Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 08:56
  • Data zakończenia: 19 grudnia 2025 09:33

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 1 godzinę
B. 3 godziny
C. 4 godziny
D. 2 godziny
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 2

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Wielofunkcyjny.
B. Impulsowy.
C. Czasowy.
D. Priorytetowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 3

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Komutatorowej prądu przemiennego.
B. Indukcyjnej pierścieniowej.
C. Synchronicznej.
D. Indukcyjnej klatkowej.
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 4

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Przeciążenie obwodu
B. Awaria wyłącznika nadprądowego w rozdzielnicy
C. Zwarcie rezystancyjne do obudowy odbiornika
D. Uszkodzenie lub przepalenie przewodu neutralnego
Przeciążenie obwodu, które sugeruje pierwsza odpowiedź, nie jest bezpośrednią przyczyną zadziałania wyłącznika różnicowoprądowego, ponieważ jego działanie opiera się na detekcji różnic prądów, a nie na ich natężeniu. Przeciążenie może skutkować zadziałaniem wyłącznika nadprądowego, który ma na celu ochronę przewodów przed przegrzewaniem, ale nie wpływa na wyłącznik różnicowoprądowy w tym kontekście. Uszkodzenie przewodu neutralnego, wspomniane w drugiej opcji, również nie musi prowadzić do zadziałania wyłącznika różnicowoprądowego, jeśli obwód nadal może funkcjonować z poprawnym przepływem prądu. Uszkodzenie wyłącznika nadprądowego w rozdzielnicy, opisane w trzeciej odpowiedzi, w rzeczywistości nie ma związku z działaniem wyłącznika różnicowoprądowego, który funkcjonuje niezależnie. Na koniec, zwarcie rezystancyjne do obudowy odbiornika, które nie zostało wybrane, stanowi rzeczywistą przyczynę zadziałania, ale wszystkie pozostałe odpowiedzi nie uwzględniają tej kluczowej kwestii. W praktyce, zrozumienie zasad działania wyłączników różnicowoprądowych oraz odpowiednich zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa i uniknięcia nieprawidłowych wniosków w diagnostyce usterek w instalacjach elektrycznych.

Pytanie 5

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. techniczną.
B. bezpośredniego pomiaru.
C. zastosowania dodatkowego źródła.
D. spadku napięcia.
Wybór odpowiedzi 'techniczną' nie odnosi się do specyfiki pomiaru impedancji pętli zwarciowej. Ogólnie rzecz biorąc, termin ten może sugerować ujęcie oparte na technicznych aspektach pomiarów, jednak nie wskazuje na właściwą metodę. Odpowiedź 'bezpośredniego pomiaru' sugeruje, że pomiar impedancji można uzyskać poprzez bezpośrednie podłączenie miernika do obwodu, co nie jest właściwe w kontekście pomiaru pętli zwarciowej. W rzeczywistości, pomiar impedancji nie jest zwykle realizowany w sposób bezpośredni, ponieważ wymaga to wywołania warunków zwarcia, co wiąże się z ryzykiem dla bezpieczeństwa i wymaga zachowania szczególnych środków ostrożności. Odpowiedź 'zastosowania dodatkowego źródła' nie jest poprawna, ponieważ metoda spadku napięcia wykorzystuje istniejące napięcie w obwodzie do pomiaru, a dodatkowe źródło mogłoby wprowadzić błędy w odczycie. Typowym błędem myślowym w tym przypadku jest mylenie różnych metod pomiarowych oraz brak zrozumienia, że pomiar impedancji pętli zwarciowej wymaga specyficznych warunków, które są zgodne z normami i praktykami branżowymi. Właściwe zrozumienie metodologii pomiarowej jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 6

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. wartości natężenia oświetlenia w miejscach pracy
B. doboru oraz oznaczenia przewodów
C. doboru zabezpieczeń i urządzeń
D. układu tablic informacyjnych i ostrzegawczych
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 7

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Silnik będzie funkcjonować w trybie jałowym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 8

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy C
B. Klasy D
C. Klasy A
D. Klasy B
Odpowiedź "Klasy D" jest poprawna, ponieważ ograniczniki przepięć tej klasy zostały zaprojektowane specjalnie w celu ochrony końcowych urządzeń elektronicznych przed szkodliwymi skutkami przepięć. Ograniczniki klasy D charakteryzują się niskim czasem reakcji i wysoką zdolnością do absorpcji energii, co sprawia, że są niezwykle skuteczne w zastosowaniach, takich jak komputery, telewizory, sprzęt AGD oraz inne wrażliwe urządzenia elektroniczne. Zgodnie z normą IEC 61643-11, ograniczniki przepięć klasy D są rekomendowane do stosowania w systemach zasilania, gdzie istnieje ryzyko wystąpienia przepięć zewnętrznych oraz wewnętrznych. Dzięki zastosowaniu ograniczników tej klasy można znacząco zwiększyć żywotność urządzeń oraz zapewnić ich niezawodne działanie. Przykładowo, w przypadku burzy, ogranicznik przepięć klasy D skutecznie zminimalizuje ryzyko uszkodzenia podłączonego sprzętu, co jest kluczowe dla ochrony cennych inwestycji elektronicznych.

