Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 listopada 2025 05:24
  • Data zakończenia: 17 listopada 2025 05:28

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
C. przerwę w uzwojeniu U1 – U2
D. zwarcie międzyzwojowe w uzwojeniu W1 – W2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 2

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. pojawienie się napięcia na obudowie silnika
B. wzrost prędkości obrotowej wirnika
C. obniżenie prędkości obrotowej wirnika
D. uruchomienie ochronnika przeciwprzepięciowego
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 3

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C40
C. S303 C25
D. S303 C32
Wybór niewłaściwego wyłącznika nadprądowego może prowadzić do poważnych konsekwencji, zarówno dla samego silnika, jak i dla całego układu zasilania. W przypadku wyłączników S303 C25 i S303 C20, ich prąd znamionowy jest zbyt niski w stosunku do obliczonego prądu silnika, który wynosi około 18,5 A. Użycie wyłącznika C25, który ma prąd znamionowy 25 A, może prowadzić do częstych wyłączeń podczas normalnej pracy silnika, co w dłuższej perspektywie może prowadzić do niepotrzebnego stresu mechanicznego oraz uszkodzenia silnika. Podobnie, wybór C20 jest jeszcze bardziej ryzykowny, ponieważ jego prąd znamionowy nie tylko nie zapewnia odpowiedniego marginesu bezpieczeństwa, ale także zwiększa ryzyko wyłączeń przy normalnych obciążeniach. Ponadto, wyłącznik C40, mimo że posiada większy prąd znamionowy niż potrzebny, również nie jest odpowiedni, ponieważ jego wartość może prowadzić do zbyt późnych reakcji w przypadku przeciążenia, co zwiększa ryzyko uszkodzeń. W praktyce, dobór wyłączników nadprądowych powinien zawsze brać pod uwagę zarówno prąd znamionowy urządzenia, jak i charakterystykę pracy obwodu, aby zapewnić nie tylko ochronę, ale również optymalną wydajność systemu. Zgodnie z normami IEC 60947-2, istotne jest, aby wyłącznik był dostosowany do rzeczywistych warunków pracy, co w tym przypadku oznacza konieczność wyboru wyłącznika, który ma odpowiednio wyższy prąd znamionowy niż obliczony prąd silnika.

Pytanie 4

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę Z
B. Charakterystykę B
C. Charakterystykę C
D. Charakterystykę D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy z charakterystyką D to całkiem fajna opcja, zwłaszcza jeśli pracujesz z urządzeniami, które mają duży pobór prądu, jak na przykład silniki. Wiesz, różni się on trochę od charakterystyk B i C, które nie pozwalają na takie chwilowe przeszalenie prądu. A w przypadku silników, to może być naprawdę ważne, bo w momencie startu potrafią pobierać nawet 5-7 razy więcej prądu niż w normalnych warunkach. Taki wyłącznik D pomoże uniknąć niepotrzebnych wyłączeń, co jest kluczowe w przemyśle, gdzie maszyny muszą działać bez przerwy. Dobrze jest też pamiętać o normach, jak IEC 60947-2, bo wskazują one, jak ważne jest dobranie odpowiedniej charakterystyki do konkretnego obciążenia. Dzięki temu możesz być pewny, że wszystko będzie działać sprawnie i bezpiecznie.

Pytanie 5

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Dotyczące zabezpieczania instalacji przed uszkodzeniem
B. Związane z ratowaniem życia i zdrowia ludzi
C. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
D. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 6

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 100 mA
B. 200 mA
C. 500 mA
D. 400 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 7

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 2 500 V
B. 250 V
C. 1 000 V
D. 500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 8

