Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 1 lutego 2026 11:10
  • Data zakończenia: 1 lutego 2026 11:31

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Układ cyfrowy wykonujący operację logiczną koniunkcji opiera się na bramce logicznej

A. EX-OR
B. AND
C. OR
D. NOT
Bramka AND to taki podstawowy element w układach cyfrowych, który działa na zasadzie, że wyjście jest wysokie (1), jeśli wszystkie sygnały wejściowe też są wysokie (1). W praktyce używa się jej w różnych projektach inżynieryjnych, na przykład w budowie procesorów czy systemów alarmowych. Działa to tak, że w systemie alarmowym, żeby alarm się włączył, muszą działać wszystkie czujniki, na przykład czujnik ruchu i czujnik dymu. Ogólnie rzecz biorąc, rozumienie bramek logicznych, jak AND, OR, NOT, jest kluczowe, kiedy projektujesz bardziej skomplikowane układy. Bez dobrego zrozumienia tych podstawowych elementów, ciężko robić coś bardziej zaawansowanego. Więc to jest naprawdę istotne dla każdego, kto chce się zajmować elektroniką i automatyką.

Pytanie 2

Jakie typy połączeń z Internetem mogą być współdzielone w sieci lokalnej?

A. Wszystkie rodzaje połączeń
B. Wszystkie połączenia oprócz analogowych modemów
C. Połączenie o prędkości przesyłu co najmniej 56 kb/s
D. Tylko tzw. szybkie połączenia, czyli te powyżej 64 kb/s
Odpowiedzi dotyczące ograniczeń związanych z szybkością transmisji połączeń internetowych są nieprecyzyjne i zbyt wąskie w kontekście technicznym. Po pierwsze, wiele osób myśli, że tylko połączenia o określonej minimalnej prędkości, na przykład 56 kb/s czy 64 kb/s, są wystarczające do udostępnienia w sieci lokalnej. W rzeczywistości, to nie prędkość sama w sobie decyduje o możliwości udostępniania, lecz możliwości technologiczne sprzętu oraz odpowiednia konfiguracja sieci. Niektóre starsze połączenia, takie jak modem analogowy, mogą być trudne do udostępnienia, ale nie dlatego, że nie mają minimalnej prędkości, lecz ze względu na ograniczenia technologiczne, takie jak niska wydajność czy brak wsparcia dla współczesnych protokołów. Ponadto, powyższe stwierdzenia ignorują fakt, że także połączenia o niskiej prędkości mogą działać w sieci lokalnej, zwłaszcza w przypadku mniej wymagających zastosowań, takich jak przesyłanie niewielkich plików czy korzystanie z aplikacji tekstowych. Kluczowe jest, aby zrozumieć, że technologia sieciowa jest złożona i elastyczna, a wiele połączeń, które mogłyby być uważane za przestarzałe lub niewystarczające, wciąż ma swoje zastosowanie w odpowiednich warunkach. W związku z tym, stosowanie zbyt rygorystycznych kryteriów przy ocenie połączeń internetowych może prowadzić do nieprawidłowych wniosków i ograniczać potencjał wykorzystania dostępnych technologii.

Pytanie 3

Norma EN 50167 odnosi się do systemów okablowania

A. horyzontalnego
B. sieciowego
C. szkieletowego
D. wertykalnego
Zrozumienie znaczenia różnych typów okablowania w budynkach jest kluczowe dla efektywnej instalacji sieci telekomunikacyjnych. Okablowanie kampusowe odnosi się do połączeń między różnymi budynkami na terenie kampusu, co jest bardziej złożonym zagadnieniem, które wymaga innego podejścia projektowego, zarówno pod kątem odległości, jak i zastosowanych technologii. W przypadku okablowania pionowego, które łączy różne piętra budynku, istotne jest, aby instalacje były zgodne z lokalnymi normami budowlanymi oraz odpowiednio zabezpieczone przed zakłóceniami. Wreszcie, okablowanie szkieletowe to termin używany do opisania infrastruktury sieciowej obejmującej główne elementy, takie jak przełączniki i routery, które są kluczowe dla efektywnego zarządzania ruchem danych. Zbyt często myli się te terminy, co prowadzi do nieprawidłowych założeń w projektowaniu systemów sieciowych. Każdy z tych rodzajów okablowania ma swoje unikalne wymagania i zastosowania, które muszą być starannie rozważone w kontekście całej infrastruktury sieciowej. Dlatego tak ważne jest, aby przy projektowaniu i wdrażaniu systemów okablowania stosować się do odpowiednich norm i standardów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować ryzyko awarii.

Pytanie 4

Wskaź protokół działający w warstwie aplikacji, który umożliwia odbieranie wiadomości e-mail, a w pierwszym etapie pobiera jedynie nagłówki wiadomości, podczas gdy pobranie ich treści oraz załączników następuje dopiero po otwarciu wiadomości.

A. IMAP
B. FTAM
C. MIME
D. SNMP
Protokół IMAP (Internet Message Access Protocol) jest jednym z najpopularniejszych protokołów używanych do zarządzania pocztą elektroniczną. Jego kluczową cechą jest umożliwienie użytkownikom dostępu do wiadomości na serwerze bez konieczności ich pobierania na lokalne urządzenie. W początkowej fazie użytkownik pobiera jedynie nagłówki wiadomości, co pozwala na szybkie przeszukiwanie i selekcję e-maili, a pełne treści wiadomości oraz załączniki są pobierane dopiero w momencie, gdy użytkownik zdecyduje się otworzyć konkretnego maila. To podejście jest szczególnie korzystne dla osób korzystających z urządzeń mobilnych lub z ograniczonym miejscem na dysku, ponieważ pozwala na oszczędność danych i przestrzeni. Ponadto, IMAP wspiera synchronizację między różnymi urządzeniami, co oznacza, że zmiany dokonane na jednym urządzeniu (np. usunięcie wiadomości) są odzwierciedlane na wszystkich pozostałych. Standardy związane z IMAP zostały zdefiniowane przez IETF, co zapewnia jego szeroką kompatybilność i stabilność w użytkowaniu. Warto zaznaczyć, że IMAP jest często preferowany w środowiskach korporacyjnych, gdzie zarządzanie dużymi ilościami wiadomości jest na porządku dziennym.

Pytanie 5

Które złącze w karcie graficznej nie stanowi interfejsu cyfrowego?

A. DVI-D
B. HDMI
C. Display Port
D. D-SUB 15pin
D-SUB 15pin, znany również jako VGA (Video Graphics Array), to analogowe złącze, które zostało wprowadzone w 1987 roku. W przeciwieństwie do złączy cyfrowych, takich jak DVI-D, DisplayPort czy HDMI, D-SUB przesyła sygnał w postaci analogowej. Oznacza to, że sygnał wideo jest przesyłany jako zmieniające się wartości napięcia, co może prowadzić do degradacji jakości obrazu na większych odległościach. Mimo to, D-SUB wciąż jest używane w wielu starszych monitorach i projektorach, a także w zastosowaniach, gdzie wysoka rozdzielczość nie jest kluczowa. W przypadku nowszych technologii, które wymagają wyższej jakości obrazu i lepszej wydajności, stosuje się złącza cyfrowe. Przykłady zastosowania D-SUB obejmują starsze komputery i monitory, które nie obsługują nowszych interfejsów cyfrowych. Dobrą praktyką w branży jest unikanie użycia złącza D-SUB w nowoczesnych instalacjach wideo, gdzie preferowane są interfejsy cyfrowe, ze względu na ich wyższą jakość sygnału i większą odporność na zakłócenia.