Pytanie 9

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu przewodów ochronnych oraz ich połączeń
B. ustawienia zabezpieczeń i stanu osłon części wirujących
C. poziomu drgań i skuteczności układu chłodzenia
D. stanu pierścieni ślizgowych oraz komutatorów
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 10

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,2 A
B. 6,7 A
C. 2,2 A
D. 3,9 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 11

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do konkretnego modelu stycznika marki Eaton, oznaczonego jako Z-SCH230/40-31. Analizując dane techniczne, możemy zauważyć, że znamionowy prąd pracy tego stycznika wynosi 40 A, co odpowiada wymogom zastosowań w typowych instalacjach elektrycznych. Liczba styków NO (normalnie otwartych) wynosi 3, a liczba styków NC (normalnie zamkniętych) to 1, co jest zgodne z danymi przedstawionymi na zdjęciu. Takie styczniki są szeroko stosowane w automatyce budynkowej oraz w instalacjach przemysłowych, umożliwiając kontrolę nad obwodami elektrycznymi. Zastosowanie styczników o odpowiednich parametrach jest kluczowe, aby zapewnić bezpieczeństwo oraz efektywność energetyczną w różnych systemach. Warto również zaznaczyć, że przy doborze styczników należy kierować się normami IEC 60947-4-1, co zapewnia ich odpowiednie właściwości eksploatacyjne oraz bezpieczeństwo użytkowania.

Pytanie 12

Na zdjęciu przedstawiono

Ilustracja do pytania
A. bezpiecznik.
B. odłącznik.
C. rozłącznik.
D. wyłącznik.
Ten rozłącznik, co widać na zdjęciu, to naprawdę ważny element w elektroenergetyce. Jego główną rolą jest umożliwienie bezpiecznego odłączania obwodów, tak żeby fachowcy mogli spokojnie przeprowadzić konserwację albo naprawy. Często spotyka się je w stacjach transformatorowych czy rozdzielniach, bo czasami trzeba odciąć zasilanie w określonych warunkach. Warto wiedzieć, że w przeciwieństwie do wyłączników, rozłączniki nie są stworzone do pracy pod obciążeniem, więc ich użycie jest mocno związane z zasadami BHP. Przed jakimikolwiek pracami, technicy najpierw odłączają obwody, co jest zgodne z tym, co się powinno robić. Rozumienie tego, jak funkcjonują i gdzie się stosuje rozłączniki, jest kluczowe dla każdego, kto chce być dobrym specjalistą w elektrotechnice. Bezpieczeństwo i efektywność to podstawa w tej branży.

Pytanie 13

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 13 szt.
B. 10 szt.
C. 3 szt.
D. 6 szt.
Zarówno niższe, jak i wyższe wartości liczby gniazd wtykowych na jednym obwodzie, mogą prowadzić do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. W przypadku odpowiedzi sugerujących 6, 3 lub 13 gniazd, warto zwrócić uwagę na kilka kluczowych aspektów. Wybierając 6 lub 3 gniazda, można sądzić, że ograniczenie liczby gniazd zwiększa bezpieczeństwo, jednak w rzeczywistości nie jest to zgodne z zaleceniami norm. Instalacja zbyt małej liczby gniazd może prowadzić do nadmiernego użytkowania i przeciążania dostępnych gniazd, co z kolei zwiększa ryzyko awarii lub pożaru. Z kolei sugerowanie wartości 13 gniazd na jednym obwodzie przesadza z ilością, co może prowadzić do przekroczenia dopuszczalnego obciążenia prądowego obwodu. Instalacje elektryczne muszą być projektowane z uwzględnieniem nie tylko liczby gniazd, ale także ich przewidywanego obciążenia oraz typowych urządzeń, jakie będą do nich podłączane. Powinno się kierować zasadą, że każda instalacja musi być bezpieczna i funkcjonalna, dlatego normy oraz wytyczne powinny być przestrzegane. Użycie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, jest kluczowe dla zabezpieczenia instalacji, ale podstawą jest odpowiednia liczba gniazd na obwodzie, aby zminimalizować ryzyko przeciążeń. Ostatecznie, nieprzestrzeganie zasad dotyczących liczby gniazd prowadzi do potencjalnych zagrożeń dla użytkowników i zwiększenia kosztów eksploatacyjnych w dłuższym okresie.