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 10,50 A
B. 9,50 A
C. 11,00 A
D. 10,10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 11,00 A jest prawidłowa, ponieważ prąd nastawczy zabezpieczenia termobimetalowego powinien być ustawiony z pewnym marginesem nad prądem znamionowym silnika, aby uniknąć niepożądanych wyłączeń. W praktyce, przekaźniki termobimetalowe stosowane do ochrony silników pompowych muszą być dostosowane tak, aby ich czułość była odpowiednia do warunków pracy, bez przekraczania dopuszczalnych wartości prądu. W przypadku silnika o prądzie znamionowym I<sub>n</sub> = 10 A, ustawienie prądu nastawczego na 11,00 A zapewnia wystarczający zapas, aby uwzględnić chwilowe przeciążenia, które mogą wystąpić podczas rozruchu silnika lub w wyniku zmiennych warunków eksploatacyjnych. Dobrą praktyką jest również kierowanie się normami, takimi jak IEC 60947-4-1, która określa zasady doboru urządzeń zabezpieczających dla silników. W ten sposób można zapewnić niezawodność i bezpieczeństwo systemu, minimalizując ryzyko fałszywych alarmów oraz niepotrzebnych przestojów w pracy urządzeń.

Pytanie 9

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się trzykrotnie
D. Zwiększy się trzykrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że spadek napięcia na przewodzie zasilającym odbiornik przenośny zwiększy się dwukrotnie, jest poprawna z perspektywy prawa Ohma oraz zasad obliczania spadku napięcia. Spadek napięcia (U) na przewodniku oblicza się według wzoru U = I * R, gdzie I to prąd płynący przez przewód, a R to oporność przewodu. Oporność przewodu wyrażona jest wzorem R = ρ * (L/A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego pole przekroju. Zastępując przewód OWY 5×4 mm² o długości 5 m przewodem OWY 5×6 mm² o długości 15 m, zwiększamy długość przewodu trzykrotnie (15 m do 5 m) oraz zmniejszamy pole przekroju o 1,5 razy (4 mm² do 6 mm²). Mimo większego pola przekroju nowego przewodu, jego długość powoduje, że spadek napięcia wzrasta. W praktyce oznacza to, że dla zastosowań wymagających długich przewodów zasilających, dobór odpowiedniego przekroju przewodu jest kluczowy, aby zminimalizować straty energetyczne i zapewnić stabilność zasilania. Dostosowywanie długości i przekrojów przewodów jest zgodne z normą PN-IEC 60364, która zaleca obliczanie spadków napięcia dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 10

W przypadku pomiarów rezystancji izolacyjnej w całej instalacji elektrycznej budynku, który jest zasilany napięciem 230/400 V, powinno się je przeprowadzać przy odłączonym zasilaniu i przy

A. otwartych łącznikach i załączonych odbiornikach
B. zamkniętych łącznikach i załączonych odbiornikach
C. otwartych łącznikach i odłączonych odbiornikach
D. zamkniętych łącznikach i odłączonych odbiornikach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji w instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Wykonywanie tych pomiarów przy zamkniętych łącznikach oraz odłączonych odbiornikach minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia dokładność pomiaru. W takim ustawieniu można skutecznie ocenić stan izolacji przewodów, co jest zgodne z normami europejskimi, takimi jak PN-EN 61010, które wymagają, aby urządzenia pomiarowe były używane w odpowiednich warunkach. Odpowiednia izolacja przewodów jest niezbędna do zapobiegania zwarciom oraz wyciekowi prądu do ziemi, co mogłoby prowadzić do niebezpiecznych sytuacji, takich jak pożary czy porażenia prądem. Przykładowo, podczas inspekcji budynku, technik powinien najpierw upewnić się, że wszystkie urządzenia są wyłączone, a następnie przeprowadzić pomiar rezystancji izolacji. Taki proces jest standardową procedurą w przemyśle elektrycznym i jest zalecany przez wiele organizacji zajmujących się normami bezpieczeństwa.

