Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 21 lutego 2026 15:07
  • Data zakończenia: 21 lutego 2026 15:25

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych systemów operacyjnych jest systemem typu open-source?

A. Linux
B. macOS
C. Windows
D. iOS
Linux to system operacyjny typu open-source, co oznacza, że jego kod źródłowy jest dostępny publicznie i można go dowolnie modyfikować oraz rozpowszechniać. Jest to jedna z jego największych zalet, ponieważ umożliwia społeczności programistów na całym świecie wprowadzanie poprawek, optymalizacji i nowych funkcji, które mogą być szybko wdrażane. Dzięki temu Linux jest niezwykle elastyczny i może być dostosowany do wielu różnych zastosowań, od serwerów, przez desktopy, aż po urządzenia wbudowane. W praktyce oznacza to, że jeśli masz specyficzne potrzeby, możesz dostosować system do swoich wymagań, co jest nieosiągalne w systemach zamkniętych. Linux wspiera wiele architektur sprzętowych, co czyni go wyjątkowo uniwersalnym rozwiązaniem. W dodatku, wiele popularnych dystrybucji Linuxa, takich jak Ubuntu czy Fedora, jest dostępnych za darmo, co czyni go atrakcyjnym wyborem dla wielu użytkowników indywidualnych i organizacji.

Pytanie 2

Kluczowe znaczenie przy tworzeniu stacji roboczej dla wielu wirtualnych maszyn ma

A. wysokiej jakości karta sieciowa
B. liczba rdzeni procesora
C. system chłodzenia wodnego
D. mocna karta graficzna
Liczba rdzeni procesora ma kluczowe znaczenie w kontekście wirtualizacji, ponieważ umożliwia równoległe przetwarzanie wielu zadań. W przypadku stacji roboczej obsługującej wiele wirtualnych maszyn, każdy rdzeń procesora może obsługiwać osobny wątek, co znacząco poprawia wydajność systemu. Wysoka liczba rdzeni pozwala na lepsze rozdzielenie zasobów między wirtualne maszyny, co jest kluczowe w środowiskach produkcyjnych i testowych. Przykładowo, w zastosowaniach takich jak serwer testowy czy deweloperski, na którym uruchamiane są różne systemy operacyjne, posiadanie procesora z co najmniej 8 rdzeniami pozwala na płynne działanie każdej z maszyn wirtualnych. W praktyce, zastosowanie procesorów wielordzeniowych, takich jak Intel Xeon czy AMD Ryzen, stało się standardem w branży, co jest zgodne z zaleceniami najlepszych praktyk w obszarze wirtualizacji i infrastruktury IT.

Pytanie 3

Aby uniknąć uszkodzenia sprzętu podczas modernizacji komputera przenośnego polegającej na wymianie modułów pamięci RAM należy

A. przygotować pastę przewodzącą oraz nałożyć ją równomiernie na obudowę gniazd pamięci RAM.
B. rozłożyć i uziemić matę antystatyczną oraz założyć na nadgarstek opaskę antystatyczną.
C. przewietrzyć pomieszczenie oraz założyć okulary wyposażone w powłokę antyrefleksyjną.
D. podłączyć laptop do zasilacza awaryjnego, a następnie rozkręcić jego obudowę i przejść do montażu.
Wybrałeś najbezpieczniejsze i najbardziej profesjonalne podejście do wymiany pamięci RAM w laptopie. W praktyce branżowej, zwłaszcza na serwisach czy w laboratoriach, stosuje się maty antystatyczne i opaski ESD (Electrostatic Discharge), które chronią wrażliwe układy elektroniczne przed wyładowaniami elektrostatycznymi. Taka iskra potrafi być zupełnie niewidoczna dla oka, a mimo to uszkodzić lub osłabić działanie modułu RAM. Sam miałem kiedyś sytuację, że kolega wymieniał RAM bez zabezpieczeń – komputer raz działał poprawnie, raz nie, a potem wyszła mikrousterka. Uziemienie maty oraz założenie opaski na nadgarstek to standard, który spotyka się wszędzie tam, gdzie sprzęt IT traktuje się poważnie. To nie jest przesada, tylko praktyka potwierdzona przez lata i wpisana nawet do instrukcji producentów. Warto pamiętać, że matę należy podłączyć do uziemienia – np. gniazdka z bolcem albo specjalnego punktu w serwisie. Dzięki temu nawet jeśli masz na sobie ładunki elektrostatyczne, nie przeniosą się one na elektronikę. Z mojego doświadczenia wynika, że lepiej poświęcić minutę na przygotowanie stanowiska, niż potem żałować uszkodzonych podzespołów. No i zawsze lepiej mieć nawyk profesjonalisty, nawet w domowych warunkach – przecież sprzęt tani nie jest. Dodatkowo, takie działania uczą odpowiedzialności i szacunku do pracy z elektroniką. Takie właśnie zabezpieczenie stanowiska to podstawa – zgodnie z normami branżowymi ESD i ISO.

Pytanie 4

Gniazdo w sieciach komputerowych, które jednoznacznie identyfikuje dany proces na urządzeniu, stanowi kombinację

A. adresu IP i numeru portu
B. adresu IP i numeru sekwencyjnego danych
C. adresu fizycznego i adresu IP
D. adresu fizycznego i numeru portu
Widzę, że wybrałeś jedną z błędnych odpowiedzi, co pokazuje, że możesz mieć pewne wątpliwości co do tego, jak działają sieci komputerowe. Na przykład, połączenie 'adresu fizycznego i adresu IP' nie jest tym, co potrzebujemy, bo adres fizyczny (adres MAC) to coś, co działa na innym poziomie niż aplikacje. Te dwa pojęcia są mylone, bo to, co identyfikuje urządzenie, to nie to samo, co identyfikuje procesy. Z kolei odpowiedź 'adres fizyczny i numer portu' też jest nietrafiona, bo porty są częścią warstwy transportowej, a adres MAC pozostaje na pierwszym poziomie. I jeszcze 'adres IP i numer sekwencyjny danych' - to kompletnie inna bajka, bo numery sekwencyjne odnoszą się do przesyłania danych, a nie do identyfikowania aplikacji. Takie pomyłki mogą powodować sporo problemów, szczególnie przy konfiguracji sieci. Warto skupić się na tym, jak adres IP i numery portów współpracują ze sobą, bo to klucz do efektywnej komunikacji w złożonych systemach.

Pytanie 5

W systemie operacyjnym Fedora foldery domowe użytkowników znajdują się w folderze

A. /bin
B. /home
C. /users
D. /user
Katalog domowy użytkowników w systemie operacyjnym Fedora znajduje się w katalogu /home. Jest to standardowa praktyka w wielu dystrybucjach systemu Linux, co umożliwia łatwe zarządzanie danymi użytkowników. Katalogi domowe służą jako osobiste przestrzenie dla użytkowników, gdzie mogą przechowywać swoje pliki, dokumenty oraz konfiguracje aplikacji. Na przykład, po utworzeniu nowego użytkownika w systemie, jego katalog domowy będzie automatycznie tworzony jako /home/nazwa_użytkownika. Dobrą praktyką jest również nadawanie odpowiednich uprawnień do tych katalogów, co zapewnia prywatność i bezpieczeństwo danych użytkowników. Oprócz tego, katalog /home może być konfigurowany na osobnej partycji, co zwiększa bezpieczeństwo danych w przypadku, gdy system operacyjny wymaga reinstalacji. Poznanie struktury katalogów w systemie Linux jest kluczowe dla efektywnego zarządzania systemem i optymalizacji codziennych zadań administracyjnych.

Pytanie 6

Jak nazywa się protokół bazujący na architekturze klient-serwer oraz na modelu żądanie-odpowiedź, który jest używany do transferu plików?

A. FTP
B. SSH
C. SSL
D. ARP
Protokół FTP (File Transfer Protocol) jest standardowym rozwiązaniem stosowanym do przesyłania plików w architekturze klient-serwer. Umożliwia on transfer danych pomiędzy komputerami w sieci, co czyni go jednym z najpopularniejszych protokołów do udostępniania plików. FTP działa na zasadzie żądania-odpowiedzi, gdzie klient wysyła żądania do serwera, a serwer odpowiada na te żądania, wysyłając pliki lub informacje na temat dostępnych zasobów. Przykładem praktycznego zastosowania FTP jest użycie go przez webmasterów do przesyłania plików na serwery hostingowe. Umożliwia to łatwe zarządzanie plikami strony internetowej. Dodatkowo, w kontekście bezpieczeństwa, często używa się jego rozszerzonej wersji - FTPS lub SFTP, które oferują szyfrowanie danych w trakcie transferu, zgodne z najlepszymi praktykami branżowymi. Zastosowanie protokołu FTP jest kluczowe w wielu dziedzinach, w tym w zarządzaniu danymi w chmurze oraz w integracji systemów informatycznych."