Pytanie 14

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. sodowa.
B. rtęci owo-żarowa.
C. halogenowa.
D. rtęciowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 15

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski
B. Jeden klawisz i cztery niezależne zaciski
C. Dwa klawisze i cztery niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 16

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 17

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Gniazdo zapłonnika.
B. Wkładkę topikową bezpiecznika.
C. Oprawkę źródła światła.
D. Wkładkę kalibrową.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 18

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. hotelowy.
B. schodowy.
C. świecznikowy.
D. dwubiegunowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 19

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Zwarcie w obwodzie lampy
B. Luźny przewód w przełączniku
C. Przerwa w obwodzie lampy
D. Zbyt niska moc żarówki
Poluzowany przewód w wyłączniku może być odpowiedzialny za nagrzewanie się łącznika puszkowego, ponieważ prowadzi do zwiększonego oporu elektrycznego w miejscu połączenia. Gdy przewód nie jest odpowiednio dokręcony, pojawia się luz, co skutkuje niewłaściwym kontaktem i generowaniem ciepła. Zjawisko to jest zgodne z zasadą Joule'a, według której moc wydzielająca się na oporze jest proporcjonalna do kwadratu natężenia prądu i oporu. Przykłady zastosowania tej wiedzy można znaleźć w praktykach instalacyjnych, gdzie stosuje się odpowiednie narzędzia do dokręcania połączeń, co minimalizuje ryzyko nagrzewania się. Dobre praktyki branżowe zalecają regularne przeglądy połączeń elektrycznych oraz zastosowanie elementów zabezpieczających, takich jak złączki z funkcją blokady, aby uniknąć luzów w instalacjach elektrycznych.

Pytanie 20

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję izolacji.
D. Impedancję pętli zwarcia.
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 21

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Ochronne obniżenie napięcia
B. Izolowanie miejsca pracy
C. Izolacja odbiornika
D. Podwójna lub wzmocniona izolacja
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 22

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Rozłącznik instalacyjny.
B. Stycznik.
C. Ogranicznik przepięć.
D. Wyłącznik nadmiarowoprądowy.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 23

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Automat zmierzchowy.
C. Czujnik ruchu.
D. Ściemniacz oświetlenia.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 24

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. wciskania łożysk.
B. zdejmowania pierścieni Segera.
C. zaciskania złączek Wago.
D. profilowania przewodów.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do pierścieni Segera, które odgrywają kluczową rolę w branży mechanicznej i motoryzacyjnej. Umożliwiają one szybki i efektywny montaż oraz demontaż pierścieni zabezpieczających, które są powszechnie stosowane do zabezpieczania elementów na wałach lub w otworach. Dzięki charakterystycznym końcówkom, które pasują do otworów w pierścieniach, użytkownik może łatwo rozszerzyć lub ściągnąć pierścień Segera bez ryzyka uszkodzenia zarówno narzędzia, jak i zamontowanych komponentów. W praktyce użycie szczypiec do pierścieni Segera znacznie zwiększa efektywność pracy, minimalizując czas potrzebny na wymianę elementów, co jest niezbędne w kontekście utrzymania ruchu czy serwisowania maszyn. Ponadto, stosowanie odpowiednich narzędzi, takich jak te szczypce, wpisuje się w dobre praktyki inżynieryjne, które zalecają korzystanie z dedykowanych narzędzi do specyficznych zadań, co pozwala na uniknięcie błędów związanych z używaniem nieodpowiednich rozwiązań. Dlatego też, znajomość i umiejętność posługiwania się szczypcami do pierścieni Segera jest nie tylko korzystna, ale wręcz niezbędna w wielu dziedzinach techniki.

Pytanie 25

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gG 20 A
C. aM 20 A
D. aM 16 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 26

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 4.
B. Wstawkę 1.
C. Wstawkę 3.
D. Wstawkę 2.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 27

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do formowania oczek na końcach żył jednodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 28

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. omomierza i amperomierza
C. watomierza oraz woltomierza
D. woltomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 29

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±2,35 mA
B. ±0,37 mA
C. ±0,02 mA
D. ±0,35 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 30

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W1 a S191B10
B. Uszkodzony przewód pomiędzy W3 a E1
C. Uszkodzone przewody pomiędzy W2 a W3
D. Uszkodzone przewody pomiędzy W1 a W2
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 31

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
B. Po załączeniu wyłącznika w obwodzie łazienki.
C. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
Wyłącznik różnicowoprądowy (RCD) ma kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych, szczególnie w obszarach o dużym ryzyku, jak łazienki czy kuchnie. Prawidłowa odpowiedź wskazuje, że wyłącznik zadziała po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika. RCD działa na zasadzie pomiaru różnicy prądów, które przepływają przez przewody fazowy i neutralny. Gdy różnica przekracza określony próg (najczęściej 30 mA), wyłącznik natychmiast przerywa obwód, co zapobiega porażeniu prądem. Na schemacie widać, że przewody fazowe są zamienione miejscami, co zwiększa ryzyko wystąpienia upływu prądu, zwłaszcza przy podłączeniu odbiornika. Zastosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które regulują zasady zabezpieczeń w instalacjach elektrycznych. Dlatego kluczowe jest, by każdy użytkownik instalacji elektrycznej miał świadomość, jak ważne jest ich prawidłowe działanie oraz regularne testowanie ich sprawności.