Pytanie 11

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zwarcie pierścieni ślizgowych
B. Zmniejszenie obciążenia silnika
C. Zwiększenie napięcia zasilającego
D. Przerwa w zasilaniu jednej fazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 12

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody aluminiowe
B. Przewody z miedzi beztlenowej
C. Przewody do instalacji wewnętrznych
D. Przewody o podwyższonej odporności na UV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 13

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Przekaźnik nadprądowy
B. Termistor
C. Bezpiecznik
D. Wyłącznik silnikowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 14

Który z wymienionych materiałów eksploatacyjnych nie jest konieczny do wykorzystania przy przezwajaniu trójfazowego silnika indukcyjnego o mocy 7,5 kW?

A. Łożysko igiełkowe
B. Izolacja żłobkowa
C. Drut nawojowy
D. Lakier izolacyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łożysko igiełkowe nie jest materiałem, który musi być wykorzystany podczas przezwajania trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego funkcja dotyczy głównie mechaniki silnika, a nie jego uzwojeń. Proces przezwajania koncentruje się na wymianie drutu nawojowego, lakieru izolacyjnego oraz izolacji żłobkowej, które mają kluczowe znaczenie dla funkcjonowania i wydajności silnika. Drut nawojowy jest niezbędny do odtworzenia uzwojeń silnika, a jego parametry, takie jak przekrój i materiał, muszą być dobierane zgodnie z wymaganiami mocy i napięcia. Lakier izolacyjny pełni istotną rolę w ochronie uzwojeń przed wilgocią i uszkodzeniami mechanicznymi, natomiast izolacja żłobkowa jest niezbędna do zapewnienia odpowiedniej separacji między uzwojeniami a rdzeniem silnika, co zapobiega zwarciom. Właściwe dobieranie tych materiałów zgodnie z normami, jak IEC 60034, zapewnia długotrwałe i efektywne działanie silnika.

Pytanie 15

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. E do 1 kV
B. D do 1 kV
C. D do 15 kV
D. E do 30 kV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 16

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. C10
B. B20
C. B16
D. C16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 17

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Umożliwia pomiar upływu prądu przez izolację
B. Zwiększa zakres pomiarowy woltomierza
C. Daje możliwość zdalnego pomiaru energii elektrycznej
D. Poszerza zakres pomiarowy amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Boczniki rezystancyjne są kluczowym elementem w pomiarach prądowych, ponieważ umożliwiają rozszerzenie zakresu pomiarowego amperomierzy, co jest szczególnie ważne w przypadku pomiarów dużych prądów. Działają na zasadzie dzielenia prądu na mniejsze wartości, co pozwala na precyzyjniejsze pomiary oraz ochronę urządzenia pomiarowego przed uszkodzeniem. Przykładem zastosowania bocznika rezystancyjnego może być pomiar prądów w instalacjach przemysłowych, gdzie wartości prądów mogą znacznie przekraczać możliwości standardowych amperomierzy. Dzięki zastosowaniu bocznika, możliwe jest przekształcenie dużych prądów na mniejsze napięcia, które mogą być bezpiecznie zmierzone. Dobrze zaprojektowane boczniki powinny być zgodne z normami, takimi jak IEC 61010, co zapewnia ich bezpieczeństwo i niezawodność w trudnych warunkach pracy. Właściwy dobór bocznika oraz jego parametry, takie jak wartość rezystancji i moc, mają kluczowe znaczenie dla dokładności pomiarów i ochrony urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 18

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Niesymetryczność obciążenia
B. Nieszczelność kadzi transformatora
C. Praca na biegu jałowym
D. Drgania skrajnych blach rdzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 19

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 0,9
B. 2,0
C. 1,1
D. 1,2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 20