Pytanie 7

Narzędzie systemów operacyjnych Windows używane do zmiany ustawień interfejsów sieciowych, na przykład przekształcenie dynamicznej konfiguracji karty sieciowej w konfigurację statyczną, to

A. netsh
B. nslookup
C. netstat
D. ipconfig
Wybierając odpowiedzi inne niż "netsh", można napotkać na typowe nieporozumienia dotyczące funkcji i zastosowania narzędzi sieciowych w systemach Windows. Na przykład, "nslookup" jest narzędziem do diagnostyki DNS i służy do sprawdzania informacji o nazwach domen, a nie do modyfikacji ustawień interfejsów sieciowych. Użytkownicy mogą mylnie sądzić, że narzędzie to ma zastosowanie w konfiguracji adresów IP, podczas gdy jego głównym celem jest badanie danych związanych z DNS, takich jak adresy IP odpowiadające danym nazwom. Z drugiej strony, "netstat" to aplikacja służąca do monitorowania połączeń sieciowych oraz statystyk protokołów, dostarczająca informacje o aktywnych połączeniach, portach oraz ich statusie. To narzędzie również nie ma funkcji konfiguracyjnych i może być mylnie interpretowane jako użyteczne w kontekście zmiany adresów IP. Natomiast "ipconfig" odgrywa kluczową rolę w wyświetlaniu aktualnych ustawień IP oraz konfiguracji interfejsów, ale jego możliwości ograniczają się do prezentacji danych, a nie ich modyfikacji. To prowadzi do nieporozumień, gdzie użytkownicy mogą sądzić, że "ipconfig" umożliwia zmianę konfiguracji, co jest błędnym założeniem. Kluczowe jest zrozumienie, że każde z tych narzędzi ma swoje specyficzne zastosowanie i nie zastępuje funkcji, które oferuje "netsh" w kontekście zarządzania interfejsami sieciowymi.

Pytanie 8

System S.M.A.R.T. jest używany do nadzorowania funkcjonowania i identyfikowania problemów

A. kart rozszerzeń
B. płyty głównej
C. napędów płyt CD/DVD
D. dysków twardych
Odpowiedź wskazująca na dyski twarde jako obiekt monitorowania za pomocą systemu S.M.A.R.T. jest prawidłowa, ponieważ S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) jest technologią zaprojektowaną do samodzielnego monitorowania stanu dysków twardych oraz napędów SSD. System ten analizuje różne parametry pracy dysków, takie jak temperatura, liczba cykli start-stop, czy błędy odczytu i zapisu, a także przewiduje potencjalne awarie. Dzięki S.M.A.R.T. użytkownicy i administratorzy mogą podejmować działania prewencyjne, takie jak tworzenie kopii zapasowych danych przed awarią, co jest zgodne z najlepszymi praktykami zarządzania danymi w informatyce. Przykładem zastosowania tej technologii jest regularne monitorowanie parametrów dysku w środowiskach serwerowych, gdzie jakiekolwiek przestoje mogą prowadzić do znacznych strat finansowych. Warto również zaznaczyć, że S.M.A.R.T. jest standardem uznawanym w branży, co czyni go kluczowym narzędziem w zakresie administracji systemami komputerowymi.

Pytanie 9

Użytkownik napotyka trudności z uruchomieniem systemu Windows. W celu rozwiązania tego problemu skorzystał z narzędzia System Image Recovery, które

A. odtwarza system na podstawie kopii zapasowej
B. przywraca system, wykorzystując punkty przywracania
C. naprawia pliki startowe, używając płyty Recovery
D. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
Narzędzie System Image Recovery jest kluczowym elementem w systemie Windows, które umożliwia przywrócenie systemu operacyjnego na podstawie wcześniej utworzonej kopii zapasowej. Użytkownicy mogą skorzystać z tej funkcji w sytuacjach kryzysowych, takich jak awarie sprzętowe czy uszkodzenia systemowe, które uniemożliwiają normalne uruchomienie systemu. Proces przywracania systemu za pomocą obrazu dysku polega na odtworzeniu stanu systemu w momencie, gdy wykonano kopię zapasową, co oznacza, że wszystkie zainstalowane programy, ustawienia oraz pliki osobiste są przywracane do tego punktu. Dobrą praktyką jest regularne tworzenie kopii zapasowych systemu, aby zminimalizować ryzyko utraty danych. Warto również pamiętać, że obrazy systemu mogą być przechowywane na różnych nośnikach, takich jak zewnętrzne dyski twarde czy chmury, co zwiększa bezpieczeństwo danych. Użytkując to narzędzie, można skutecznie przywrócić system do działania bez konieczności reinstalacji, co oszczędza czas i umożliwia szybsze odzyskanie dostępu do danych.

Pytanie 10

Który z podanych programów pozwoli na stworzenie technicznego rysunku ilustrującego plan instalacji logicznej sieci lokalnej w budynku?

A. Packet Tracer
B. CommView
C. WireShark
D. AutoCad
AutoCad to zaawansowane oprogramowanie CAD (Computer-Aided Design), które jest powszechnie wykorzystywane do tworzenia precyzyjnych rysunków technicznych. Jego wszechstronność sprawia, że doskonale sprawdza się w projektowaniu planów instalacji logicznych sieci lokalnych, co jest kluczowe w kontekście budowy nowoczesnych obiektów. Dzięki możliwościom rysowania w skali, precyzyjnym wymiarowaniem oraz zastosowaniu różnych warstw dla różnych elementów instalacji, użytkownicy mogą łatwo przedstawiać złożone układy, co jest zgodne z dobrymi praktykami inżynieryjnymi. W praktyce, projektanci mogą korzystać z gotowych szablonów i bloków, co przyspiesza proces projektowania, a także zapewnia zgodność z obowiązującymi normami budowlanymi, jak np. PN-EN 61000, które regulują aspekty związane z instalacjami elektrycznymi. Przykładem zastosowania AutoCad jest tworzenie szczegółowych planów, które następnie mogą być użyte do instalacji sprzętu sieciowego, zapewniając czytelność i zrozumiałość dla techników i wykonawców. Dlatego odpowiedź '1. AutoCad' jest poprawna.

Pytanie 11

Narzędzie pokazane na ilustracji jest używane do weryfikacji

Ilustracja do pytania
A. karty sieciowej
B. zasilacza
C. płyty głównej
D. okablowania LAN
Pokazane na rysunku urządzenie to tester okablowania LAN, które jest kluczowym narzędziem w pracy techników sieciowych. Tester ten, często wyposażony w dwie jednostki – główną i zdalną, pozwala na sprawdzenie integralności przewodów sieciowych takich jak kable Ethernet. Działa na zasadzie wysyłania sygnału elektrycznego przez poszczególne przewody w kablu i weryfikacji ich poprawnego ułożenia oraz ciągłości. Dzięki temu można zdiagnozować potencjalne przerwy lub błędne połączenia w przewodach. Stosowanie testerów okablowania LAN jest zgodne ze standardami branżowymi, takimi jak TIA/EIA-568, które określają zasady projektowania i instalacji sieci strukturalnych. W środowisku biznesowym regularne testowanie okablowania sieciowego zapewnia stabilne i wydajne działanie sieci komputerowych, co jest niezbędne dla utrzymania ciągłości operacyjnej. Dodatkowo, tester można wykorzystać do sprawdzania zgodności z określonymi standardami, co jest kluczowe przy zakładaniu nowych instalacji lub modernizacji istniejącej infrastruktury. Regularna kontrola i certyfikacja okablowania przy użyciu takich urządzeń minimalizuje ryzyko awarii i problemów z przepustowością sieci.

Pytanie 12

Aby usunąć konto użytkownika student w systemie operacyjnym Ubuntu, można skorzystać z komendy

A. del user student
B. user net student /del
C. userdel student
D. net user student /del
Polecenie 'userdel student' jest prawidłowe i służy do usuwania konta użytkownika w systemie operacyjnym Ubuntu oraz w innych dystrybucjach systemu Linux. Jest to standardowe polecenie w narzędziu zarządzania użytkownikami i pozwala na usunięcie zarówno samego konta, jak i powiązanych z nim plików, jeżeli użyty jest odpowiedni parametr. Na przykład, dodając opcję '-r', można również usunąć katalog domowy użytkownika, co jest szczególnie przydatne w sytuacjach, gdy chcemy całkowicie wyczyścić system z danych danego użytkownika. Warto zaznaczyć, że do wykonania tego polecenia niezbędne są uprawnienia administratora, co zazwyczaj oznacza konieczność użycia polecenia 'sudo'. W kontekście najlepszych praktyk, przed usunięciem konta użytkownika, warto upewnić się, że są wykonane kopie zapasowe ważnych danych, aby uniknąć ich nieodwracalnej utraty.