Pytanie 6

Zarządzanie konfiguracją karty sieciowej w systemie Windows 7 realizuje polecenie

A. winipcfg
B. ifconfig
C. iwconfig
D. ipconfig
Odpowiedź 'ipconfig' jest poprawna, ponieważ to narzędzie w systemie Windows 7 umożliwia zarządzanie ustawieniami karty sieciowej. Użycie polecenia ipconfig pozwala na wyświetlenie informacji o konfiguracji IP, takich jak adres IPv4, maska podsieci oraz brama domyślna. Przykładowo, wpisując 'ipconfig /all', użytkownik uzyskuje pełne informacje o wszystkich interfejsach sieciowych, w tym o adresach MAC, DNS oraz DHCP. To narzędzie jest szczególnie przydatne w diagnostyce problemów z połączeniami sieciowymi, pozwalając na szybkie sprawdzenie, czy urządzenie ma przypisany adres IP oraz czy jest poprawnie skonfigurowane. W praktyce, administratorzy często wykorzystują ipconfig w połączeniu z innymi poleceniami, takimi jak ping czy tracert, aby skuteczniej diagnozować i rozwiązywać problemy z siecią, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami komputerowymi.

Pytanie 7

W komunikacie błędu systemowego informacja prezentowana w formacie szesnastkowym oznacza

A. kod błędu
B. odnośnik do dokumentacji
C. nazwę kontrolera
D. definicję problemu
W komunikatach o błędach systemowych, informacja wyświetlana w postaci heksadecymalnej faktycznie odnosi się do kodu błędu. Kody błędów są kluczowymi elementami w diagnostyce problemów w systemach komputerowych i aplikacjach. Umożliwiają one programistom i administratorom systemów szybkie identyfikowanie i lokalizowanie źródła problemu. Heksadecymalna reprezentacja kodu błędu jest powszechnie stosowana, ponieważ pozwala na bardziej zwięzłe przedstawienie dużych liczb, które często są używane w kontekście identyfikatorów błędów. Na przykład, system operacyjny Windows używa kodów błędów w formacie 0x0000007B, co oznacza specyficzny problem dotyczący krytycznych błędów systemowych. Praktyka stosowania heksadecymalnych kodów błędów jest zgodna z najlepszymi praktykami branżowymi, co ułatwia wymianę informacji i szybsze diagnozowanie problemów. Zrozumienie tych kodów jest niezbędne dla efektywnej analizy błędów w systemach IT.

Pytanie 8

Element drukujący, składający się z wielu dysz połączonych z mechanizmem drukującym, znajduje zastosowanie w drukarce

A. atramentowej
B. termosublimacyjnej
C. głównej
D. laserowej
Odpowiedź atramentowa jest poprawna, ponieważ głowica drukująca w drukarkach atramentowych składa się z wielu dysz, które precyzyjnie aplikują atrament na papier. Każda z tych dysz jest odpowiedzialna za wydobywanie kropel atramentu w odpowiednich kolorach, co pozwala na uzyskanie wysokiej jakości druku. W praktyce, technologie takie jak piezoelektryczne lub termiczne systemy wstrzykiwania atramentu są wykorzystywane do kontrolowania wielkości i czasu wypuszczania kropel. Drukarki atramentowe są powszechnie stosowane w biurach i domach, głównie ze względu na ich zdolność do druku w kolorze oraz na stosunkowo niskie koszty początkowe. Ponadto, nowoczesne drukarki atramentowe są zgodne z różnymi standardami branżowymi, co zapewnia ich kompatybilność z różnorodnym oprogramowaniem graficznym i dokumentowym. Warto również zwrócić uwagę, że rozwój technologii atramentowych, takich jak drukowanie bezpośrednio na tkaninach czy materiałach 3D, znacząco poszerza ich zastosowanie w różnych branżach.

Pytanie 9

Na ilustracji przedstawiono przewód z wtykami

Ilustracja do pytania
A. Molex
B. SATA
C. Berg
D. ATA
Kabel przedstawiony na rysunku to kabel SATA co oznacza Serial ATA Serial Advanced Technology Attachment Jest to nowoczesny standard interfejsu służący do podłączania dysków twardych SSD oraz napędów optycznych do płyt głównych komputerów osobistych W odróżnieniu od starszych interfejsów takich jak PATA SATA charakteryzuje się znacznie wyższą przepustowością co pozwala na szybszy transfer danych Obecnie SATA jest powszechnie stosowanym standardem ze względu na swoją wydajność i niezawodność Wtyczki SATA są wąskie i płaskie co umożliwia łatwe podłączanie i odłączanie kabli nawet w ciasnych obudowach komputerowych Warto zaznaczyć że kable SATA transmitują dane na zasadzie punkt-punkt co eliminuje konieczność stosowania zworek w przeciwieństwie do PATA Dodatkowo standard SATA wspiera funkcje takie jak Hot Plugging co pozwala na podłączanie i odłączanie urządzeń bez konieczności wyłączania komputera Dzięki zdolności obsługi różnorodnych technologii dyskowych oraz zwiększonej przepustowości SATA stał się nieodzownym elementem nowoczesnych infrastruktur komputerowych W praktyce zastosowanie kabli SATA przyczynia się do zwiększenia wydajności systemu i optymalizacji pracy dysków twardych

Pytanie 10

Aby uniknąć różnic w kolorystyce pomiędzy zeskanowanymi zdjęciami na wyświetlaczu komputera a ich oryginałami, konieczne jest przeprowadzenie

A. modelowanie skanera
B. interpolację skanera
C. kadrowanie skanera
D. kalibrację skanera
Kalibracja skanera to proces, w którym dostosowuje się parametry urządzenia, aby osiągnąć maksymalną zgodność kolorystyczną między zeskanowanymi obrazami a oryginałami. Proces ten jest niezbędny, ponieważ różnice w kolorach mogą wynikać z różnic w oprogramowaniu, sprzęcie, a także z ustawień skanera. Kalibracja polega na wykorzystaniu wzorców kolorystycznych, które pozwalają na dokładne odwzorowanie barw. Przykładem zastosowania kalibracji może być sytuacja, gdy grafika drukarska musi być zgodna z jej cyfrowym odpowiednikiem. Aby to osiągnąć, operator skanera wykonuje kalibrację na podstawie znanych standardów kolorów, takich jak sRGB czy Adobe RGB, co zapewnia spójność i powtarzalność kolorów. Ponadto, regularna kalibracja jest zalecana jako dobra praktyka w branży, aby zminimalizować błędy kolorystyczne, które mogą wystąpić z biegiem czasu.

Pytanie 11

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 16 GB.
B. 1 modułu 16 GB.
C. 2 modułów, każdy po 8 GB.
D. 1 modułu 32 GB.
Poprawnie wskazana została konfiguracja pamięci RAM: w komputerze zamontowane są 2 moduły, każdy o pojemności 16 GB, co razem daje 32 GB RAM. Na filmie zwykle widać dwa fizyczne moduły w slotach DIMM na płycie głównej – to są takie długie wąskie kości, wsuwane w gniazda obok procesora. Liczbę modułów określamy właśnie po liczbie tych fizycznych kości, a pojemność pojedynczego modułu odczytujemy z naklejki na pamięci, z opisu w BIOS/UEFI albo z programów diagnostycznych typu CPU‑Z, HWiNFO czy Speccy. W praktyce stosowanie dwóch modułów po 16 GB jest bardzo sensowne, bo pozwala uruchomić tryb dual channel. Płyta główna wtedy może równolegle obsługiwać oba kanały pamięci, co realnie zwiększa przepustowość RAM i poprawia wydajność w grach, programach graficznych, maszynach wirtualnych czy przy pracy z dużymi plikami. Z mojego doświadczenia lepiej mieć dwie takie same kości niż jedną dużą, bo to jest po prostu zgodne z zaleceniami producentów płyt głównych i praktyką serwisową. Do tego 2×16 GB to obecnie bardzo rozsądna konfiguracja pod Windows 10/11 i typowe zastosowania profesjonalne: obróbka wideo, programowanie, CAD, wirtualizacja. Warto też pamiętać, że moduły powinny mieć te same parametry: częstotliwość (np. 3200 MHz), opóźnienia (CL) oraz najlepiej ten sam model i producenta. Taka konfiguracja minimalizuje ryzyko problemów ze stabilnością i ułatwia poprawne działanie profili XMP/DOCP. W serwisie i przy montażu zawsze zwraca się uwagę, żeby moduły były w odpowiednich slotach (zwykle naprzemiennie, np. A2 i B2), bo to bezpośrednio wpływa na tryb pracy pamięci i osiąganą wydajność.