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 10 A
B. 13 A
C. 20 A
D. 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć minimalną wartość znamionowego prądu wyłącznika nadprądowego, należy zastosować wzór na moc elektryczną, który łączy moc (P), napięcie (U) oraz prąd (I). Wzór ten można przedstawić jako P = U * I. Z naszej sytuacji mamy moc 2 kW (2000 W) oraz napięcie 230 V. Przekształcając wzór, otrzymujemy I = P / U. Podstawiając wartości, otrzymujemy I = 2000 W / 230 V, co daje około 8,7 A. Jabłko z tej wartości, zgodnie z normami i zaleceniami stosuje się wyłączniki nadprądowe o wartościach znamionowych, które są standardowo dostępne w sklepach. Wyłączniki te są dostępne w wartościach 6 A, 10 A, 16 A, 20 A i wyższych. Zatem, aby zapewnić odpowiedni margines bezpieczeństwa oraz zgodność z przepisami, minimalna wartość wyłącznika powinna wynosić 10 A. Dobrym przykładem zastosowania tego wyłącznika jest jego użycie w domowych instalacjach elektrycznych, gdzie piekarniki oporowe są powszechnie używane. Wybór wyłącznika o wartości znamionowej 10 A chroni obwód przed przeciążeniem oraz awarią sprzętu.

Pytanie 21

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Brak obciążenia
B. Luzy w łożyskach
C. Przerwa w uzwojeniu twornika
D. Przerwa w uzwojeniu wzbudzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 22

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. impedancja sieci zasilającej jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. opór izolacji miejsca pracy jest zbyt wysoki
D. opór uziomu jest zbyt niski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 23

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 44
B. IP 00
C. IP 22
D. IP 66

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.

Pytanie 24

Który przewód powinien być zastosowany do połączenia z siecią 230 V transformatora znajdującego się w metalowej obudowie centralki alarmowej?

A. OMY 2×0,75 mm2
B. OMY 3×0,75 mm2
C. YTDY 4×0,5 mm2
D. YTDY 2×0,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź OMY 3×0,75 mm2 jest poprawna, ponieważ przewód ten charakteryzuje się odpowiednią konstrukcją i parametrami technicznymi do wykorzystania w instalacjach zasilających urządzenia wymagające podłączenia do sieci 230 V. Przewód OMY jest przewodem w gumie, co zapewnia mu elastyczność i odporność na różne czynniki atmosferyczne oraz mechaniczne, co jest kluczowe w kontekście instalacji w metalowej obudowie centralki alarmowej. Wybór przewodu o przekroju 0,75 mm2 jest uzasadniony dla aplikacji o średnim poborze mocy, co jest typowe w systemach alarmowych. Dodatkowo, OMY 3×0,75 mm2 zawiera trzy żyły, co umożliwia nie tylko zasilanie, ale także podłączenie dodatkowych funkcji, takich jak sygnalizacja. Stosowanie przewodów zgodnych z normami PN-EN 60228 oraz PN-EN 50525 jest zgodne z zaleceniami dobrych praktyk elektrycznych, co zapewnia bezpieczeństwo i niezawodność w eksploatacji.

Pytanie 25

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu B
B. Bezpiecznik typu aM
C. Bezpiecznik typu aR
D. Wyłącznik nadprądowy typu Z

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik typu aM jest właściwym wyborem do zabezpieczenia silnika trójfazowego o mocy 5,5 kW i napięciu 400/690 V. Ten typ bezpiecznika został zaprojektowany do ochrony przed przeciążeniem i zwarciem w aplikacjach silnikowych. Charakteryzuje się on wydłużonym czasem reakcji na prąd przeciążeniowy, co pozwala na chwilowe przekroczenie prądu nominalnego bez wyzwolenia, co jest niezbędne w przypadku rozruchu silnika. Dzięki temu zabezpieczenie jest w stanie tolerować wyższe prądy startowe, co jest kluczowe w praktycznych zastosowaniach, takich jak uruchamianie maszyn w zakładach przemysłowych. Dodatkowo, zastosowanie przekaźnika termicznego oraz stycznika umożliwia pełne zabezpieczenie silnika, zapewniając nie tylko ochronę przed zwarciem, ale również przed długotrwałym przeciążeniem. Przykłady poprawnych zastosowań obejmują silniki napędowe w pompach, wentylatorach czy kompresorach, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem. Wysoka jakość wykonania i zgodność z normami IEC 60269 sprawiają, że bezpieczniki typu aM są często preferowane w profesjonalnych instalacjach.