Pytanie 13

Trudności w systemie operacyjnym Windows wynikające z konfliktów dotyczących zasobów sprzętowych, takich jak przydział pamięci, przerwań IRQ oraz kanałów DMA, najłatwiej zidentyfikować za pomocą narzędzia

A. chkdsk
B. przystawka Sprawdź dysk
C. edytor rejestru
D. menedżer urządzeń
Inne narzędzia, takie jak edytor rejestru, przystawka Sprawdź dysk czy chkdsk, mają swoje unikalne zastosowania, ale nie są dedykowane do diagnozowania konfliktów zasobów sprzętowych. Edytor rejestru to zaawansowane narzędzie, które umożliwia użytkownikom modyfikację ustawień rejestru systemu Windows. Chociaż edytor rejestru może być używany do naprawy problemów związanych z systemem, to jednak nie dostarcza on informacji o bieżących konfliktach sprzętowych, które są kluczowe dla poprawnego funkcjonowania urządzeń. Przystawka Sprawdź dysk i chkdsk to narzędzia służące do analizy i naprawy błędów dysku twardego. Chociaż mogą one pomóc w utrzymaniu zdrowia systemu plików i danych, nie są one w stanie zidentyfikować problemów z przydziałem pamięci czy przerwań IRQ. Użytkownicy, którzy polegają na tych narzędziach w kontekście wykrywania konfliktów sprzętowych, mogą wpaść w pułapkę błędnego myślenia, sądząc, że naprawa systemu plików rozwiąże problemy z urządzeniami, co rzadko jest prawdą. Każde z tych narzędzi ma swoje specyficzne zadania, jednak do rozwiązywania konfliktów zasobów sprzętowych najlepszym wyborem jest menedżer urządzeń, który dostarcza najbardziej precyzyjnych informacji i rozwiązań w tej dziedzinie.

Pytanie 14

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji elektrycznej oświetlenia powinna wynosić

A. 50 cm
B. 40 cm
C. 30 cm
D. 20 cm
Odpowiedzi takie jak 20 cm, 40 cm, czy 50 cm nie są zgodne z wymaganiami dotyczącymi instalacji kabli sieciowych w pobliżu instalacji elektrycznych. W przypadku podania zbyt małej odległości, jak 20 cm, ryzyko wystąpienia zakłóceń elektromagnetycznych znacząco wzrasta. Zakłócenia te mogą wpływać negatywnie na jakość przesyłanego sygnału, co prowadzi do problemów z komunikacją w sieci. Z kolei wybór większej odległości, jak 40 cm czy 50 cm, może być bezpieczny, ale nie jest zgodny z minimalnymi wymaganiami, co może prowadzić do niepotrzebnych komplikacji związanych z instalacją, jak zwiększona ilość używanego kabla czy trudności w umiejscowieniu gniazdek. W praktyce, wiele osób może sądzić, że większa odległość z automatu zapewnia lepszą jakość, jednak nie jest to zasada bezwzględna. Kluczowym błędem jest również myślenie, że różnice w długości kabli mają mniejsze znaczenie, co jest nieprawdziwe, bowiem każdy dodatkowy metr kabla zwiększa opór i potencjalne straty sygnału. Z tego powodu, kluczowe jest przestrzeganie określonych norm i standardów, aby zapewnić prawidłowe funkcjonowanie systemu i minimalizować ryzyko błędów w instalacji.

Pytanie 15

Który z wymienionych adresów należy do klasy C?

A. 196.74.6.29
B. 176.18.5.26
C. 125.9.3.234
D. 154.0.12.50
Podane odpowiedzi 125.9.3.234, 154.0.12.50 i 176.18.5.26 należą do innych klas adresów IP, co wynika z analizy ich pierwszych oktetów. Adres 125.9.3.234 należy do klasy A, ponieważ pierwszy oktet wynosi 125, co mieści się w przedziale od 1 do 126. Klasa A jest przeznaczona dla dużych organizacji, które potrzebują wielu adresów IP, a jej struktura pozwala na stworzenie około 16 milionów adresów w każdej sieci. Adres 154.0.12.50 należy do klasy B, której pierwszy oktet mieści się w przedziale od 128 do 191. Klasa B jest używana w średnich organizacjach i oferuje do 65 tys. adresów w każdej sieci. Wreszcie adres 176.18.5.26 również należy do klasy B, co ponownie wskazuje na większe potrzeby adresacyjne. Warto zauważyć, że często w praktyce zdarza się pomylenie klas, zwłaszcza w kontekście planowania adresacji sieci, co może prowadzić do nieefektywności w zarządzaniu adresami IP. Zrozumienie, jakie adresy IP przypisane są do poszczególnych klas, jest kluczowe dla prawidłowego projektowania i wdrażania infrastruktury sieciowej. Błędy w klasyfikacji mogą skutkować problemami z komunikacją w sieci i trudnościami w jej rozbudowie.

Pytanie 16

Czym jest dziedziczenie uprawnień?

A. przeniesieniem uprawnień z obiektu podrzędnego do obiektu nadrzędnego
B. przyznawaniem uprawnień użytkownikowi przez administratora
C. przeniesieniem uprawnień z obiektu nadrzędnego do obiektu podrzędnego
D. przekazywaniem uprawnień od jednego użytkownika do innego
Dziedziczenie uprawnień to kluczowy mechanizm w zarządzaniu dostępem w systemach informatycznych, który polega na przenoszeniu uprawnień z obiektu nadrzędnego na obiekt podrzędny. Dzięki temu, gdy administrator przydziela uprawnienia do folderu głównego (nadrzędnego), wszystkie podfoldery (obiekty podrzędne) automatycznie dziedziczą te same uprawnienia. Działa to na zasadzie propagacji uprawnień, co znacznie upraszcza zarządzanie dostępem i minimalizuje ryzyko błędów wynikających z ręcznego przydzielania uprawnień do każdego obiektu z osobna. Na przykład, w systemach opartych na modelu RBAC (Role-Based Access Control), gdy rola użytkownika ma przypisane określone uprawnienia do folderu, wszystkie pliki oraz podfoldery w tym folderze będą miały te same uprawnienia, co ułatwia zarządzanie i zapewnia spójność polityki bezpieczeństwa. Dobre praktyki zalecają stosowanie dziedziczenia uprawnień w organizacjach, aby zredukować złożoność administracyjną oraz zwiększyć efektywność zarządzania dostępem.

Pytanie 17

Element oznaczony numerem 1 w schemacie blokowym procesora pełni funkcję

Ilustracja do pytania
A. zapisywania rezultatu operacji
B. przeprowadzania operacji na blokach informacji
C. przechowywania dodatkowych danych dotyczących realizowanej operacji
D. wykonywania operacji na liczbach zmiennoprzecinkowych
Element oznaczony numerem 1 na schemacie blokowym procesora to FPU, czyli jednostka zmiennoprzecinkowa. FPU jest specjalizowaną jednostką w procesorze odpowiedzialną za wykonywanie operacji na liczbach zmiennoprzecinkowych, co jest kluczowe w wielu zastosowaniach inżynierskich, naukowych i multimedialnych. Procesory z wbudowanym FPU mogą wykonywać obliczenia zmiennoprzecinkowe znacznie szybciej niż te, które polegają wyłącznie na jednostce arytmetyczno-logicznej (ALU). Liczby zmiennoprzecinkowe są używane, gdy wymagane jest przedstawienie szerokiego zakresu wartości z różną dokładnością, co jest typowe w grafice komputerowej, symulacjach fizycznych oraz przetwarzaniu sygnałów. Dzięki FPU aplikacje mogą korzystać z algorytmów obliczeniowych, takich jak transformacje Fouriera czy operacje macierzowe z większą efektywnością. Standard IEEE 754 określa jak reprezentować i wykonywać operacje na liczbach zmiennoprzecinkowych, zapewniając spójność wyników na różnych platformach. Dzięki tej zgodności programiści mogą mieć pewność, że ich algorytmy będą działały w przewidywalny sposób na różnych systemach, co ma kluczowe znaczenie w projektowaniu oprogramowania zwiększającego interoperacyjność i wydajność.