Pytanie 12

Jakie polecenie w terminalu systemu operacyjnego Microsoft Windows umożliwi wyświetlenie szczegółów wszystkich zasobów udostępnionych na komputerze lokalnym?

A. net file
B. net print
C. net session
D. net share
Polecenie 'net share' w Windowsie pokazuje, co takiego mamy udostępnione na naszym komputerze. Dzięki temu administratorzy mogą szybko sprawdzić, jakie foldery czy drukarki są dostępne dla innych w sieci. To przydatne, kiedy chcemy się upewnić, że wszystko jest dobrze ustawione i nikt nie ma dostępu, kto nie powinien. Jak uruchomisz 'net share' w wierszu poleceń, to dostaniesz listę wszystkich aktualnych zasobów. To jest też świetne narzędzie do audytu, bo można zobaczyć, czy wszystko jest zgodne z tym, co powinno być. Pamiętaj, zarządzanie udostępnianiem to super ważny aspekt bezpieczeństwa w sieci, więc warto to regularnie monitorować i sprawdzać.

Pytanie 13

Urządzenie, które zamienia otrzymane ramki na sygnały przesyłane w sieci komputerowej, to

A. punkt dostępu
B. regenerator
C. karta sieciowa
D. konwerter mediów
Karta sieciowa jest kluczowym elementem w architekturze sieci komputerowych, odpowiedzialnym za konwersję danych z postaci cyfrowej na sygnały, które mogą być przesyłane przez medium transmisyjne, takie jak kable czy fale radiowe. Jej głównym zadaniem jest obsługa protokołów komunikacyjnych, takich jak Ethernet czy Wi-Fi, co pozwala na efektywne łączenie komputerów i innych urządzeń w sieci. Przykładowo, w przypadku korzystania z technologii Ethernet, karta sieciowa przekształca dane z pamięci komputera na ramki Ethernetowe, które są następnie transmitowane do innych urządzeń w sieci. Dodatkowo, karty sieciowe często zawierają funkcje takie jak kontrola błędów oraz zarządzanie przepustowością, co przyczynia się do stabilności i wydajności przesyłania danych. Warto zauważyć, że w kontekście standardów branżowych, karty sieciowe muszą być zgodne z normami IEEE, co zapewnia ich interoperacyjność w zróżnicowanych środowiskach sieciowych.

Pytanie 14

Jakie środowisko powinien wybrać administrator sieci, aby zainstalować serwer dla stron WWW w systemie Linux?

A. Apache
B. proftpd
C. vsftpd
D. MySQL
Apache to jeden z najpopularniejszych serwerów stron WWW, który jest szeroko stosowany w środowisku Linux. Jego wybór jako środowiska do instalacji serwera WWW wynika z jego wszechstronności, wydajności oraz obsługi wielu dodatkowych modułów, które znacznie rozszerzają jego funkcjonalność. Apache jest zgodny z wieloma standardami webowymi, co czyni go idealnym rozwiązaniem dla różnorodnych aplikacji internetowych. Dzięki architekturze modułowej, administratorzy mogą łatwo dodawać funkcje, takie jak obsługa PHP, SSL, a także integrację z bazami danych. Przykładem zastosowania Apache jest hostowanie dynamicznych stron internetowych, takich jak blogi, sklepy internetowe, czy portale informacyjne. Ponadto, Apache jest znany z solidnej dokumentacji oraz aktywnej społeczności, co ułatwia rozwiązywanie problemów i wdrażanie najlepszych praktyk w zarządzaniu serwerami WWW. Warto również zwrócić uwagę na narzędzia do monitorowania i zarządzania, takie jak mod_status, które pozwala na śledzenie wydajności serwera w czasie rzeczywistym oraz optymalizację jego ustawień.

Pytanie 15

Wartość liczby dziesiętnej 128(d) w systemie heksadecymalnym wyniesie

A. 80H
B. 10000000H
C. 10H
D. 128H
Liczba dziesiętna 128(d) w systemie heksadecymalnym jest reprezentowana jako 80H, co wynika z konwersji systemów numerycznych. Heksadecymalny system liczbowy, oparty na szesnastu cyfrach (0-9 oraz A-F), jest często stosowany w informatyce, szczególnie w kontekście programowania i adresacji pamięci. Aby przeliczyć liczbę dziesiętną 128 na system heksadecymalny, należy dzielić ją przez 16 i zapisywać reszty z tych dzielenia. 128 podzielone przez 16 daje 8 jako wynik i 0 jako resztę. To oznacza, że w systemie heksadecymalnym 128(d) to 80H. Przykłady zastosowania tego systemu obejmują kolorowanie stron internetowych, gdzie kolory są często określane za pomocą wartości heksadecymalnych, a także w programowaniu, gdzie adresy pamięci są często zapisywane w tym formacie. Zrozumienie konwersji między systemami numerycznymi jest kluczowe dla każdego programisty oraz inżyniera zajmującego się komputerami i elektroniką.

Pytanie 16

Liczba szesnastkowa 1E2F₍₁₆₎ zapisana w systemie ósemkowym ma postać

A. 17057
B. 74274
C. 7277
D. 7727
Wybór innej odpowiedzi niż 17057 najczęściej wynika z niepoprawnego przeliczania wartości między systemami liczbowymi lub uproszczenia procedury konwersji. W praktyce, jednym z najczęstszych błędów jest próba zamiany każdej cyfry szesnastkowej bezpośrednio na cyfrę ósemkową – co jest niestety niezgodne z zasadami matematycznymi. Szesnastkowy i ósemkowy opierają się na różnych podstawach i nie istnieje prosta „podmiana” cyfr. Kolejnym problemem jest nieuwzględnienie wartości pozycyjnych – na przykład, cyfra 'E' w szesnastkowym to 14 w dziesiętnym, a nie 7 czy 2. Jeśli ktoś uzyskał wyniki takie jak 7277 lub 7727, to najprawdopodobniej próbował przypisać każdej szesnastkowej cyfrze jakąś ósemkową, ignorując ich realną wartość. To klasyczny błąd początkujących, który moim zdaniem pojawia się przez chęć skrócenia drogi albo przez presję czasu. Odpowiedź 74274 sugeruje natomiast, że mogło dojść do pomylenia systemu binarnego z ósemkowym lub niewłaściwego zgrupowania bitów podczas konwersji. W rzeczywistości, poprawna metoda polega na rozbiciu każdej cyfry szesnastkowej na 4 bity, połączeniu wszystkiego w jeden ciąg, a później grupowaniu tych bitów po trzy (dla ósemkowego) od końca i przeliczaniu na cyfry ósemkowe. To zgodne z dobrymi praktykami opisanymi w wielu podręcznikach do informatyki czy elektroniki. Z mojego punktu widzenia, takie błędy są naturalne na początku nauki pracy z systemami liczbowymi – mnie samemu to się zdarzało. Dlatego warto trenować zamianę przez system binarny lub dziesiętny, bo wtedy unika się nieporozumień i nie popełnia się tych drobnych, ale kosztownych w praktyce błędów. W codziennej pracy, np. przy programowaniu niskopoziomowym, takie pomyłki mogą prowadzić do bardzo poważnych konsekwencji, więc dobrze już teraz wyrobić sobie właściwe nawyki.

