Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 12:41
  • Data zakończenia: 17 grudnia 2025 12:59

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. uzwojenia fazowego.
B. pętli zwarciowej.
C. izolacji pomiędzy zaciskami uzwojeń silnika.
D. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 2

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Poprawna odpowiedź D wskazuje, że w układzie przedstawionym na schemacie, oświetlenie jest sterowane za pomocą dwóch łączników, które są połączone z dwoma źródłami światła. Każde źródło posiada po dwie żarówki o mocy 60 W, co daje łączną moc 240 W dla całego układu. W praktyce oznacza to, że użytkownik ma możliwość włączania i wyłączania wszystkich żarówek jednocześnie poprzez oba łączniki. Takie rozwiązanie jest zgodne z zasadami prostoty i funkcjonalności, które są kluczowe w projektowaniu instalacji oświetleniowych. W branży elektrycznej standardem jest stosowanie łączników w taki sposób, aby ich działanie było intuicyjne dla użytkowników. Dodatkowo, takie sterowanie pozwala na oszczędność energii, gdyż użytkownik może łatwo wyłączyć całe oświetlenie, gdy nie jest potrzebne. Zastosowanie dwóch łączników w jednym obwodzie jest również praktyczne w kontekście bezpieczeństwa, gdyż pozwala na zdalne sterowanie oświetleniem z różnych miejsc w pomieszczeniu.

Pytanie 3

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. na linii zasilającej budynek
B. w złączu budynku
C. w puszkach instalacyjnych gniazd odbiorczych
D. w rozdzielnicach mieszkaniowych
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 4

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 3.
B. Schemat 1.
C. Schemat 2.
D. Schemat 4.
Schemat 4 to idealne rozwiązanie, gdy chcemy sterować oświetleniem z dwóch miejsc. Używa on przełączników schodowych, które są standardem w takich sytuacjach. Dzięki nim możemy włączać i wyłączać jedno źródło światła z różnych lokalizacji, co jest super praktyczne, zwłaszcza w korytarzach czy na schodach. Te przełączniki są zaprojektowane tak, żeby użytkownik nie miał problemu z zarządzaniem światłem, a ich użycie jest zgodne z normami, jak na przykład PN-EN 60669-1, które mówią o urządzeniach do sterowania oświetleniem. Dodatkowo, takie rozwiązanie pomaga oszczędzać energię, bo można łatwo wyłączyć światło, gdy nie jest potrzebne. W praktyce, dzięki takiemu ustawieniu, zwiększa się też bezpieczeństwo, bo nie trzeba chodzić w ciemności. Instalacja takich przełączników jest dosyć prosta, o ile stosuje się odpowiednie zasady, co czyni je atrakcyjną opcją dla wielu użytkowników.

Pytanie 5

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Rysik, kątownik, punktak, młotek
B. Przymiar kreskowy, ołówek traserski, rysik
C. Przymiar taśmowy, poziomnica, ołówek traserski
D. Sznurek traserski, młotek, punktak
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 6

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, młotek, punktak
B. Ołówek traserski, poziomnica, przymiar taśmowy
C. Ołówek traserski, przymiar kreskowy, rysik
D. Kątownik, ołówek traserski, sznurek traserski
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 7

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 7,7 Ω
B. 8,0 Ω
C. 2,3 Ω
D. 4,6 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 8

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. pod tynkiem.
B. nad sufitem podwieszanym.
C. w korytku instalacyjnym.
D. w tynku.
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 9

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Neutralny między zaciskami F1:N2 i 2
B. Fazowy między zaciskami F2:2 i 1
C. Neutralny między zaciskami N i F1:N1
D. Fazowy między zaciskami F1:2 i F2:1
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 10

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TT
B. TN-S
C. TN-C
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 11

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 12

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 40 ÷ 60%
B. 0 ÷ 10%
C. 90 ÷ 100%
D. 60 ÷ 90%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 13

Który element instalacji, montowany w rozdzielnicy, przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik nadprądowy.
B. Sygnalizator dzwonkowy.
C. Lampkę kontrolną.
D. Ogranicznik przepięć.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ jego podstawowym zadaniem jest ochrona instalacji elektrycznej przed nagłymi wzrostami napięcia, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi czy też skokami napięcia w sieci. Ograniczniki przepięć montowane w rozdzielnicach są kluczowym elementem systemów zabezpieczeń, zgodnie z normą PN-EN 61643-11, która określa wymogi dotyczące tych urządzeń. Przykładowo, w budynkach mieszkalnych oraz komercyjnych zastosowanie ograniczników przepięć pozwala na ochronę drogiego sprzętu elektronicznego, takich jak komputery, telewizory czy systemy alarmowe, przed uszkodzeniami wynikającymi z przepięć. Warto zauważyć, że ograniczniki przepięć są projektowane tak, aby działały w sposób automatyczny, minimalizując potrzebę interwencji ze strony użytkowników. W praktyce zaleca się umieszczenie takich urządzeń w każdym nowo projektowanym obiekcie, co wychodzi naprzeciw dobrym praktykom w zakresie ochrony elektrycznej.