Pytanie 32

Na którym rysunku przedstawiono symbol graficzny przycisku zwiernego?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Rysunek A przedstawia graficzny symbol przycisku zwiernego, który jest powszechnie stosowany w systemach automatyki oraz w instalacjach elektrycznych. Symbol ten oznacza kontakt, który zamyka się pod wpływem naciśnięcia, co jest kluczowe w wielu aplikacjach, takich jak przyciski dzwonków, włączniki oświetlenia czy inne urządzenia sterujące. Zgodnie z normą IEC 60617, symbol ten przedstawia kontakt, który po aktywacji przełącza obwód, co pozwala na załączenie lub wyłączenie prądu. W praktyce, przyciski zwierne są niezwykle użyteczne w sytuacjach, gdzie wymagana jest prosta interakcja użytkownika z systemem, na przykład w domowych instalacjach oświetleniowych, gdzie naciśnięcie przycisku włącza światło. Wiedza o rozpoznawaniu tych symboli jest niezbędna dla każdego specjalisty zajmującego się projektowaniem oraz analizą układów elektrycznych, ponieważ umożliwia prawidłowe zrozumienie schematów elektrycznych i poprawną interpretację ich działania.

Pytanie 33

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. niebieski
D. szary
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 34

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 12,4 V
C. 11,0 V
D. 12,0 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 35

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 36

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B16
B. C10
C. B10
D. C16
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 37

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór wyłącznika z innych opcji jako rozwiązania problemu ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S może wynikać z błędnego zrozumienia funkcji i zastosowań poszczególnych typów wyłączników. Wiele osób może myśleć, że każdy wyłącznik różnicowoprądowy wystarczy, aby zapewnić pełną ochronę przed porażeniem, co jest mylnym przekonaniem. Wyłączniki różnicowoprądowe są zaprojektowane głównie do wykrywania upływności prądu, a nie do przerywania obwodu w przypadku zwarć lub przeciążeń. Zastosowanie wyłącznika, który nie ma odpowiednich parametrów do reagowania na sytuacje awaryjne, może prowadzić do sytuacji, w której nieprawidłowe działanie instalacji elektrycznej będzie miało poważne konsekwencje. W praktyce stosowanie wyłączników nadprądowych w połączeniu z różnicowoprądowymi pozwala na uzyskanie wyższej jakości ochrony. Należy pamiętać, że norma PN-EN 61008-1 określa wymagania dotyczące wyłączników różnicowoprądowych, a także ich zastosowanie w różnych instalacjach elektrycznych. Zrozumienie różnic i funkcji każdego z tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 38

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Samoczynne wyłączenie zasilania.
B. Separację odbiornika.
C. Użycie odbiorników II klasy ochronności.
D. Połączenie wyrównawcze.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 39

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. żyrandola.
B. puszki zasilającej.
C. gniazda wtyczkowego.
D. łącznika.
Poprawna odpowiedź wskazuje na konieczność zweryfikowania połączeń w żyrandolu, co jest kluczowe dla prawidłowego działania instalacji elektrycznej. W sytuacji opisanej w pytaniu, kiedy żarówki się tylko żarzą, to może sugerować, że obwód nie jest w pełni zamknięty, co prowadzi do nieprawidłowego przepływu prądu. Połączenie przewodów w żyrandolu powinno być zgodne z ustalonymi standardami, takimi jak PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W przypadku braku odpowiednich połączeń lub niewłaściwej konfiguracji, nie tylko może dojść do awarii, ale także do wystąpienia zagrożeń związanych z porażeniem prądem elektrycznym. Warto również zwrócić uwagę na prawidłowe podłączenie przewodów ochronnych, które mają na celu zapewnienie bezpieczeństwa użytkowników. Przykładem zastosowania tej wiedzy w praktyce jest regularne przeprowadzanie przeglądów instalacji oraz stosowanie się do zasad prawidłowego montażu urządzeń elektrycznych, co znacząco minimalizuje ryzyko awarii.

Pytanie 40

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. przenośne odbiorniki o II klasie ochronności.
B. urządzenia zasilanie prądem zmiennym do 12 V.
C. elektryczne podgrzewacze wody.
D. oprawy oświetleniowe o II klasie ochronności.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.