Pytanie 17

Jakie urządzenie jest używane do pomiaru wartości rezystancji?

A. amperomierz
B. woltomierz
C. omomierz
D. watomierz
Wiele osób może pomylić omomierz z innymi przyrządami pomiarowymi, co prowadzi do nieporozumień w zakresie ich zastosowania. Watomierz, na przykład, jest urządzeniem służącym do pomiaru mocy elektrycznej, która jest iloczynem napięcia i natężenia prądu. Jego zastosowanie ogranicza się do oceny wydajności urządzeń elektrycznych, a nie do pomiaru rezystancji. Woltomierz, z kolei, mierzy napięcie elektryczne między dwoma punktami w obwodzie, co również nie jest równoznaczne z pomiarem oporu. Amperomierz, natomiast, służy do pomiaru natężenia prądu w obwodzie, a więc również nie odnosi się do wartości rezystancji. Typowym błędem myślowym jest mylenie funkcji tych urządzeń; każdy z wymienionych przyrządów ma specyficzne zastosowanie i nie można ich używać zamiennie. Dlatego tak ważne jest zrozumienie zasad działania oraz przeznaczenia poszczególnych mierników, aby uniknąć błędów w pomiarach i analizach, co może prowadzić do nieprawidłowych wniosków w diagnostyce i naprawach urządzeń elektrycznych.

Pytanie 18

Jakie jest adres rozgłoszeniowy w podsieci o adresie IPv4 192.168.160.0/21?

A. 192.168.7.255
B. 192.168.167.255
C. 192.168.255.254
D. 192.168.160.254
Adres rozgłoszeniowy (broadcast address) w podsieci jest kluczowym elementem, który umożliwia komunikację z wszystkimi hostami w danej podsieci. Dla podsieci o adresie IPv4 192.168.160.0/21, maska podsieci wynosi 255.255.248.0, co oznacza, że ​​pierwsze 21 bitów jest używane do identyfikacji podsieci, a pozostałe bity dla hostów. Zakres adresów hostów w tej podsieci wynosi od 192.168.160.1 do 192.168.167.254. Adres rozgłoszeniowy jest zawsze ostatnim adresem w danym zakresie, co w tym przypadku daje 192.168.167.255. Użytkownicy w sieci mogą używać adresu rozgłoszeniowego do wysyłania pakietów do wszystkich urządzeń w danej podsieci jednocześnie, co jest szczególnie przydatne w aplikacjach takich jak DHCP czy ARP. Zrozumienie, jak obliczać adres rozgłoszeniowy, jest kluczowe dla projektowania i zarządzania wydajnymi oraz skalowalnymi sieciami według najlepszych praktyk branżowych.

Pytanie 19

Jakie medium transmisyjne gwarantuje izolację galwaniczną pomiędzy systemami przesyłu danych?

A. Światłowód
B. Przewód koncentryczny
C. Skrętka nieekranowana
D. Skrętka ekranowana
Światłowód to medium transmisyjne, które zapewnia separację galwaniczną pomiędzy systemami transmisji danych. Oznacza to, że nie przewodzi prądu elektrycznego, co eliminuje ryzyko wystąpienia zakłóceń elektromagnetycznych oraz problemów związanych z uziemieniem. To sprawia, że światłowody są idealnym wyborem w środowiskach o wysokim poziomie zakłóceń, takich jak fabryki czy centra danych. Na przykład, w zastosowaniach telekomunikacyjnych światłowody są wykorzystywane do przesyłania danych na duże odległości z minimalnymi stratami sygnału. W branży sieci komputerowych światłowody są często używane w backbone'ach dużych sieci, zapewniając szybkie połączenia między różnymi segmentami. Dodatkowo, standardy takie jak IEEE 802.3 (Ethernet) i ITU-T G.652 definiują parametry i specyfikacje dla technologii światłowodowej, co czyni ją zgodną z najlepszymi praktykami w dziedzinie przesyłu danych. Warto dodać, że światłowody są również odporne na wpływ warunków atmosferycznych, co czyni je doskonałym rozwiązaniem dla systemów zewnętrznych.

Pytanie 20

Która karta graficzna nie będzie kompatybilna z monitorem, który posiada złącza pokazane na zdjęciu, przy założeniu, że do podłączenia monitora nie użyjemy adaptera?

Ilustracja do pytania
A. Asus Radeon RX 550 4GB GDDR5 (128 bit), DVI-D, HDMI, DisplayPort
B. Fujitsu NVIDIA Quadro M2000 4GB GDDR5 (128 Bit) 4xDisplayPort
C. Sapphire Fire Pro W9000 6GB GDDR5 (384 bit) 6x mini DisplayPort
D. HIS R7 240 2GB GDDR3 (128 bit) HDMI, DVI, D-Sub
Karta HIS R7 240 posiada wyjścia HDMI DVI i D-Sub. Zdjęcie przedstawia złącza HDMI i DisplayPort. W związku z tym karta HIS R7 240 nie będzie kompatybilna z monitorem z powodu braku złącza DisplayPort. Standard HDMI i D-Sub są powszechnie używane w starszych modelach kart graficznych i monitorów natomiast DisplayPort jest nowszym standardem oferującym wyższą przepustowość i często kompatybilność z rozdzielczościami 4K. W praktyce oznacza to że jeśli monitor posiada wyłącznie złącza przedstawione na zdjęciu użytkownik musi posiadać kartę graficzną z kompatybilnymi portami bez konieczności używania adapterów co mogłoby wpłynąć na jakość obrazu. Konieczność dobrania odpowiedniego sprzętu zależy nie tylko od dostępności portów ale też od wymagań dotyczących rozdzielczości i częstotliwości odświeżania co ma znaczenie w profesjonalnych zastosowaniach graficznych oraz podczas grania w gry komputerowe. Warto zwrócić uwagę na specyfikacje kart podczas zakupu by uniknąć takich niekompatybilności.

Pytanie 21

Jaki jest główny cel stosowania maski podsieci?

A. Ochrona danych przed nieautoryzowanym dostępem
B. Szyfrowanie transmisji danych w sieci
C. Rozdzielenie sieci na mniejsze segmenty
D. Zwiększenie przepustowości sieci
Maska podsieci jest kluczowym elementem w zarządzaniu sieciami komputerowymi, zwłaszcza gdy mówimy o sieciach opartych na protokole IP. Jej główną funkcją jest umożliwienie podziału większych sieci na mniejsze, bardziej zarządzalne segmenty, zwane podsieciami. Dzięki temu administrator może lepiej kontrolować ruch sieciowy, zarządzać adresami IP oraz zwiększać efektywność wykorzystania dostępnych zasobów adresowych. Maska podsieci pozwala na określenie, która część adresu IP odpowiada za identyfikację sieci, a która za identyfikację urządzeń w tej sieci. Z mojego doświadczenia, dobrze zaplanowane podsieci mogą znacząco poprawić wydajność i bezpieczeństwo sieci, minimalizując ryzyko kolizji adresów IP oraz niepotrzebnego ruchu między segmentami sieci. W praktyce, stosowanie masek podsieci jest nie tylko standardem, ale i koniecznością w dużych organizacjach, które muszą zarządzać setkami, a nawet tysiącami urządzeń. Optymalizacja przydziału adresów IP w ten sposób jest zgodna z najlepszymi praktykami branżowymi, promowanymi przez organizacje takie jak IETF.