Pytanie 14

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Płaskoszczypce
C. Zagniatarka
D. Nóż monterski
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 15

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 16

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Nóż monterski, szczypce boczne, szczypce monterskie
B. Szczypce długie, nóż monterski, szczypce czołowe
C. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
D. Nóż monterski, szczypce boczne, zestaw wkrętaków
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 17

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie miejsca pracy
B. urządzenia II klasy ochronności
C. izolowanie części czynnych
D. połączenia wyrównawcze
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 18

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 3.
B. Wstawkę 4.
C. Wstawkę 2.
D. Wstawkę 1.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 19

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Autotransformator.
B. Gniazdo z transformatorem separacyjnym.
C. Łącznik krańcowy.
D. Dławik.
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 20

Jakiego rodzaju gniazda wtykowego należy użyć do zamontowania w puszce podtynkowej w łazience z instalacją typu TNS?

A. Jednego ze stykiem ochronnym
B. Podwójnego z stykiem ochronnym
C. Podwójnego bryzgoszczelnego ze stykiem ochronnym
D. Jednego bez styku ochronnego
Podwójne bryzgoszczelne gniazdo wtykowe ze stykiem ochronnym jest idealnym rozwiązaniem do instalacji w łazience, gdzie wilgotność i ryzyko kontaktu z wodą są znacznie wyższe niż w innych pomieszczeniach. Normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, sugerują stosowanie gniazd bryzgoszczelnych w strefach, gdzie istnieje zwiększone ryzyko porażenia prądem. Gniazda te charakteryzują się odpowiednią klasą ochrony (IP44 lub wyższą), co zapewnia ich szczelność na wodę rozpryskową. Styk ochronny jest również kluczowy, gdyż zapewnia dodatkowe bezpieczeństwo, chroniąc użytkowników przed porażeniem prądem w przypadku uszkodzenia urządzeń elektrycznych. W praktyce, gniazda te są szeroko stosowane w pomieszczeniach takich jak łazienki i kuchnie, gdzie wymagania dotyczące bezpieczeństwa elektrycznego są zaostrzone. Zastosowanie gniazd bryzgoszczelnych jest zgodne z najlepszymi praktykami, które zapewniają ochronę zarówno użytkowników, jak i urządzeń elektrycznych.

Pytanie 21

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. aR 16 A
B. aM 20 A
C. gG 16 A
D. gB 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 22

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,73 MΩ
B. 6,87 MΩ
C. 6,18 MΩ
D. 7,48 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 23

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Brąz
B. Miedź
C. Aluminium
D. Stal
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 24

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,4 s i 0,2 s
B. 0,2 s i 0,4 s
C. 0,4 s i 0,8 s
D. 0,8 s i 0,4 s
Odpowiedź 0,4 s dla obwodu z przewodem neutralnym oraz 0,8 s dla obwodu bez przewodu neutralnego jest zgodna z normami dotyczącymi bezpieczeństwa w układach sieci typu IT. W przypadku obwodów z przewodem neutralnym, czas wyłączenia wynoszący 0,4 s zapewnia odpowiednią ochronę przed skutkami porażenia prądem, co jest kluczowe w kontekście ochrony ludzi oraz sprzętu. W obwodach bez przewodu neutralnego wydłużony czas wyłączenia do 0,8 s ma na celu zmniejszenie ryzyka niepożądanych skutków w przypadku awarii, co jest zgodne z wymaganiami określonymi w normach IEC 60364. Przykładowo, w sytuacji, gdy wystąpi zwarcie lub ucieczka prądu do ziemi, szybka reakcja urządzenia różnicowoprądowego jest kluczowa dla zminimalizowania ryzyka porażenia oraz ochrony przed pożarami. Dodatkowo, zastosowanie urządzenia różnicowoprądowego w obwodach sieci IT w znaczący sposób zwiększa bezpieczeństwo użytkowników, a przestrzeganie tych czasów wyłączenia jest kluczowe w projektowaniu systemów elektrycznych.