Pytanie 26

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
D. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 27

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6001
B. 6301
C. 6700
D. 6200

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 28

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C32
B. S303 C25
C. S303 C20
D. S303 C40

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 29

Na jaką wielkość prądu nominalnego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 2,2·In
B. 1,4·In
C. 1,1·In
D. 0,8·In

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,1·In jest prawidłowa, ponieważ dla silników klatkowych trójfazowych, zwłaszcza w przypadku napędu pomp hydroforowych, ustalenie odpowiedniej wartości zabezpieczenia termicznego jest kluczowe dla ich poprawnej pracy. Ustawienie termika na poziomie 1,1·In oznacza, że zabezpieczenie termiczne toleruje przeciążenie do 10% powyżej prądu znamionowego silnika, co jest zgodne z normami zawartymi w standardzie IEC 60947-4-1. W praktyce, takie ustawienie pozwala na chwilowe przeciążenia, które mogą wystąpić przy rozruchu lub w przypadku chwilowego wzrostu ciśnienia w systemie, jednocześnie chroniąc silnik przed nadmiernym przegrzaniem. Zbyt niskie ustawienie zabezpieczenia może skutkować częstymi wyłączeniami silnika, podczas gdy zbyt wysokie może nie zapewnić odpowiedniej ochrony. W związku z tym, dla silników napędzających pompy, które są obciążone zmiennymi warunkami pracy, wartość 1,1·In jest często uznawana za optymalną dla ochrony oraz efektywności operacyjnej.

Pytanie 30

Podczas wymiany gniazda wtyczkowego w instalacji domowej wykonanej w rurkach pod tynkiem złamał się jeden z przewodów aluminiowych, przez co stał się za krótki. Jak powinno się postąpić w tej sytuacji przy wymianie gniazda?

A. Przed zamontowaniem gniazda usunąć uszkodzony przewód i wciągnąć nowy miedziany
B. Przylutować brakującą część przewodu aluminiowego i zamontować gniazdo
C. Skręcić złamany przewód z kawałkiem przewodu miedzianego i zamontować gniazdo
D. Przed zamontowaniem gniazda wymienić przewody na miedziane, wciągając nowe razem z usuwaniem starych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonych przewodów na miedziane przed założeniem gniazda jest najlepszym rozwiązaniem ze względu na właściwości miedzi, takie jak lepsza przewodność elektryczna, odporność na korozję oraz trwałość. Miedź jest materiałem o znacznie wyższej jakości w porównaniu do aluminium, co wpływa na bezpieczeństwo i efektywność instalacji elektrycznej. W przypadku uszkodzenia przewodu aluminiowego, jego wymiana na miedziany jest kluczowa, aby uniknąć problemów z połączeniami oraz ryzyka awarii. Przykładem praktycznym jest sytuacja, kiedy podczas remontu mieszkania stwierdzono, że instalacja elektryczna była przestarzała. Wymiana przewodów na miedziane, zgodnie z normą PN-IEC 60364, zapewniła nie tylko lepsze parametry użytkowe, ale również zgodność z aktualnymi przepisami bezpieczeństwa. Dobrą praktyką jest również stosowanie odpowiednich złączek i akcesoriów, które są przystosowane do miedzi, co dodatkowo zwiększa bezpieczeństwo oraz trwałość całej instalacji. Ważne jest, aby każda wymiana była przeprowadzana przez wykwalifikowanego elektryka, który zna lokalne przepisy oraz standardy wykonania instalacji.