Pytanie 22

W drukarce laserowej do utrwalania obrazu na papierze stosuje się

A. promienie lasera
B. głowice piezoelektryczne
C. taśmy transmisyjne
D. rozgrzane wałki
Pomimo tego, że inne techniki i technologie są stosowane w różnych typach urządzeń drukujących, w kontekście drukarek laserowych wybrane odpowiedzi są niepoprawne. Głowice piezoelektryczne są wykorzystywane w drukarkach atramentowych, gdzie ich zadaniem jest precyzyjne nanoszenie kropli atramentu na papier. Nie mają one zastosowania w laserowym procesie utrwalania, ponieważ mechanizm działania drukarek laserowych opiera się na innej zasadzie. Promienie lasera w rzeczywistości służą do naświetlania bębna, co pozwala na stworzenie obrazu, który następnie jest pokrywany tonerem. Choć jest to kluczowy etap, nie jest to proces utrwalania, a raczej wcześniejszy etap formowania wydruku. Taśmy transmisyjne, z kolei, nie mają związku z procesem utrwalania w drukarkach laserowych. Ich zastosowanie można zaobserwować w starszych rozwiązaniach technicznych, ale nie są one efektywne w kontekście nowoczesnych drukarek. Współczesne urządzenia opierają się na standardach, które wymagają dokładnych i efektywnych metod utrwalania, które nie mogłyby być osiągnięte za pomocą technologii taśmowej. Często błędnie interpretowane są różnice między tymi technologiami, co prowadzi do nieporozumień. Aby poprawnie zrozumieć mechanizmy działania drukarek laserowych, istotne jest zaznajomienie się z każdym etapem procesu, w tym z zasadami utrwalania, które są kluczowe dla uzyskania wysokiej jakości wydruku.

Pytanie 23

Co należy zrobić przed przystąpieniem do prac serwisowych związanych z edytowaniem rejestru systemu Windows?

A. defragmentacja dysku
B. czyszczenie rejestru
C. oczyszczanie dysku
D. kopia rejestru
Wykonanie kopii rejestru systemu Windows przed przystąpieniem do jakichkolwiek modyfikacji jest kluczowym krokiem w zapewnieniu bezpieczeństwa i stabilności systemu. Rejestr systemowy zawiera krytyczne informacje dotyczące konfiguracji systemu operacyjnego, aplikacji oraz sprzętu. Zmiany wprowadzone w rejestrze mogą doprowadzić do nieprawidłowego działania systemu, a nawet do jego niestabilności. Dlatego przed przystąpieniem do jakiejkolwiek modyfikacji zaleca się utworzenie kopii zapasowej rejestru. Można to zrobić za pomocą narzędzia Regedit, które pozwala na wyeksportowanie całego rejestru lub jego wybranych gałęzi. W przypadku wystąpienia problemów po dokonaniu zmian, użytkownik może przywrócić poprzednią wersję rejestru, co minimalizuje ryzyko utraty danych i przywraca funkcjonalność systemu. Przykładowo, jeśli planujesz zainstalować nową aplikację, która wymaga zmian w rejestrze, a po instalacji system nie działa prawidłowo, przywrócenie kopii zapasowej rejestru może rozwiązać problem. Taki proces jest zgodny z najlepszymi praktykami zarządzania systemem operacyjnym, co czyni go nieodłącznym elementem odpowiedzialnego podejścia do administracji komputerowej.

Pytanie 24

Dane z HDD, którego sterownik silnika SM jest uszkodzony, można odzyskać

A. Przy użyciu komendy fixmbr
B. Przez wymianę płytki elektronicznej dysku na inną z identycznego modelu
C. Z wykorzystaniem zewnętrznego oprogramowania do odzyskiwania danych, na przykład TestDisk
D. Poprzez wymianę silnika SM
Istnieje wiele nieporozumień dotyczących metod odzyskiwania danych z uszkodzonego dysku twardego, które mogą prowadzić do błędnych wniosków i nieefektywnych działań. Przykładowo, wymiana silnika SM, choć teoretycznie możliwa, nie rozwiązuje problemu, jeśli przyczyną uszkodzenia są błędy w elektronice, a nie mechanice. Silnik nie działa w izolacji, a jego efektywność jest ściśle związana z poprawnym działaniem pozostałych komponentów. Zastosowanie zewnętrznego programu do odzyskiwania danych, takiego jak TestDisk, również nie przyniesie oczekiwanych rezultatów, gdyż programy te operują na wysokim poziomie systemu plików i nie są w stanie skomunikować się z dyskiem, który ma poważne uszkodzenia fizyczne czy elektroniczne. Polecenie fixmbr jest narzędziem systemowym służącym do naprawy tablicy partycji, a nie do odzyskiwania danych z uszkodzonych dysków. Użycie go w tym kontekście może wręcz pogorszyć sytuację, prowadząc do utraty danych. Te podejścia pokazują typowe błędy myślowe, takie jak nadmierne poleganie na oprogramowaniu lub uproszczone zrozumienie problemów technicznych. Kluczem do skutecznego odzyskiwania danych jest zrozumienie specyfiki uszkodzenia oraz stosowanie odpowiednich metod w oparciu o konkretne uszkodzenia, co wymaga profesjonalnej diagnozy i interwencji.

Pytanie 25

Fragment pliku httpd.conf serwera Apache przedstawia się jak na diagramie. W celu zweryfikowania prawidłowego funkcjonowania strony WWW na serwerze, należy wprowadzić w przeglądarkę

Listen 8012
Server Name localhost:8012
A. http://localhost
B. http://localhost:apache
C. http://localhost:8080
D. http://localhost:8012
Odpowiedź http://localhost:8012 jest poprawna, ponieważ w pliku konfiguracyjnym httpd.conf serwera Apache podano dyrektywę Listen 8012. Oznacza to, że serwer Apache nasłuchuje na porcie 8012. W praktyce oznacza to, że aby uzyskać dostęp do usług oferowanych przez serwer Apache na lokalnej maszynie, należy skorzystać z adresu URL, który specyfikuje ten port. Standardowo serwery HTTP działają na porcie 80, jednak w przypadku, gdy korzystamy z niestandardowego portu jak 8012, musimy go jawnie podać w adresie URL. Praktyczne zastosowanie tego typu konfiguracji jest powszechne w środowiskach deweloperskich, gdzie często konfiguruje się wiele instancji serwera do różnych zastosowań, używając różnych portów. Pamiętaj, aby upewnić się, że port nie jest blokowany przez zapory sieciowe, co mogłoby uniemożliwić dostęp do serwera. Konfiguracja serwera na nietypowych portach może również służyć celom bezpieczeństwa, utrudniając potencjalnym atakom automatyczne ich wykrycie. Zawsze warto zapewnić, że dokumentacja projektu jest aktualizowana i zawiera informacje o wykorzystywanych portach.

Pytanie 26

Jaką technologię wykorzystuje się do uzyskania dostępu do Internetu oraz odbioru kanałów telewizyjnych w formie cyfrowej?