Pytanie 18

Strzałka na diagramie ilustrującym schemat systemu sieciowego według normy PN-EN 50173 wskazuje na rodzaj okablowania

Ilustracja do pytania
A. kampusowe
B. poziome
C. szkieletowe zewnętrzne
D. pionowe
Okablowanie szkieletowe zewnętrzne odnosi się do infrastruktury zapewniającej połączenia między budynkami w ramach kampusu. Jest to okablowanie, które musi być odporne na warunki atmosferyczne i spełniać wymogi dotyczące bezpieczeństwa oraz ochrony środowiska. Wybór tego terminu jako odpowiedzi na pytanie dotyczące schematu wskazującego na połączenia wewnątrz budynku jest błędnym zrozumieniem kontekstu. Okablowanie kampusowe natomiast dotyczy rozwiązań łączących różne budynki w kompleksie i obejmuje zarówno okablowanie pionowe, jak i poziome, ale w szerszym zakresie geograficznym. Poziome okablowanie odnosi się do połączeń w obrębie tego samego piętra budynku, łącząc punkty dystrybucyjne z gniazdami telekomunikacyjnymi. Jest to kluczowe w zapewnieniu komunikacji w ramach danego piętra, jednak nie dotyczy połączeń między piętrami, co jest główną funkcją okablowania pionowego. Częstym błędem jest mylenie okablowania pionowego z poziomym, ponieważ oba dotyczą sieci strukturalnych, ale ich zastosowanie i funkcje są definitywnie różne. Właściwe rozróżnienie tych pojęć jest kluczowe dla poprawnego projektowania i zarządzania infrastrukturą sieciową w budynkach zgodnie z obowiązującymi standardami.

Pytanie 19

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. dodaniem drugiego dysku twardego.
B. wybraniem pliku z obrazem dysku.
C. konfigurowaniem adresu karty sieciowej.
D. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 20

Procesem nieodwracalnym, całkowicie uniemożliwiającym odzyskanie danych z dysku twardego, jest

A. zerowanie dysku.
B. zalanie dysku.
C. zatarcie łożyska dysku.
D. przypadkowe usunięcie plików.
Zerowanie dysku, znane też jako nadpisywanie zerami albo low-level format, to dziś jedna z najskuteczniejszych i najbardziej rekomendowanych metod trwałego usuwania danych z nośników magnetycznych (czyli typowych talerzowych dysków twardych). Polega na tym, że specjalne narzędzia – np. programy typu DBAN, Blancco czy nawet komendy systemowe jak 'dd' w Linuksie – nadpisują całą powierzchnię dysku ciągami zer (czasem też innymi wzorcami). Po wykonaniu takiej operacji odzyskanie jakichkolwiek plików staje się praktycznie niemożliwe, nawet z użyciem zaawansowanej elektroniki i laboratoriów informatyki śledczej. W standardach branżowych, np. amerykańskiego Departamentu Obrony (DoD 5220.22-M), takie metody są wskazane jako zgodne z wymogami bezpiecznego usuwania danych. W praktyce firmowej i w administracji publicznej taki sposób niszczenia informacji jest stosowany przed utylizacją czy sprzedażą sprzętu. Moim zdaniem to w ogóle podstawowa rzecz, którą powinien znać każdy, kto pracuje z danymi wrażliwymi – bo przypadkowe kasowanie czy nawet fizyczna awaria mechaniki wcale nie gwarantuje, że ktoś nie dostanie się do naszych danych. Swoją drogą, na nowoczesnych dyskach SSD rekomenduje się raczej używanie dedykowanej funkcji Secure Erase, bo zwykłe zerowanie nie zawsze działa w 100%. Ale dla klasycznych HDD – nie ma lepszej metody niż gruntowne zerowanie.

Pytanie 21

Po stwierdzeniu przypadkowego usunięcia ważnych danych na dysku twardym, aby odzyskać usunięte pliki, najlepiej

A. podłączyć dysk do zestawu komputerowego z zainstalowanym programem typu recovery.
B. odinstalować oraz ponownie zainstalować sterowniki dysku twardego, zalecane przez producenta.
C. zainstalować na tej samej partycji co pliki program do odzyskiwania usuniętych danych np. Recuva.
D. przeskanować system programem antywirusowym, a następnie użyć narzędzia chkdsk.
W przypadkach przypadkowego usunięcia ważnych danych niezwykle łatwo popełnić błąd, który bezpowrotnie pogrzebie szansę na ich odzyskanie. Jednym z najczęstszych błędów jest próba instalowania nowych programów do odzyskiwania bezpośrednio na tej samej partycji, z której dane zostały skasowane. To niestety bardzo ryzykowne – każda instalacja może nadpisać fragmenty usuniętych plików, nawet jeśli wydaje się, że miejsca na dysku jest sporo. System operacyjny nie ostrzega, gdzie dokładnie wędrują nowe pliki, a nadpisane sektory są praktycznie niemożliwe do przywrócenia nawet dla drogich narzędzi laboratoryjnych. Kolejnym nietrafionym pomysłem jest odinstalowywanie czy reinstalowanie sterowników dysku twardego – takie działania nie mają żadnego realnego wpływu na zawartość danych na dysku. To raczej mity, które często powtarzają się na forach, ale w praktyce niczego nie odzyskują, a mogą tylko przedłużyć czas bez konkretnego działania. Czasem pojawia się przekonanie, że skan antywirusowy albo narzędzie typu chkdsk mogą pomóc w odzyskiwaniu – tak naprawdę żadne z nich nie zostały zaprojektowane do takich celów. Chkdsk naprawia strukturę logiczną systemu plików, ale może nawet pogorszyć sprawę, bo potrafi trwale usunąć informacje o plikach uznanych za uszkodzone. Antywirus natomiast służy do wykrywania złośliwego oprogramowania, nie do odzyskiwania przypadkowo utraconych danych. W takich sytuacjach najważniejsze jest natychmiastowe zaprzestanie pracy na danym dysku i skorzystanie ze sprawdzonych metod – najlepiej podłączyć dysk do innego systemu i działać narzędziami odzysku bez ryzyka nadpisu. Często to właśnie zwykłe, niewinne działania na partycji z utraconymi danymi prowadzą do ich całkowitej nieodwracalności. Warto o tym pamiętać i nie dać się zwieść pozornie prostym rozwiązaniom, które w rzeczywistości nie mają szans zadziałać.

Pytanie 22

Wskaż błędny sposób podziału dysku MBR na partycje?

A. 1 partycja podstawowa oraz 2 rozszerzone
B. 1 partycja podstawowa oraz 1 rozszerzona
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 3 partycje podstawowe oraz 1 rozszerzona
Poprawna odpowiedź wskazuje, że na dysku MBR (Master Boot Record) można utworzyć maksymalnie cztery partycje, z czego tylko trzy mogą być partycjami podstawowymi, natomiast jedna może być rozszerzona. W przypadku wyboru opcji z jedną partycją podstawową i dwiema rozszerzonymi jest to nieprawidłowy podział, ponieważ MBR pozwala na utworzenie tylko jednej partycji rozszerzonej, która z kolei może zawierać wiele partycji logicznych. Praktyczne zastosowanie tego podziału jest istotne w kontekście organizacji danych na dysku, gdzie partycje podstawowe mogą być używane do instalacji systemów operacyjnych, podczas gdy partycje rozszerzone są wykorzystywane do tworzenia dodatkowych przestrzeni dla danych, bez ograniczeń liczby logicznych partycji. Na przykład, w typowych scenariuszach wykorzystania serwerów, administratorzy mogą tworzyć jedną partycję podstawową na system operacyjny oraz partycję rozszerzoną na dane, co jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi i bezpieczeństwem danych.

Pytanie 23

Sieci lokalne o architekturze klient-serwer są definiowane przez to, że

A. żaden komputer nie ma dominującej roli wobec innych
B. wszystkie komputery w sieci są sobie równe
C. istnieje jeden dedykowany komputer, który udostępnia swoje zasoby w sieci
D. wszystkie komputery klienckie mają możliwość korzystania z zasobów innych komputerów
Sieci lokalne typu klient-serwer opierają się na architekturze, w której jeden komputer, zwany serwerem, pełni rolę centralnego punktu udostępniania zasobów, takich jak pliki, aplikacje czy usługi. W tej konfiguracji inne komputery, nazywane klientami, korzystają z zasobów serwera. To podejście jest zgodne z powszechnie stosowanymi standardami w branży IT, takimi jak model OSI oraz protokoły TCP/IP, które definiują sposób komunikacji w sieciach komputerowych. Dzięki tej architekturze, serwer może efektywnie zarządzać dostępem do zasobów oraz zapewniać bezpieczeństwo, kontrolując, którzy klienci mają dostęp do określonych usług. Praktycznym przykładem może być sieć w biurze, gdzie serwer plików umożliwia pracownikom przetrzymywanie i udostępnianie dokumentów. W sytuacjach wymagających dużej liczby użytkowników lub skomplikowanych aplikacji, ta struktura pozwala na lepszą organizację i zwiększoną wydajność, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 24

Jakie urządzenie służy do połączenia 6 komputerów w ramach sieci lokalnej?

