąd zabezpieczenia, więc ta wiedza o współczynnikach poprawkowych ma ogromne znaczenie dla każdego, kto działa w branży elektrycznej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
B. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
C. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 36

Jakiego rodzaju pracy powinien być przystosowany silnik elektryczny, który ma napędzać wentylator wyciągowy w procesie obróbki drewna?

A. S1 - praca ciągła
B. S7 - praca okresowa długotrwała z hamowaniem elektrycznym
C. S9 - praca z nieokresowymi zmianami obciążenia i prędkości obrotowej
D. S3 - praca okresowa przerywana
Silnik elektryczny do wentylatora wyciągowego w obróbce drewna powinien być przystosowany do pracy ciągłej. To znaczy, że powinien działać bez przerwy, co jest bardzo ważne w kontekście wentylacji. Wentylatory wyciągowe często są używane tam, gdzie potrzebne jest ciągłe usuwanie powietrza z miejsca pracy. Przykładem mogą być hale produkcyjne, gdzie trzeba na bieżąco pozbywać się pyłów i szkodliwych oparów. Z mojego doświadczenia wynika, że takie warunki są kluczowe, by zapewnić zdrowie pracowników. Silniki do pracy ciągłej są też tak projektowane, żeby uniknąć przegrzewania. To z kolei przekłada się na ich wydajność i niezawodność. W branży są normy, jak IEC 60034, które określają, jak powinny działać silniki w różnych sytuacjach, co zapewnia bezpieczeństwo i efektywność.

Pytanie 37

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
C. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
D. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
Wybrałeś odpowiedź o wymianie wkładek bezpiecznikowych i żarówek, co nie jest najlepszym wyborem. Może na pierwszy rzut oka to wydaje się proste i można to robić pod napięciem, ale w rzeczywistości jest to niebezpieczne. Wymiana nawet dobrych elementów elektrycznych może być ryzykowna, zwłaszcza jeśli nie zachowasz ostrożności. Prace przy instalacji elektrycznej powinny zawsze odbywać się bez napięcia. Jakiekolwiek złamanie tej zasady może prowadzić do niebezpiecznych sytuacji. Normy, jak PN-IEC 60364-5-51, mówią jasno, że prace pod napięciem to coś, co powinno być naprawdę ograniczone i przed tym powinno się dokładnie ocenić ryzyko. A jeśli chodzi o pomiary, to też warto pamiętać, że są one czasem dozwolone, ale tylko przy zachowaniu wszystkich zasad i użyciu odpowiednich narzędzi. Także przestrzeganie przepisów BHP to podstawa, żeby w pracy z prądem było bezpiecznie.

Pytanie 38

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,15 A
B. It=0,88 A
C. It=1,33 A
D. It=1,05 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia nadnapięciowego
B. Zabezpieczenia podnapięciowego
C. Zabezpieczenia zwarciowego
D. Zabezpieczenia przeciążeniowego
Zastosowanie zabezpieczeń przeciążeniowych, zwarciowych, czy nadnapięciowych w kontekście rozruchu silników indukcyjnych pierścieniowych nie jest może najlepszym rozwiązaniem, bo jak rozruch się odbywa bez odpowiednich urządzeń, to może być kłopot. Zabezpieczenie przeciążeniowe niby chroni silnik przed przeciążeniem, no ale nie radzi sobie z problemem za niskiego napięcia. Z kolei zabezpieczenia zwarciowe mają na celu ochronę przed krótkimi spięciami, ale nie zapobiegają uruchomieniu przy niskim napięciu, co może prowadzić do uszkodzenia. Producenci sprzętu elektrycznego i dostawcy energii czasem zalecają stosowanie zabezpieczeń podnapięciowych jako ważny element w systemie ochrony silników, aby uniknąć złego rozruchu. Nadnapięcie to inny temat, jest groźne dla silnika, ale w kontekście rozruchu ważne jest to, żeby napięcie nie było za niskie, bo wtedy silnik nie ruszy, albo jeszcze gorzej – działa źle. Warto pomyśleć o tym, że wybór złego zabezpieczenia może prowadzić do dużych problemów i wyższych kosztów, co pokazuje, jak ważne jest, aby stosować odpowiednie rozwiązania według norm i dobrych praktyk inżynieryjnych.