A. QoS
B. CLIP
C. ADSL2+
D. VPN
QoS (Quality of Service) to technologia zarządzania ruchem sieciowym, która ma na celu zapewnienie priorytetów dla określonych typów danych w sieci, co jest niezbędne w sytuacjach wymagających wysokiej jakości transmisji, np. w telekonferencjach czy przesyłaniu strumieniowym. Jednak QoS nie jest technologią, która umożliwia dostęp do Internetu czy odbiór cyfrowych kanałów telewizyjnych, a jedynie narzędziem poprawiającym jakość usług w sieci. VPN (Virtual Private Network) to technologia tworząca bezpieczne połączenie między użytkownikami a zasobami Internetu, co pozwala na ochronę danych i prywatności, ale nie wpływa na jakość dostępu do usług takich jak telewizja cyfrowa. Natomiast CLIP (Calling Line Identification Presentation) to usługa, która wyświetla numer dzwoniącego na telefonie, i również nie ma związku z dostępem do Internetu czy przesyłem sygnału telewizyjnego. Typowe błędy myślowe w tym przypadku mogą wynikać z mylenia technologii komunikacyjnych oraz ich zastosowań. Właściwe zrozumienie ról poszczególnych technologii jest kluczowe dla efektywnego korzystania z dostępnych rozwiązań oraz optymalizacji własnych potrzeb telekomunikacyjnych.

Pytanie 27

Nazwa licencji oprogramowania komputerowego, które jest dystrybuowane bezpłatnie, lecz z ograniczoną przez twórcę funkcjonalnością w porównaniu do pełnej, płatnej wersji, gdzie po upływie 30 dni zaczynają się wyświetlać reklamy oraz przypomnienia o konieczności rejestracji, to

A. liteware
B. GNU-GPL
C. adware
D. OEM
Liteware to rodzaj oprogramowania, które jest dystrybuowane za darmo, ale z ograniczeniami w funkcjonalności w porównaniu do pełnej, płatnej wersji. Przykładem liteware mogą być aplikacje, które oferują podstawowe funkcje przez 30 dni, a następnie zaczynają wyświetlać reklamy lub przypomnienia o konieczności rejestracji. Taki model biznesowy jest używany przez wiele firm, które chcą zachęcić użytkowników do przetestowania swojego oprogramowania, jednocześnie oferując im opcję zakupu pełnej wersji. Warto zauważyć, że liteware jest często stosowane w kontekście programów edukacyjnych czy narzędzi do zarządzania projektami, gdzie możliwość przetestowania aplikacji przez określony czas pozwala na zapoznanie się z jej funkcjami, co może zwiększyć szanse na konwersję użytkowników do płatnych subskrybentów. Przykładowo, wiele programów do edycji zdjęć oferuje liteware, które pozwala na korzystanie z podstawowych narzędzi przez ograniczony czas, co skutkuje większym zainteresowaniem pełną wersją.

Pytanie 28

Stacja robocza powinna znajdować się w tej samej podsieci co serwer o adresie IP 192.168.10.150 i masce 255.255.255.192. Który adres IP powinien być skonfigurowany w ustawieniach protokołu TCP/IP karty sieciowej stacji roboczej?

A. 192.168.10.220
B. 192.168.11.130
C. 192.168.10.190
D. 192.168.10.1
Adres IP 192.168.10.190 jest poprawny, ponieważ mieści się w tej samej podsieci co serwer o adresie IP 192.168.10.150 i masce podsieci 255.255.255.192. Najpierw należy obliczyć zakres adresów IP w tej podsieci. Maska 255.255.255.192 oznacza, że mamy 64 adresy na podsieć (2^(32-26)). Oznaczenie 192.168.10.128 będzie adresem sieci, a 192.168.10.191 adresem rozgłoszeniowym. Adresy IP od 192.168.10.129 do 192.168.10.190 są dostępne dla hostów, co oznacza, że adres 192.168.10.190 jest ważnym, dostępnym adresem. Przykładem zastosowania może być przydzielanie adresów IP stacjom roboczym w małej firmie, gdzie każda stacja robocza musi być w tej samej podsieci, aby mogła komunikować się z serwerem. Dobre praktyki sieciowe zalecają, aby każdy host w tej samej podsieci miał unikalny adres IP, co pozwala na prawidłowe funkcjonowanie sieci lokalnej.

Pytanie 29

Aby bezpośrednio połączyć dwa komputery w przewodowej sieci LAN, należy zastosować

A. kabel sieciowy patch-cord bez krosowania oraz kabel Centronics
B. kabel światłowodowy i jedną kartę sieciową w jednym z komputerów
C. kabel sieciowy cross-over i po jednej karcie sieciowej w każdym z komputerów
D. kabel USB i po jednej karcie sieciowej w każdym z komputerów
Kabel sieciowy cross-over jest specjalnie zaprojektowany do bezpośredniego łączenia ze sobą dwóch komputerów, co oznacza, że umożliwia wymianę danych bez potrzeby stosowania switcha lub routera. W takim połączeniu każdy z komputerów musi być wyposażony w kartę sieciową, która obsługuje standardy Ethernet, takie jak 10Base-T, 100Base-TX lub 1000Base-T. Kabel cross-over różni się od standardowego kabla prostego, ponieważ w nim pary przewodów są zamienione, co pozwala na poprawne przesyłanie sygnałów transmitowanych i odbieranych pomiędzy dwoma urządzeniami. Praktycznym przykładem takiego rozwiązania jest konfiguracja sieci w małych biurach, gdzie dwa komputery muszą wymieniać pliki lub współdzielić zasoby bez dodatkowego sprzętu. Zastosowanie tego typu kabli jest zgodne ze standardem IEEE 802.3, co zapewnia wysoką jakość transmisji danych oraz minimalizację zakłóceń.

Pytanie 30

Jaką konfigurację sieciową może posiadać komputer, który należy do tej samej sieci LAN co komputer z adresem 192.168.1.10/24?

A. 192.168.1.11 i 255.255.255.0
B. 192.168.0.11 i 255.255.0.0
C. 192.168.1.11 i 255.255.0.0
D. 192.168.0.11 i 255.255.255.0
Adres IP 192.168.1.11 z maską 255.255.255.0 jest całkiem nieźle skonfigurowany. Działa, bo oba komputery są w tej samej podsieci, co znaczy, że mają wspólną część adresu. W przypadku tej maski, pierwsze trzy oktety (czyli 192.168.1) identyfikują sieć, a ostatni oktet (11) to jakby numer konkretnego komputera w tej sieci. Czyli można powiedzieć, że komputery z adresami w zakresie od 192.168.1.1 do 192.168.1.254 mogą się dogadać bez potrzeby używania routera, co jest dość ważne dla wydajności w lokalnych sieciach. Pamiętaj, żeby unikać konfliktów adresów, bo w tej samej podsieci każdy komp musi mieć unikalny adres IP. Maski podsieci, jak ta, są popularne w małych sieciach i ułatwiają konfigurację, więc to dobry wybór.

Pytanie 31

Element, który jest na stałe zainstalowany u abonenta i zawiera zakończenie poziomego okablowania strukturalnego, to

A. gniazdo teleinformatyczne
B. punkt rozdzielczy
C. gniazdo energetyczne
D. punkt konsolidacyjny
Gniazdo teleinformatyczne to element instalacji strukturalnej, który pełni kluczową rolę w dostarczaniu sygnałów telekomunikacyjnych i danych do urządzeń końcowych. Jest to punkt, w którym kończy się okablowanie strukturalne poziome, umożliwiając podłączenie komputerów, telefonów oraz innych urządzeń do sieci lokalnej. W kontekście standardów, gniazda teleinformatyczne są zgodne z normami ISO/IEC 11801, które definiują wymagania dotyczące instalacji okablowania w budynkach. Przykładem zastosowania gniazd teleinformatycznych może być biuro, gdzie każde stanowisko pracy jest wyposażone w gniazdo umożliwiające szybkie połączenie z siecią internetową. Warto zauważyć, że gniazda te mogą obsługiwać różne typy sygnałów, w tym Ethernet, co czyni je niezwykle uniwersalnymi. Ponadto, stosowanie gniazd teleinformatycznych ułatwia zarządzanie siecią oraz zwiększa elastyczność w organizacji przestrzeni biurowej, co jest istotne w dynamicznych środowiskach pracy.