A. transceiver.
B. serwer.
C. przełącznik.
D. most.
Przełącznik, znany również jako switch, to urządzenie sieciowe, które odgrywa kluczową rolę w tworzeniu lokalnych sieci komputerowych (LAN). Jego główną funkcją jest przekazywanie danych między różnymi urządzeniami podłączonymi do tej samej sieci. Przełączniki działają na warstwie drugiej modelu OSI (warstwa łącza danych), co oznacza, że używają adresów MAC do przesyłania ramek danych. Dzięki temu mogą one efektywnie kierować ruch sieciowy, minimalizując kolizje i optymalizując przepustowość. W praktyce, w sieci lokalnej można podłączyć wiele urządzeń, takich jak komputery, drukarki czy serwery. Zastosowanie przełączników umożliwia stworzenie bardziej zorganizowanej i wydajnej infrastruktury, co jest niezbędne w biurach czy w środowiskach akademickich. Warto dodać, że nowoczesne przełączniki oferują dodatkowe funkcje, takie jak VLAN (Virtual Local Area Network), co pozwala na segmentację ruchu sieciowego oraz zwiększenie bezpieczeństwa i wydajności. W kontekście standardów, przełączniki Ethernet są powszechnie używane i zgodne z normami IEEE 802.3, co zapewnia ich szeroką interoperacyjność w różnych środowiskach sieciowych.

Pytanie 25

Najefektywniejszym zabezpieczeniem danych firmy, której siedziby znajdują się w różnych, odległych od siebie lokalizacjach, jest zastosowanie

A. backupu w chmurze firmowej.
B. kopii przyrostowych.
C. kompresji strategicznych danych.
D. kopii analogowych.
Backup w chmurze firmowej to aktualnie najbardziej praktyczne i nowoczesne rozwiązanie dla firm, które mają biura rozrzucone po różnych miejscach, nawet na różnych kontynentach. Chodzi tu głównie o to, że dane są przechowywane w bezpiecznych, profesjonalnych centrach danych, najczęściej w kilku lokalizacjach jednocześnie, więc nawet jeśli w jednym miejscu dojdzie do awarii lub katastrofy, to kopie danych są dalej dostępne. Z mojego doświadczenia wynika, że chmura daje też elastyczność – można łatwo ustalić poziomy dostępu, szyfrować pliki czy ustawić automatyczne harmonogramy backupów. To jest zgodne z zasadą 3-2-1, którą poleca większość specjalistów od bezpieczeństwa IT: trzy kopie danych, na dwóch różnych nośnikach, jedna poza siedzibą firmy. Dodatkowo zdalny dostęp znacznie przyspiesza odzyskiwanie informacji po awarii i obniża koszty związane z tradycyjną infrastrukturą IT. Moim zdaniem to też mniej stresu dla administratora – nie trzeba ręcznie przenosić dysków czy taśm, wszystko jest zautomatyzowane i dobrze monitorowane. Warto dodać, że dobre chmurowe rozwiązania oferują zaawansowane mechanizmy szyfrowania, a także zgodność z normami RODO czy ISO 27001 i to jest dziś, zwłaszcza w większych organizacjach, wręcz wymagane.

Pytanie 26

Wskaż podzespół niekompatybilny z płytą główną o przedstawionych w tabeli parametrach.

PodzespółParametry
Płyta główna GIGABYTE4x DDR4, 4x PCI-E 16x, RAID, HDMI, D-Port, D-SUB, 2x USB 3.1, 8x USB 2.0, S-AM3+
A. Monitor: Dell, 34”, 1x DisplayPort, 1x miniDP, 2x USB 3.0 Upstream, 4x USB 3.0 Downstream
B. Pamięć RAM: Corsair Vengeance LPX, DDR4, 2x16GB, 3000MHz, CL15 Black
C. Karta graficzna: Gigabyte GeForce GTX 1050 OC, 2GB, GDDR5, 128 bit, PCI-Express 3.0 x16
D. Procesor: INTEL CORE i3-4350, 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
Procesor INTEL CORE i3-4350 nie jest kompatybilny z płytą główną GIGABYTE o oznaczeniu S-AM3+, ponieważ posiada złącze socket LGA 1150. W kontekście budowy komputera, wybór odpowiedniego procesora jest kluczowy, gdyż każda płyta główna obsługuje określone modele procesorów, które muszą pasować do jej gniazda. Zastosowanie procesora niezgodnego ze standardem płyty głównej skutkuje brakiem możliwości jego zainstalowania i funkcjonowania. W branży IT przyjęto, że dobrą praktyką jest zawsze sprawdzanie tabeli zgodności komponentów przed zakupem. Na przykład, użycie procesora AMD na płycie głównej zaprojektowanej dla procesorów Intel jest niemożliwe bez względu na inne parametry. Dlatego zawsze należy zwracać uwagę na specyfikacje techniczne i upewnić się, że wszystkie komponenty są ze sobą kompatybilne, co zapewnia prawidłowe działanie systemu oraz optymalną wydajność.

Pytanie 27

Aby serwerowa płyta główna mogła działać poprawnie, potrzebuje pamięci z rejestrem. Który z poniższych modułów pamięci będzie z nią zgodny?

A. Kingston Hynix B 8GB 1600 MHz DDR3L CL11 ECC SODIMM 1,35V
B. Kingston 4GB 1333 MHz DDR3 Non-ECC CL9 DIMM
C. Kingston 4GB 1600 MHz DDR3 ECC CL11 DIMM 1,5V
D. Kingston 8GB 1333 MHz DDR3 ECC Reg CL9 DIMM 2Rx8
Odpowiedź Kingston 8GB 1333 MHz DDR3 ECC Reg CL9 DIMM 2Rx8 jest poprawna, ponieważ moduł ten jest zgodny z wymaganiami serwerowych płyt głównych, które często używają pamięci z rejestrem (Registered). Pamięć typu ECC (Error-Correcting Code) jest niezbędna w środowiskach serwerowych, gdzie niezawodność i stabilność danych są kluczowe. Moduł ten zapewnia korekcję błędów, co zwiększa bezpieczeństwo danych podczas operacji obliczeniowych. Dodatkowo, pamięć Registered umożliwia większą skalowalność w porównaniu do pamięci Unbuffered, co jest istotne w konfiguracjach serwerowych, gdzie płyta główna może obsłużyć wiele modułów pamięci. Użycie takich modułów w serwerach minimalizuje ryzyko awarii oraz zapewnia wyższą wydajność w zastosowaniach wymagających intensywnej analizy danych, takich jak bazy danych czy obliczenia w chmurze. Warto również zaznaczyć, że standard DDR3, przy częstotliwości 1333 MHz, oferuje wystarczającą wydajność dla wielu zastosowań serwerowych. W związku z tym, wybór tego modułu pamięci jest zgodny z najlepszymi praktykami w branży serwerowej.

Pytanie 28

Aby osiągnąć optymalną prędkość przesyłu danych, gdy domowy ruter działa w paśmie 5 GHz, do laptopa należy zainstalować kartę sieciową bezprzewodową obsługującą standard

A. 802.11g
B. 802.11a
C. 802.11b
D. 802.11n
Odpowiedź 802.11n jest poprawna, ponieważ ten standard bezprzewodowej komunikacji sieciowej działa zarówno w paśmie 2,4 GHz, jak i 5 GHz, oferując wyższą prędkość przesyłu danych w porównaniu do wcześniejszych standardów. Standard 802.11n może osiągnąć prędkości teoretyczne do 600 Mbps przy zastosowaniu technologii MIMO (Multiple Input Multiple Output), co pozwala na jednoczesne przesyłanie danych przez kilka anten. Dzięki temu, w przypadku korzystania z domowego rutera pracującego w paśmie 5 GHz, użytkownicy mogą cieszyć się lepszą wydajnością i mniejszymi zakłóceniami sygnału, co jest szczególnie ważne w gęsto zaludnionych obszarach. Przykładem praktycznego zastosowania 802.11n jest korzystanie z aplikacji wymagających dużej przepustowości, takich jak strumieniowanie wideo w wysokiej rozdzielczości czy gry online, gdzie stabilne połączenie i szybki transfer danych są kluczowe. Dodatkowo, 802.11n jest wstecznie kompatybilny z wcześniejszymi standardami, co ułatwia integrację z istniejącymi sieciami.