Pytanie 25

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. spodziewanego prądu zwarcia.
B. maksymalnego prądu obciążenia.
C. znamionowego prądu instalacji.
D. prądu zadziałania zabezpieczenia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 26

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
B. nieprawidłowo odczytano wynik pomiaru.
C. obwód połączony jest prawidłowo.
D. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
Obwód został połączony tak, jak należy, co można łatwo zauważyć, analizując schemat instalacji oświetleniowej. Z mojego doświadczenia wynika, że każda żarówka powinna działać niezależnie, dlatego stosujemy połączenia równoległe. Dzięki temu, jak jedna żarówka padnie, reszta nadal świeci. Gdy łączniki P1 i P2 są zwarte, obwód zamyka się, co pozwala na mierzenie rezystancji. W domowych instalacjach standardowe napięcie to 230 V, i to jest całkiem zgodne z normami. Dobrze jest też regularnie sprawdzać instalację, żeby wyłapać ewentualne błędy wcześniej. A przy pomiarach rezystancji, pamiętaj, że wyniki zależą od tego, jakie elementy zastosowano i jak są one połączone, co w tym przypadku masz na właściwym poziomie.

Pytanie 27

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. LgY
B. XzTKMXpw
C. YADY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 28

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód niepriorytetowy
C. priorytetowym, zostaje wyłączony obwód priorytetowy
D. niepriorytetowym, zostaje wyłączony obwód priorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 29

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. rezystancji izolacji.
B. ciągłości przewodów.
C. rezystancji uziemienia.
D. impedancji pętli zwarcia.
Wybierając jedną z pozostałych opcji, można natknąć się na szereg nieporozumień związanych z funkcją przełącznika oraz zasadami pomiarów elektrycznych. Impedancja pętli zwarcia to parametr istotny, jednak nie jest to pomiar, który wykonuje się przy ustawieniu oznaczonym jako "RE". Impedancja pętli zwarcia odnosi się do całkowitej impedancji w obwodzie, co jest istotne dla oceny ochrony przeciwporażeniowej, ale wymaga innego ustawienia w urządzeniu pomiarowym. Podobnie, ciągłość przewodów, oznaczająca sprawdzenie, czy nie ma przerwy w obwodzie, również nie jest tożsame z pomiarem rezystancji uziemienia. Wartość rezystancji izolacji, z kolei, dotyczy stanu izolacji przewodów i nie odnosi się do funkcji uziemiającej. Użycie nieodpowiedniej opcji może skutkować błędną oceną stanu instalacji elektrycznej, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. Rozumienie różnicy między tymi pojęciami jest kluczowe dla każdego specjalisty zajmującego się instalacjami elektrycznymi, a ich mylne zrozumienie może prowadzić do nieprawidłowych wniosków i decyzji w zakresie bezpieczeństwa elektrycznego.

Pytanie 30

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
B. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
C. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 31

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 10 mm2
Wybór niewłaściwego przekroju przewodu ochronnego, jak 2,5 mm2, 4 mm2 czy 10 mm2, może wydawać się na pierwszy rzut oka uzasadniony, jednak nie odpowiada on wymaganiom przepisów i zasad bezpieczeństwa. Przekrój 2,5 mm2 jest często stosowany dla przewodów zasilających, ale nie jest przewidziany dla przewodów ochronnych w obwodach oświetleniowych. Kluczowym aspektem przy doborze przekroju przewodu ochronnego jest jego funkcja, a nie tylko zdolność do przewodzenia prądu. Głównym celem przewodu ochronnego jest zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądów zwarciowych; zbyt duży przekrój może opóźnić działanie zabezpieczeń, co stwarza ryzyko poważnych wypadków. Przewody o większym przekroju, jak 4 mm2 czy 10 mm2, są nieadekwatne w kontekście ochrony, ponieważ mogą prowadzić do niepoprawnej oceny stanu instalacji, co może skutkować brakiem odpowiednich reakcji w sytuacji awaryjnej. Powszechnym błędem jest również założenie, że im większy przekrój, tym lepsza ochrona. Ważne jest, aby pamiętać, że każdy element instalacji elektrycznej musi być dobrany zgodnie z jego przeznaczeniem oraz obowiązującymi normami, co w tym przypadku jasno określa minimalny przekrój przewodu ochronnego na 1,5 mm2.

Pytanie 32

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź D jest prawidłowa, ponieważ symbol graficzny przedstawiony przy tej opcji to standardowy symbol miernika analogowego, powszechnie używanego do pomiaru napięć stałych. Mierniki te są kluczowym narzędziem w elektrotechnice, umożliwiającym dokładne pomiary w obwodach elektrycznych. W praktyce, miernik analogowy potrafi zmierzyć napięcie stałe w różnych aplikacjach, takich jak diagnostyka układów zasilających oraz pomiar parametrów akumulatorów. Warto zaznaczyć, że korzystanie z miernika analogowego wymaga umiejętności odczytu wskazań wskazówki na skali, co może być mniej intuicyjne niż w przypadku nowoczesnych multimetra cyfrowego. Jednakże, w pewnych aplikacjach, analogowy miernik może zapewnić lepszą wizualizację zmian napięcia w czasie. Dlatego znajomość tego symbolu i umiejętność korzystania z takiego sprzętu jest fundamentalna dla każdego technika elektryka.