Pytanie 32

Który z trybów nie jest oferowany przez narzędzie lupa w systemie Windows?

A. Pełnoekranowy
B. Zadokowany
C. Płynny
D. Lupy
Wybierając odpowiedzi 'Pełnoekranowy', 'Zadokowany' lub 'Lupy', można łatwo przeoczyć, że 'Płynny' nie jest rzeczywistym trybem dostępnym w narzędziu lupa w systemie Windows. Pojęcie 'Płynny' może sugerować elastyczność, ale w kontekście narzędzia lupa odnosi się jedynie do sposobu interakcji z powiększeniem, które nie zostało zaprojektowane w taki sposób. 'Pełnoekranowy' to bardzo popularny tryb, który pozwala na wyświetlenie powiększonego obrazu na całym ekranie, co jest szczególnie pomocne dla osób z problemami wzrokowymi. Z kolei tryb 'Zadokowany' daje możliwość przypięcia powiększonego widoku, co umożliwia efektywne zarządzanie przestrzenią roboczą i łatwiejsze korzystanie z wielu aplikacji jednocześnie. Warto zauważyć, że najlepsze praktyki dotyczące projektowania narzędzi dostępowych opierają się na dostosowywaniu ich do różnorodnych potrzeb użytkowników. Odpowiedzi, które nie uwzględniają tego kluczowego faktu, mogą być mylące, zwłaszcza dla osób, które polegają na technologii wspomagającej. Zrozumienie i znajomość dostępnych trybów mogą znacząco poprawić codzienne korzystanie z systemu operacyjnego, dlatego tak ważne jest, aby użytkownicy byli dobrze poinformowani na temat funkcji, jakie oferuje narzędzie lupa.

Pytanie 33

Router Wi-Fi działający w technologii 802.11n umożliwia osiągnięcie maksymalnej prędkości przesyłu danych

A. 54 Mb/s
B. 11 Mb/s
C. 1000 Mb/s
D. 600 Mb/s
Odpowiedzi 11 Mb/s, 54 Mb/s oraz 1000 Mb/s są nieprawidłowe w kontekście maksymalnej prędkości transmisji dostępnej dla standardu 802.11n. Standard 802.11b, który działa na prędkości 11 Mb/s, był jednym z pierwszych standardów Wi-Fi, a jego ograniczenia w zakresie prędkości są znane i zrozumiałe w kontekście starszych technologii. Z kolei standard 802.11g, który osiąga maksymalnie 54 Mb/s, zapewnia lepszą wydajność od 802.11b, ale nadal nie dorównuje możliwościom 802.11n. Zrozumienie tych wartości jest kluczowe, aby uniknąć mylnych wniosków o wydajności sieci. Ponadto, odpowiedź wskazująca na 1000 Mb/s jest myląca, ponieważ odnosi się do standardów, które nie są jeszcze powszechnie implementowane w użytkowanych routerach. W rzeczywistości maksymalna prędkość 1000 Mb/s odnosi się do standardu 802.11ac, który wprowadza jeszcze bardziej zaawansowane technologie, takie jak MU-MIMO oraz lepsze wykorzystanie pasma 5 GHz. Typowym błędem jest postrzeganie routerów Wi-Fi jako jedynie komponentów sprzętowych, bez zrozumienia ich pełnych możliwości oraz ograniczeń wynikających z zastosowanych technologii. Użytkownicy powinni być świadomi, że różne standardy mają różne zastosowania i mogą wpływać na to, jak wpływają na codzienne korzystanie z internetu. Dobrze jest również regularnie monitorować wydajność swojego routera oraz dostosowywać jego ustawienia, aby zapewnić optymalną prędkość i niezawodność połączenia.

Pytanie 34

Interfejs UDMA to typ interfejsu

A. szeregowy, który służy do transferu danych między pamięcią RAM a dyskami twardymi
B. równoległy, który został zastąpiony przez interfejs SATA
C. równoległy, używany m.in. do połączenia kina domowego z komputerem
D. szeregowy, stosowany do łączenia urządzeń wejściowych
Wybór odpowiedzi, która opisuje interfejs UDMA jako szeregowy, używany do podłączania urządzeń wejścia, jest błędny z kilku powodów. Interfejs UDMA jest technologią równoległą, co oznacza, że wykorzystuje wiele linii danych do jednoczesnej transmisji informacji, co znacznie zwiększa przepustowość w porównaniu do interfejsów szeregowych, które przesyłają dane bit po bicie. Stąd pierwsza niepoprawna koncepcja związana z tą odpowiedzią to mylenie typów interfejsów. Ponadto, UDMA nie jest używany do podłączania urządzeń wejścia, lecz raczej do komunikacji z pamięcią masową, jak dyski twarde. W odniesieniu do drugiej nieprawidłowej odpowiedzi, UDMA nie został całkowicie zastąpiony przez SATA, lecz raczej ewoluował wraz z postępem technologii. Mimo że SATA jest obecnie preferowanym standardem transferu danych do dysków twardych ze względu na swoje zalety, wciąż istnieje wiele sprzętu, który wykorzystuje UDMA. Niezrozumienie tych aspektów może prowadzić do błędnych wniosków przy projektowaniu lub modernizacji systemów komputerowych, dlatego ważne jest, aby dokładnie zrozumieć różnice między tymi technologiami oraz ich odpowiednie zastosowania. Ostatecznie, wybór odpowiedniego interfejsu powinien być oparty na aktualnych potrzebach wydajnościowych i kompatybilności z istniejącym sprzętem.

Pytanie 35

W komputerze użyto płyty głównej widocznej na obrazku. Aby podnieść wydajność obliczeniową maszyny, zaleca się

Ilustracja do pytania
A. dodanie dysku SAS
B. zamontowanie dwóch procesorów
C. rozszerzenie pamięci RAM
D. instalację kontrolera RAID
Instalacja dwóch procesorów jest prawidłową odpowiedzią ze względu na architekturę płyty głównej przedstawionej na rysunku, która jest wyposażona w dwa gniazda procesorowe typu Socket. Dodanie drugiego procesora pozwala na wykorzystanie pełnego potencjału płyty, co skutkuje znacznym wzrostem mocy obliczeniowej komputera. Dzięki pracy w konfiguracji wieloprocesorowej, system może lepiej obsługiwać wielozadaniowość, szczególnie w zastosowaniach wymagających dużych zasobów, takich jak renderowanie grafiki 3D, analiza danych czy hosting serwerów aplikacji. Praktyczne zastosowania tej architektury często znajdują się w środowiskach serwerowych, gdzie wydajność i szybkość przetwarzania danych są kluczowe. Instalacja i konfiguracja dwóch procesorów powinna być wykonana zgodnie ze specyfikacją producenta, aby uniknąć problemów kompatybilności i zapewnić stabilność systemu. Standardy branżowe zalecają także użycie identycznych modeli procesorów, co zapewnia optymalne działanie systemu i równomierne rozkładanie obciążenia między jednostkami obliczeniowymi co jest jednym z kluczowych aspektów budowy wydajnych systemów komputerowych.

Pytanie 36

W jakim trybie pracy znajduje się system Linux, kiedy osiągalny jest tylko minimalny zestaw funkcji systemowych, często używany do napraw?