Pytanie 29

Menedżer urządzeń w systemie Windows pozwala na wykrycie

A. błędów systemu operacyjnego podczas jego pracy.
B. nieprawidłowej konfiguracji oprogramowania użytkowego.
C. błędnej konfiguracji rozruchu systemu oraz wykonywanych usług.
D. niewłaściwej pracy urządzeń podłączonych do komputera.
Menedżer urządzeń w systemie Windows to narzędzie, które pozwala administratorowi lub użytkownikowi na dokładne monitorowanie oraz diagnozowanie sprzętu podłączonego do komputera. Głównym zadaniem tego narzędzia jest wykrywanie problemów ze sterownikami, brakujących urządzeń czy konfliktów sprzętowych. Przykładowo, jeżeli karta dźwiękowa nie działa prawidłowo, w Menedżerze urządzeń pojawi się żółty wykrzyknik informujący o kłopotach, co jest bardzo czytelne nawet dla początkujących. Bardzo często spotyka się to w pracowniach informatycznych, gdzie sprzęt bywa przepinany – praktyka pokazuje, że to jedno z podstawowych miejsc do sprawdzenia stanu technicznego komputera. Moim zdaniem, umiejętność korzystania z Menedżera urządzeń jest nieodzowna w codziennej pracy serwisanta czy nawet zaawansowanego użytkownika, bo pozwala szybko namierzyć problem i podjąć działania naprawcze. Standardy branżowe wręcz wymagają, aby podczas diagnostyki sprzętu zawsze sprawdzić właśnie ten panel. Z własnego doświadczenia wiem, że ignorowanie sygnałów z Menedżera urządzeń prowadzi do niepotrzebnego marnowania czasu na szukanie źródła problemu w innych miejscach. Warto zapamiętać, że Menedżer urządzeń dotyczy stricte sprzętu i sterowników, nie zaś ogólnego działania systemu czy aplikacji.

Pytanie 30

Aby uzyskać optymalną wydajność, karta sieciowa w komputerze stosuje transmisję szeregową.

A. asynchroniczną Simplex
B. asynchroniczną Full duplex
C. synchroniczną Simplex
D. synchroniczną Half duplex
Odpowiedzi asynchroniczna Simplex, synchroniczna Simplex oraz synchroniczna Half duplex są nieprawidłowe z kilku powodów. Simplex to tryb transmisji jednokierunkowej, co oznacza, że dane mogą być przesyłane tylko w jednym kierunku. W kontekście nowoczesnych aplikacji sieciowych, gdzie obie strony muszą mieć możliwość wymiany informacji w czasie rzeczywistym, Simplex jest niewystarczający. W przypadku trybu Half duplex, chociaż pozwala na przesyłanie danych w obie strony, może to prowadzić do kolizji, co obniża efektywność komunikacji. W takiej konfiguracji, gdy jedna strona wysyła dane, druga musi czekać na zakończenie transmisji, co może prowadzić do opóźnień, szczególnie w sieciach o dużym natężeniu ruchu. Synchronizacja w transmisji, która jest sugerowana w odpowiedziach synchronicznych, wymaga stałego zegara, co nie jest zawsze praktyczne w dynamicznych środowiskach sieciowych, gdzie urządzenia mogą pracować z różnymi prędkościami. W praktyce, wykorzystanie asynchronicznego Full duplex stało się standardem w sieciach LAN i WAN, co podkreśla jego zalety w kontekście zwiększonej wydajności, elastyczności oraz minimalizacji opóźnień w komunikacji. Zrozumienie różnic między tymi trybami jest kluczowe dla projektowania efektywnych i nowoczesnych rozwiązań sieciowych.

Pytanie 31

W komputerach stacjonarnych zamontowane są karty sieciowe Ethernet 10/100/1000 z gniazdem RJ45. Jakie medium transmisyjne powinno się zastosować w celu zbudowania sieci komputerowej zapewniającej najwyższą przepustowość?

A. Kabel UTP kategorii 5e
B. Światłowód jednomodowy
C. Światłowód wielomodowy
D. Kabel UTP kategorii 5
Wybór kabla UTP kategorii 5 nie jest optymalnym rozwiązaniem dla budowy sieci komputerowej obsługującej karty sieciowe Ethernet 10/100/1000. Chociaż kabel ten może obsługiwać prędkości do 100 Mbps, jego ograniczenia w zakresie jakości sygnału i podatności na zakłócenia sprawiają, że nie jest wystarczająco wydajny dla nowoczesnych aplikacji, które wymagają prędkości do 1 Gbps. Użytkownicy często zakładają, że kable kategorii 5 będą wystarczające do codziennych zadań, jednak w praktyce mogą napotkać problemy z jakością połączenia, co prowadzi do spadków prędkości i utraty danych. Z kolei wybór światłowodu wielomodowego jest odpowiedni do transmisji na większe odległości i w środowiskach przemysłowych, ale jest zbyteczny w biurach, gdzie kabel UTP 5e wystarczy. Światłowód jednomodowy, choć oferuje najwyższe prędkości i zasięg, jest również kosztowny i nieopłacalny w małych sieciach lokalnych. Powszechnym błędem jest zakładanie, że droższe rozwiązania zawsze są najlepsze; w rzeczywistości, dla stacji roboczych, kabel UTP kategorii 5e zapewnia najbardziej zrównoważoną opcję pod względem kosztów i wydajności. Zrozumienie wymagań sieci oraz standardów branżowych, takich jak TIA/EIA-568, jest kluczowe dla podejmowania właściwych decyzji dotyczących infrastruktury sieciowej.

Pytanie 32

Na podstawie tabeli wskaż, który model przełącznika Cisco Catalyst, zawiera 48 portów i możliwość doposażenia o wkładki światłowodowe.

Configurations of Cisco Catalyst 2960 Series Switches with LAN Base Software
Cisco Catalyst 2960 Switch ModelDescriptionUplinks
1 Gigabit Uplinks with 10/100 Ethernet Connectivity
Cisco Catalyst 2960-48PST-L48 Ethernet 10/100 PoE ports2 One Gigabit Ethernet SFP ports and 2 fixed Ethernet 10/100/1000 ports
Cisco Catalyst 2960-24PC-L24 Ethernet 10/100 PoE ports2 dual-purpose ports (10/100/1000 or SFP)
Cisco Catalyst 2960-24LT-L24 Ethernet 10/100 ports2 Ethernet 10/100/1000 ports
Cisco Catalyst 2960-24TC-L24 Ethernet 10/100 ports2 dual-purpose ports
Cisco Catalyst 2960-48TC-L48 Ethernet 10/100 ports2 dual-purpose ports (10/100/1000 or SFP)
Cisco Catalyst 2960-24TT-L24 Ethernet 10/100 ports2 Ethernet 10/100/1000 ports
Cisco Catalyst 2960-48TT-L48 Ethernet 10/100 ports2 Ethernet 10/100/1000 ports
A. 2960-48TC-L
B. 2960-48TT-L
C. 2960-24LT-L
D. 2960-24PC-L
Poprawny wybór to model Cisco Catalyst 2960-48TC-L, bo jako jedyny w tabeli spełnia oba warunki z pytania: ma 48 portów 10/100 Ethernet oraz posiada tzw. porty dual-purpose (10/100/1000 lub SFP), czyli możliwość podłączenia wkładek światłowodowych SFP. W tabeli dokładnie widać: „48 Ethernet 10/100 ports” oraz „2 dual-purpose ports (10/100/1000 or SFP)”. Te porty dual-purpose to w praktyce gniazdo RJ-45 i gniazdo SFP współdzielące ten sam interfejs logiczny – używasz albo skrętki miedzianej, albo wkładki światłowodowej. W realnych sieciach wygląda to tak, że 48 portów służy do podłączania komputerów, drukarek, access pointów itp., a uplinki SFP wykorzystuje się do spięcia tego przełącznika z innym switchem szkieletowym lub dystrybucyjnym, często na większe odległości, np. między budynkami. To jest zgodne z dobrą praktyką projektowania sieci: warstwa dostępu (access) pracuje zwykle na 10/100 (lub 10/100/1000), a połączenia do wyższych warstw realizuje się po światłowodzie ze względu na większy zasięg, mniejsze zakłócenia i często większą przepustowość. Moim zdaniem warto zapamiętać samą logikę odczytywania takiej tabeli: najpierw patrzymy na liczbę portów w kolumnie Description (tu 48 Ethernet 10/100), a potem na kolumnę Uplinks i szukamy słów kluczowych typu „SFP”, „dual-purpose”, „Gigabit Ethernet SFP”. Jeżeli w opisie uplinków jest informacja „10/100/1000 or SFP”, to znaczy, że ten model można doposażyć w moduły światłowodowe dopasowane do potrzeb: np. SFP 1000BASE-SX do krótkich odcinków multimode, 1000BASE-LX do dłuższych dystansów, albo moduły miedziane. Taki sposób czytania specyfikacji bardzo się przydaje przy doborze sprzętu do projektu sieci, bo od razu widać, które modele nadają się na przełącznik dostępowy z możliwością rozbudowy o uplinki światłowodowe, a które są bardziej podstawowe.