Pytanie 31

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Zmierzanie rezystancji izolacji instalacji elektrycznej
B. Weryfikacja czasu samoczynnego odłączenia zasilania
C. Ocena prawidłowego doboru przekroju kabli
D. Przeprowadzenie próby ciągłości przewodów ochronnych oraz połączeń wyrównawczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie właściwego doboru przekroju przewodów jest kluczowym elementem oceny instalacji elektrycznej. Przekroje przewodów muszą być odpowiednio dobrane do obciążenia, jakie będą musiały znieść. Niewłaściwy dobór może prowadzić do przegrzewania się przewodów, co z kolei zwiększa ryzyko pożaru oraz uszkodzenia urządzeń elektrycznych. Zgodnie z normą PN-IEC 60364-5-52, należy uwzględnić zarówno parametry obciążeniowe, jak i długość przewodów oraz warunki ich ułożenia. Przykładowo, dla instalacji w domach jednorodzinnych, niezbędne jest, by przekrój przewodu zasilającego gniazdka był odpowiedni do przewidywanego obciążenia, co pozwala na bezpieczne użytkowanie. Dobre praktyki nakazują także regularne przeglądy instalacji elektrycznych, a w szczególności zwrócenie uwagi na te aspekty podczas inspekcji przed oddaniem budynku do użytku, co zapewnia bezpieczeństwo mieszkańców.

Pytanie 32

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. prądnicę tachometryczną
B. pirometr
C. przekładnik napięciowy
D. induktor

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 33

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Strzałka wskazująca wymagany kierunek obrotu
B. Poziom odchylenia napięcia zasilającego
C. Termin kolejnego przeglądu technicznego
D. Typ zastosowanych zabezpieczeń przeciwzwarciowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 34

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Pozostawić instalację zasilającą bez zmian
B. Zwiększyć średnicę przewodów kabla WLZ
C. Zmniejszyć średnicę przewodów kabla WLZ
D. Zwiększyć średnicę przewodów w instalacji wewnętrznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 35

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć temperaturę uzwojenia stojana
B. ocenić stan szczotek
C. sprawdzić rezystancję przewodu ochronnego
D. zmierzyć rezystancję izolacji kabla zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 36

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
B. Każdy pracownik na pisemne zlecenie pracodawcy
C. Kierownik grupy mechaników
D. Operator tej maszyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 37

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Brak ciągłości przewodu PE
B. Przebicie izolacji między L1-N
C. Zwarcie między fazami L1-L2
D. Uszkodzenie przewodu N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 38

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. wymienić wyłącznik nadprądowy
B. zapewnić ciągłość przewodów ochronnych
C. zapewnić ciągłość przewodów neutralnych
D. wymienić wkładkę ochronnika przeciwprzepięciowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapewnienie ciągłości przewodów ochronnych w instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń elektrycznych. W układzie TN-S, który charakteryzuje się oddzielnym przewodem neutralnym i ochronnym, ciągłość przewodów ochronnych (PE) jest niezbędna, aby zapewnić skuteczną ochronę przeciwporażeniową. W przypadku stwierdzenia przebicia do obudowy pralki, brak ciągłości przewodu ochronnego może prowadzić do niebezpiecznej sytuacji, w której obudowa urządzenia może mieć potencjał elektryczny, co naraża użytkowników na ryzyko porażenia prądem. Przykładem może być sytuacja, w której podczas użytkowania pralki dotknięcie obudowy może spowodować przepływ prądu przez ciało człowieka w kierunku uziemienia. Aby temu zapobiec, należy nie tylko zapewnić prawidłowe podłączenie przewodu ochronnego, ale również regularnie sprawdzać jego ciągłość oraz integralność. Zgodnie z normami PN-EN 60364 oraz zaleceniami polskiej normy dotyczącej instalacji elektrycznych, wykonywanie regularnych pomiarów i inspekcji instalacji jest niezbędnym wymogiem dla bezpieczeństwa użytkowników. Dbałość o ciągłość przewodów ochronnych jest elementem dobrych praktyk inżynieryjnych oraz kluczowym aspektem ochrony przed porażeniem elektrycznym.

Pytanie 39

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B10
B. B16
C. B25
D. B20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 40

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie rezystancji pętli zwarcia
B. Obniżenie napięcia roboczego
C. Zwiększenie obciążalności prądowej instalacji
D. Osłabienie wytrzymałości mechanicznej przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.