Pytanie 33

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Żółty
C. Niebieski
D. Czerwony
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 34

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. HDGs
B. OMYp
C. SMYp
D. YDYt
Wybór niewłaściwych typów przewodów do instalacji elektrycznej w drewnianych ścianach, takich jak OMYp, SMYp czy YDYt, może prowadzić do poważnych problemów. Przewód OMYp, mimo że jest elastyczny i używany w instalacjach wewnętrznych, nie jest przystosowany do użycia w środowisku, gdzie istnieje ryzyko uszkodzeń mechanicznych oraz pożaru, co czyni go nieodpowiednim do drewnianych konstrukcji. Przewody SMYp i YDYt, mimo że są szeroko stosowane, mają swoje ograniczenia. SMYp, jako przewód o mniejszej odporności na temperaturę, może w warunkach wysokich temperatur ulegać uszkodzeniom izolacji, co z kolei zwiększa ryzyko iskrzenia i pożaru. Z kolei YDYt, choć jest stosunkowo popularny, może nie spełniać wymogów dotyczących ochrony przed uszkodzeniami mechanicznymi, co jest kluczowe w kontekście drewnianych ścian. W przypadku niewłaściwego doboru przewodów, ich użycie może prowadzić do awarii elektrycznych, a nawet zagrożenia dla bezpieczeństwa użytkowników budynku. Kluczowe jest, aby projektując instalację, uwzględnić specyfikę materiałów budowlanych oraz normy branżowe, takie jak PN-IEC 60364, które wyraźnie określają, jakie rozwiązania są zalecane w różnych środowiskach. Znalezienie równowagi pomiędzy funkcjonalnością a bezpieczeństwem jest niezbędne, aby uniknąć kosztownych napraw oraz potencjalnych zagrożeń dla życia i zdrowia użytkowników.

Pytanie 35

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
W przypadku niepoprawnych odpowiedzi, takich jak A, C i D, można zauważyć, że nie spełniają one wymogów dotyczących układu sond pomiarowych. W odpowiedzi A, potencjalna sonda znajduje się zbyt blisko badanego uziomu, co prowadzi do zniekształcenia wyników, ponieważ nie uwzględnia się rzeczywistego spadku napięcia w gruncie. W odpowiedzi C, nieprawidłowe rozmieszczenie sond skutkuje brakiem możliwości precyzyjnego pomiaru rezystancji, co może prowadzić do błędnych wniosków na temat stanu uziomu. W odpowiedzi D, konieczność zrozumienia, jak prąd wpływa na pomiary rezystancji, nie została spełniona, co jest kluczowe dla obliczeń związanych z bezpieczeństwem instalacji elektrycznych. Typowe błędy myślowe to ignorowanie zasad dotyczących odległości sond, co może prowadzić do błędnych wniosków o efektywności uziemienia. W praktyce, brak znajomości zasad pomiarowych może mieć poważne konsekwencje, takie jak uszkodzenie sprzętu lub zagrożenie dla bezpieczeństwa użytkowników. Dlatego ważne jest, aby przed przystąpieniem do pomiarów zrozumieć podstawowe zasady dotyczące rozmieszczenia sond oraz ich wpływu na dokładność wyniku, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 36

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C20
B. B25
C. D10
D. C16
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 37

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 38

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Oprawka oznaczona literą D jest właściwa, ponieważ została wykonana z ceramiki, co czyni ją idealnym materiałem do zastosowania w źródłach światła o dużej mocy. Ceramika charakteryzuje się wysoką odpornością na temperatury, które mogą osiągać nawet 300°C, co jest kluczowe dla zapewnienia bezpieczeństwa i wydajności systemu oświetleniowego. W praktyce, oprawki ceramiczne są szeroko stosowane w lampach halogenowych i LED o dużej mocy, gdzie efektywne odprowadzanie ciepła jest niezbędne. Materiał ten nie tylko dobrze przewodzi ciepło, ale również minimalizuje ryzyko deformacji pod wpływem wysokich temperatur. Zastosowanie ceramiki w takich oprawkach wpisuje się w standardy branżowe, które uwzględniają bezpieczeństwo i efektywność energetyczną. Warto również zauważyć, że w przypadku źródeł światła dużej mocy, niewłaściwie dobrane materiały mogą prowadzić do uszkodzeń zarówno oprawki, jak i samego źródła światła, co może skutkować awarią i zwiększonym ryzykiem pożaru. Dlatego wybór ceramiki jako materiału na oprawki jest zgodny z najlepszymi praktykami inżynieryjnymi.

Pytanie 39

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. neutralny.
B. wyrównawczy.
C. ochronny.
D. odgromowy.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 40

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 300/500 V
C. 600/1000 V
D. 450/750 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.