Pytanie 33

Jaki adres IP został przypisany do hosta na interfejsie sieciowym eth0?

[root@ipv6 tspc]# ifconfig
eth0      Link encap:Ethernet  HWaddr 00:A0:C9:89:02:F8
          inet addr:128.171.104.26  Bcast:128.171.104.255  Mask:255.255.255.0
          inet6 addr: fe80::2a0:c9ff:fe89:2f8/10 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:663940 errors:0 dropped:0 overruns:0 frame:0
          TX packets:67717 errors:0 dropped:0 overruns:0 carrier:0
          collisions:7797 txqueuelen:100
          RX bytes:234400485 (223.5 Mb)  TX bytes:17743338 (16.9 Mb)
          Interrupt:10 Base address:0xef80

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:3070 errors:0 dropped:0 overruns:0 frame:0
          TX packets:3070 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:153813 (150.2 Kb)  TX bytes:153813 (150.2 Kb)

sit1      Link encap:IPv6-in-IPv4
          inet6 addr: 3ffe:b80:2:482::2/64 Scope:Global
          inet6 addr: fe80::80ab:681a/10 Scope:Link
          UP POINTOPOINT RUNNING NOARP  MTU:1480  Metric:1
          RX packets:82 errors:0 dropped:0 overruns:0 frame:0
          TX packets:78 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:8921 (8.7 Kb)  TX bytes:8607 (8.4 Kb)
A. 128.171.104.255
B. 128.171.104.26
C. 00:A0:c9:89:02:F8
D. 255.255.255.0
Adres IP 128.171.104.26 jest właściwie skonfigurowany na karcie sieciowej eth0, co można zweryfikować poprzez polecenie ifconfig w systemie Linux. Adresy IP są podstawowymi elementami identyfikującymi urządzenia w sieci i każde urządzenie musi mieć unikalny adres IP w danej podsieci. W tym przypadku, adres 128.171.104.26 jest adresem klasy B, co oznacza, że jego zakres to od 128.0.0.0 do 191.255.255.255. Adresy klasy B mają maskę podsieci domyślną 255.255.0.0, ale tutaj widzimy niestandardową maskę 255.255.255.0, co oznacza, że używana jest podsieć o mniejszych rozmiarach. W praktyce, takie adresowanie może być użyte do organizacji sieci firmowych, gdzie większe sieci są dzielone na mniejsze segmenty w celu lepszego zarządzania ruchem. Zasady dobrych praktyk zalecają, aby zawsze używać poprawnych adresów IP i masek podsieci, aby uniknąć konfliktów adresów i zapewnić prawidłowe przekazywanie danych w sieci. Zrozumienie tych podstawowych koncepcji jest kluczowe dla każdego administratora sieci.

Pytanie 34

Dysk zewnętrzny 3,5" o pojemności 5 TB, służący do przechowywania lub tworzenia kopii zapasowych, posiada obudowę z czterema interfejsami komunikacyjnymi do wyboru. Który z tych interfejsów należy wykorzystać do połączenia z komputerem, aby uzyskać największą prędkość transmisji?

A. FireWire800
B. USB 3.1 gen 2
C. WiFi 802.11n
D. eSATA 6G
Wybór USB 3.1 gen 2 to zdecydowany strzał w dziesiątkę, jeśli chodzi o szybkość przesyłania danych do i z zewnętrznego dysku. Ten standard, znany również jako USB 3.1 SuperSpeed+, umożliwia transfer nawet do 10 Gb/s, czyli około 1250 MB/s w teorii. Oczywiście, w praktyce zawsze pojawią się jakieś ograniczenia sprzętowe, ale nawet wtedy USB 3.1 gen 2 zostawia konkurencję daleko w tyle. Bardzo często producenci nowoczesnych płyt głównych oraz laptopów stawiają właśnie na ten interfejs, bo jest uniwersalny, wygodny i kompatybilny wstecz. W środowiskach biurowych czy przy komputerach domowych, gdzie przenosi się duże ilości danych – na przykład przy backupie zdjęć czy filmów w wysokiej rozdzielczości – USB 3.1 gen 2 pozwala skrócić czas kopiowania o połowę, a czasem nawet więcej, w porównaniu do starszych standardów. Moim zdaniem dużą zaletą jest też to, że przewody do USB 3.1 są bardzo łatwo dostępne i nie trzeba się martwić o jakieś specjalistyczne adaptery. Dodatkowo, porty USB są praktycznie wszędzie, a takie dyski można podłączyć bezpośrednio do większości nowych komputerów i stacji dokujących. W branży IT mówi się, że jeśli zależy ci na szybkości i wygodzie – USB 3.1 gen 2 to obecnie jeden z najlepszych wyborów do zastosowań konsumenckich oraz półprofesjonalnych.

Pytanie 35

Adresy IPv6 są reprezentowane jako liczby

A. 32 bitowe, wyrażane w postaci ciągów binarnych
B. 128 bitowe, wyrażane w postaci ciągów szesnastkowych
C. 256 bitowe, wyrażane w postaci ciągów szesnastkowych
D. 64 bitowe, wyrażane w postaci ciągów binarnych
Adresy IPv6 są reprezentowane jako 128-bitowe wartości, co oznacza, że mogą one zawierać znacznie więcej unikalnych adresów niż ich poprzednicy w wersji IPv4, które mają długość 32 bity. W praktyce, IPv6 jest zapisywany w postaci szesnastkowych ciągów znaków, które są podzielone na osiem grup po cztery cyfry, co ułatwia odczytywanie i zarządzanie tymi adresami. Na przykład, adres IPv6 może wyglądać jak 2001:0db8:85a3:0000:0000:8a2e:0370:7334. W kontekście standardów, IPv6 zostało zaprojektowane zgodnie z dokumentem RFC 8200, który definiuje jego format i zasady działania. Przejście na IPv6 jest kluczowe dla rozwoju Internetu, ponieważ liczba dostępnych adresów w IPv4 jest niewystarczająca dla rosnącej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu IPv6, możliwe jest nie tylko większe przydzielanie adresów, ale także wprowadzenie ulepszonych mechanizmów zarządzania ruchem oraz bezpieczeństwa, co jest zgodne z dobrą praktyką w projektowaniu nowoczesnych sieci.

Pytanie 36

Na ilustracji przedstawiono ustawienie karty sieciowej, której adres MAC wynosi

Ethernet adapter VirtualBox Host-Only Network:

   Connection-specific DNS Suffix  . :
   Description . . . . . . . . . . . : VirtualBox Host-Only Ethernet Adapter
   Physical Address. . . . . . . . . : 0A-00-27-00-00-07
   DHCP Enabled. . . . . . . . . . . : No
   Autoconfiguration Enabled . . . . : Yes
   Link-local IPv6 Address . . . . . : fe80::e890:be2b:4c6c:5aa9%7(Preferred)
   IPv4 Address. . . . . . . . . . . : 192.168.56.1(Preferred)
   Subnet Mask . . . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . . . :
   DHCPv6 IAID . . . . . . . . . . . : 134873127
   DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-1F-04-2D-93-00-1F-D0-0C-7B-12
   DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1
                                       fec0:0:0:ffff::2%1
                                       fec0:0:0:ffff::3%1
   NetBIOS over Tcpip. . . . . . . . : Enabled
A. 192.168.56.1
B. 0A-00-27-00-00-07
C. FEC0:0:0:FFFF::2
D. FE80::E890:BE2B:4C6C:5AA9
Adres MAC jest unikalnym identyfikatorem przypisanym do karty sieciowej przez producenta. Składa się z 48 bitów, co zazwyczaj przedstawiane jest jako 12-cyfrowy adres zapisany w formacie szesnastkowym, np. 0A-00-27-00-00-07. Ten adres jest kluczowy w komunikacji na poziomie warstwy łącza danych w modelu OSI, umożliwiając urządzeniom wzajemne rozpoznawanie się w sieci lokalnej. Standard IEEE dla adresów MAC określa, że pierwsze 24 bity to identyfikator producenta (OUI), a pozostałe 24 bity są unikalne dla danego urządzenia. Zastosowanie adresów MAC jest szerokie, od filtrowania w sieciach Wi-Fi po konfigurację reguł bezpieczeństwa w sieciach LAN. W praktyce, znajomość adresu MAC jest nieoceniona przy diagnozowaniu problemów sieciowych oraz przy konfiguracji sprzętu sieciowego, gdzie identyfikacja urządzeń fizycznych jest niezbędna. W porównaniu do adresów IP, które mogą się zmieniać (szczególnie w przypadku DHCP), adresy MAC pozostają stałe, zapewniając spójność identyfikacji w długim okresie użytkowania.