A. Tryb normalny
B. Tryb użytkownika
C. Tryb awaryjny
D. Tryb serwisowy
Tryb awaryjny w systemie Linux, znany również jako tryb pojedynczego użytkownika, to specjalny tryb operacyjny, w którym uruchamiany jest minimalny zestaw funkcji systemowych. Jest to zwykle stosowane do diagnostyki i naprawy systemu, kiedy normalne uruchomienie nie jest możliwe. W trybie awaryjnym, system uruchamia się bez interfejsu graficznego i niektórych usług sieciowych, co pozwala na wykonanie niezbędnych napraw bez zakłóceń. Administratorzy mogą w tym trybie modyfikować pliki konfiguracyjne, usuwać zbędne pliki czy naprawiać problemy z uprawnieniami. Dzięki temu, że system działa z ograniczoną ilością procesów, zmniejsza się ryzyko wystąpienia błędów, które mogłyby przeszkodzić w naprawie. Tryb awaryjny jest więc nieocenionym narzędziem dla każdego administratora systemów Linux, którzy muszą przywrócić system do pełnej funkcjonalności.

Pytanie 37

Komputer stracił łączność z siecią. Jakie działanie powinno być podjęte w pierwszej kolejności, aby naprawić problem?

A. Przelogować się na innego użytkownika
B. Zaktualizować sterownik karty sieciowej
C. Sprawdzić adres IP przypisany do karty sieciowej
D. Zaktualizować system operacyjny
Sprawdzenie adresu IP przypisanego do karty sieciowej jest kluczowym pierwszym krokiem w diagnozowaniu problemów z połączeniem sieciowym. Adres IP jest unikalnym identyfikatorem przypisanym do każdego urządzenia w sieci, a jego poprawność jest niezbędna do nawiązania komunikacji z innymi urządzeniami. Często zdarza się, że komputer traci połączenie z siecią z powodu konfliktów adresów IP lub błędnej konfiguracji. Narzędzia takie jak ipconfig w systemie Windows lub ifconfig w systemie Linux pozwalają na łatwe sprawdzenie aktualnego adresu IP. W przypadku, gdy adres jest niewłaściwy lub urządzenie nie jest w stanie go uzyskać, warto skorzystać z opcji odnowienia dzierżawy DHCP lub ręcznej konfiguracji IP zgodnie z zasadami przypisanymi przez administratora sieci. Ponadto, dobrym zwyczajem jest monitorowanie i dokumentowanie zmian w konfiguracji sieciowej, co ułatwia przyszłe diagnozy. W kontekście standardów branżowych, znajomość tych podstawowych kroków jest niezbędna dla każdego specjalisty IT zajmującego się utrzymaniem infrastruktury sieciowej.

Pytanie 38

W systemie Windows przy użyciu polecenia assoc można

A. zmieniać powiązania z rozszerzeniami plików
B. zmienić listę kontroli dostępu do plików
C. zobaczyć atrybuty plików
D. sprawdzić zawartość dwóch plików
Pomimo tego, że zarządzanie plikami w systemie Windows jest kluczowym aspektem, polecenia opisane w odpowiedziach nie są związane z funkcją 'assoc'. Nie jest prawdą, że 'assoc' pozwala na porównanie zawartości dwóch plików, ponieważ do tego celu służą inne narzędzia, takie jak 'fc' (file compare). Użycie 'fc' umożliwia użytkownikom analizę różnic między plikami tekstowymi, co jest przydatne w kontekście programowania i analizy danych. Z kolei modyfikacja listy kontroli dostępu do plików (ACL) jest realizowana za pomocą innych narzędzi, takich jak 'icacls'. ACL pozwala na precyzyjne zarządzanie uprawnieniami dostępu do plików, co jest istotne dla bezpieczeństwa danych. Zmiana atrybutów plików, na przykład ich ukrycie czy oznaczenie jako tylko do odczytu, również nie jest funkcją 'assoc', lecz można to zrobić za pomocą polecenia 'attrib'. Warto zrozumieć, że każde z tych narzędzi ma swoją specyfikę i jest przeznaczone do konkretnych zadań. Ignorowanie tego faktu może prowadzić do błędów w zarządzaniu systemem oraz nieefektywności w pracy z danymi. Dlatego kluczowe jest zrozumienie różnic i zastosowań poszczególnych poleceń w systemie Windows.

Pytanie 39

Który z poniższych interfejsów powinien być wybrany do podłączenia dysku SSD do płyty głównej komputera stacjonarnego, aby uzyskać najwyższą szybkość zapisu oraz odczytu danych?

A. SATA Express
B. ATA
C. mSATA
D. PCI Express
Wybór interfejsu SATA Express jako opcji do podłączenia dysku SSD może wydawać się atrakcyjny, jednak ten standard nie jest w stanie dorównać przepustowości interfejsu PCI Express. SATA Express, mimo że jest szybszy niż tradycyjny SATA III, wciąż ogranicza się do teoretycznej maksymalnej prędkości 10 Gb/s. Natomiast PCIe 3.0 oferuje do 32 Gb/s, a PCIe 4.0 nawet do 64 Gb/s, co wyraźnie pokazuje różnicę w wydajności. Mimo że mSATA również może być stosowany do podłączenia SSD, jego zastosowanie jest ograniczone głównie do starszych laptopów, a jego prędkość transferu jest niewspółmierna do możliwości nowoczesnych dysków. Z kolei ATA, będący starszym standardem, nie jest w ogóle odpowiedni dla nowoczesnych dysków SSD, które wymagają dużo wyższej przepustowości. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwego interfejsu, obejmują przekonanie, że wszystkie formy SATA są wystarczające dla wydajności SSD, co jest nieprawdziwe. Użytkownicy powinni zawsze brać pod uwagę wymagania dotyczące przepustowości, szczególnie przy pracy z danymi o dużej szybkości, takimi jak w przypadku gier, edycji wideo czy zastosowań profesjonalnych. Kluczowe jest zrozumienie, że wybór niewłaściwego interfejsu może znacznie ograniczyć potencjał sprzętu, co w dłuższej perspektywie przekłada się na niezadowolenie z wydajności systemu.

Pytanie 40

DB-25 służy jako złącze

A. portu RS-422A
B. portu równoległego LPT
C. VGA, SVGA i XGA
D. GamePort
Wybór odpowiedzi związanych z GamePort, portem RS-422A oraz VGA, SVGA i XGA wskazuje na pewne nieporozumienia dotyczące zastosowań różnych typów złącz. GamePort to złącze, które było używane głównie do podłączania kontrolerów gier, a nie do transmisji danych równoległych. Jest to port szeregowy, co oznacza, że dane są przesyłane w jednym strumieniu, co jest mniej efektywne w porównaniu do portów równoległych. Z kolei port RS-422A jest interfejsem szeregowym, służącym do komunikacji na większe odległości z wykorzystaniem różnicowego przesyłania sygnału. To złącze jest stosowane głównie w systemach przemysłowych i telekomunikacyjnych, ale nie ma zastosowania w kontekście portów równoległych. Z kolei złącza VGA, SVGA i XGA to standardy wyjść wideo, które służą do przesyłania sygnałów wideo do monitorów i nie mają żadnego związku z złączem DB-25. Wybierając te odpowiedzi, można popełnić błąd, myląc różne typy interfejsów i ich zastosowań. Ważne jest, aby zrozumieć, że DB-25 specyficznie odnosi się do portów równoległych, a inne wymienione złącza mają zupełnie inne funkcje i przeznaczenie. Aby właściwie klasyfikować złącza, warto zaznajomić się z ich specyfikacjami oraz zastosowaniem w odpowiednich kontekstach technologicznych.