Pytanie 37

Do sprawdzenia, czy zainstalowana karta graficzna komputera przegrzewa się, użytkownik może wykorzystać program

A. HD Tune
B. CPU-Z
C. Everest
D. CHKDSK
Everest to taki program, który już od wielu lat jest wykorzystywany przez użytkowników komputerów do monitorowania różnych parametrów sprzętowych. Najważniejsze w kontekście tego pytania jest to, że Everest potrafi odczytać temperaturę różnych podzespołów, w tym właśnie karty graficznej. Dzięki integracji z czujnikami sprzętowymi możemy bardzo łatwo sprawdzić, czy karta graficzna nie przekracza zalecanych wartości temperatur, co jest mega ważne w utrzymaniu stabilności i wydajności systemu. Często w serwisach komputerowych czy przy diagnostyce domowej Everest (teraz znany jako AIDA64) jest jednym z pierwszych narzędzi, po które się sięga. Z mojego doświadczenia, regularne sprawdzanie temperatur pomaga zapobiegać poważniejszym awariom sprzętu, bo przegrzanie GPU potrafi po jakimś czasie doprowadzić nawet do uszkodzenia karty. Fajnie też, że program pokazuje nie tylko temperaturę, ale też obroty wentylatorów czy napięcia, więc mamy podgląd na cały system chłodzenia. W branży IT to wręcz standard, żeby korzystać z takich narzędzi podczas diagnostyki, szczególnie jeśli komputer zaczyna działać głośniej lub pojawiają się artefakty na ekranie. Warto też wiedzieć, że Everest nie ogranicza się tylko do kart graficznych – można sprawdzić też CPU, płyty głównej i inne kluczowe elementy. Bardzo praktyczna sprawa, szczególnie w starszych komputerach, gdzie chłodzenie bywa już niewydolne.

Pytanie 38

W jakim typie skanera stosuje się fotopowielacze?

A. ręcznym
B. bębnowym
C. płaskim
D. kodów kreskowych
Skanery bębnowe, znane również jako skanery filmowe, wykorzystują fotopowielacze do konwersji światła na sygnał elektryczny. Fotopowielacze są niezwykle czułymi urządzeniami, które mogą wykrywać bardzo niskie poziomy światła, co czyni je idealnymi do zastosowań w skanowaniu obrazów o wysokiej rozdzielczości. W przypadku skanera bębnowego materiał, na przykład zdjęcia lub dokumentu, jest umieszczany na cylindrycznym bębnie, który obraca się podczas skanowania. W trakcie tej operacji, fotopowielacze zbierają światło odbite od dokumentu, przekształcając je w sygnały elektryczne. Daje to wysoce szczegółowy obraz, co jest szczególnie istotne w profesjonalnych zastosowaniach, takich jak archiwizacja fotografii, skanowanie dokumentacji graficznej oraz w pracy w muzeach czy galeriach sztuki. Stosowanie skanerów bębnowych jest zgodne z najlepszymi praktykami w branży, zwłaszcza w kontekście archiwizacji i zabezpieczania materiałów, gdzie jakość obrazu jest kluczowa.

Pytanie 39

Który symbol wskazuje na zastrzeżenie praw autorskich?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Rozpoznanie symbolu zastrzeżenia praw autorskich jest kluczowe w zakresie ochrony własności intelektualnej. Błędne interpretacje tych symboli mogą prowadzić do naruszeń praw co ma istotne konsekwencje prawne i finansowe. Symbol R w kółku oznacza znak towarowy który jest zarejestrowany co chroni nazwę lub logo firmy przed nieuprawnionym użyciem przez innych. Jest ono istotne w kontekście budowania marki i ochrony tożsamości biznesowej. Symbol T w kółku nie ma powszechnie uznanego znaczenia w kontekście praw własności intelektualnej i jego użycie jest zazwyczaj nieformalnym oznaczeniem. G w kółku również nie jest standardowo używany w ochronie prawnej chociaż mógłby być utożsamiany z różnymi nieoficjalnymi znaczeniami w zależności od kontekstu. Niezrozumienie różnic między tymi symbolami i ich znaczeniem może prowadzić do błędów w ochronie praw co jest kluczowe w rozwijającym się globalnym rynku. Dlatego edukacja na temat praw własności intelektualnej i związanych z nimi symboli jest niezbędna dla profesjonalistów w każdej branży aby zapewnić prawidłowe zastosowanie i unikanie konfliktów prawnych. Prawidłowe rozpoznanie symbolu praw autorskich pozwala na świadome korzystanie z utworów i przestrzeganie praw twórców co jest fundamentem etycznym i prawnym w wielu dziedzinach działalności zawodowej. Poprawna interpretacja tych symboli jest zatem kluczowa w zarządzaniu własnością intelektualną i ochronie interesów twórców oraz firm.

Pytanie 40

Aby podłączyć kasę fiskalną wyposażoną w złącze komunikacyjne DB-9M do komputera stacjonarnego, należy zastosować przewód

A. DB-9M/F
B. DB-9F/M
C. DB-9F/F
D. DB-9M/M
Łatwo się pomylić przy doborze przewodu do łączenia urządzeń przez porty szeregowe, bo na pierwszy rzut oka złącza typu DB-9 wyglądają niemal identycznie, różniąc się tylko obecnością pinów lub otworów. Jednak dobór odpowiedniego kabla jest tu kluczowy. Przewód DB-9M/F, czyli męski po jednej stronie, żeński po drugiej, może wydawać się dobrym wyborem, ale stosuje się go głównie wtedy, gdy jedno z urządzeń ma wejście męskie, a drugie żeńskie – co w praktyce przy połączeniach kasa fiskalna–komputer zdarza się bardzo rzadko. Podobna sytuacja dotyczy kabla DB-9F/M, który tak naprawdę jest lustrzanym odbiciem poprzedniego przypadku, tylko zamienia miejscami końcówki. Natomiast przewód DB-9M/M (męski po obu stronach) często wybierany jest przez osoby, które kierują się stereotypowym myśleniem, że 'męski kabel pasuje do większości gniazd', jednak to prowadzi do sytuacji, gdzie połączyć się fizycznie nie da, bo oba urządzenia mają te same wystające piny i nie ma jak ich ze sobą zestawić. W praktyce, komputer stacjonarny oraz kasa fiskalna są dwiema jednostkami DTE, czyli każde z nich posiada zazwyczaj złącze DB-9M. Typowym błędem jest traktowanie ich jak relacja DTE–DCE (np. komputer–modem), gdzie rzeczywiście używa się kabli z męskimi końcówkami lub mieszanych. Z mojego doświadczenia wynika, że dużo osób sugeruje się wyglądem złączy lub próbuje 'na siłę' używać przejściówek, co wprowadza niepotrzebny chaos i ryzyko uszkodzeń. Najlepiej odwołać się do dokumentacji producenta i pamiętać, że przy połączeniach dwustronnych DTE–DTE należy użyć przewodu DB-9F/F, najlepiej przewodu typu null-modem, który prawidłowo zamienia linie nadawcze i odbiorcze. Tylko wtedy komunikacja będzie możliwa i stabilna. Dobrą praktyką jest też przed podłączeniem sprawdzić fizycznie porty, bo czasem opisy w instrukcjach bywają mylące lub nieaktualne. Ostatecznie chodzi nie tylko o zgodność mechaniczną, ale też o bezpieczeństwo i niezawodność transmisji danych.