Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 grudnia 2025 00:06
  • Data zakończenia: 20 grudnia 2025 00:11

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. XOR
B. NAND
C. NOR
D. OR
Program przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest skrótem od „NOT OR”. W logice oznacza to, że wyjście będzie aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. W przypadku sterowników PLC, funkcja NOR jest często używana w sytuacjach, gdy chcemy, aby określone wyjście działało tylko wtedy, gdy żaden z czujników lub przełączników nie jest aktywowany. Na rysunku widzimy dwie szeregowo połączone cewki, co oznacza, że wyjście zostanie aktywowane tylko wtedy, gdy oba wejścia są w stanie niskim (czyli logiczne 0). To typowe w aplikacjach bezpieczeństwa, gdzie z różnych powodów potrzebujemy gwarancji, że coś się nie wydarzy, dopóki wszystkie warunki nie są spełnione. Moim zdaniem, zastosowanie funkcji NOR jest niezwykle praktyczne, szczególnie w automatyce przemysłowej, gdzie niezawodność jest kluczowa. Warto pamiętać, że użycie tej funkcji jest zgodne z normami IEC dotyczących projektowania systemów sterowania, co gwarantuje wysoką jakość i bezpieczeństwo działania systemu.

Pytanie 2

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 0 Ω
B. 100 Ω
C. 500 Ω
D. 1 000 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 3

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji kabli koncentrycznych.
B. zaciskania tulejek .
C. obcinania przewodów koncentrycznych.
D. oznaczania przewodów.
To narzędzie, które widzisz, jest przeznaczone do obcinania przewodów koncentrycznych. Przewody koncentryczne są szeroko stosowane w telekomunikacji i przesyłaniu sygnałów wideo. Ich specyficzna budowa, czyli centralna żyła przewodząca otoczona izolacją, ekranem z przewodzącej plecionki i zewnętrzną osłoną, wymaga precyzyjnego cięcia. Użycie odpowiedniego narzędzia, takiego jak te, które widzisz, gwarantuje czyste i równe cięcie bez uszkodzenia ekranu lub centralnej żyły. Technicy cenią sobie te narzędzia za możliwość pracy w trudno dostępnych miejscach i szybkość działania. Dodatkowo takie obcinarki są zaprojektowane tak, by minimalizować ryzyko zmiażdżenia przewodu, co jest kluczowe dla utrzymania integralności sygnału. Moim zdaniem, każdy kto zajmuje się instalacjami RTV powinien mieć przy sobie takie narzędzie, bo ułatwia ono życie na co dzień. W branży to po prostu standardowa praktyka, by korzystać z dedykowanych narzędzi do określonych rodzajów kabli.

Pytanie 4

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. OBD II
B. 8P8C
C. USB
D. RS-232
Dokładnie, interfejs 8P8C jest właściwym wyborem dla tego sterownika PLC. Znany także jako RJ-45, to standardowy port stosowany najczęściej w sieciach komputerowych do łączenia urządzeń za pomocą kabli Ethernet. W kontekście PLC, używa się go do komunikacji z innymi urządzeniami w sieci lokalnej, co umożliwia integrację z systemami SCADA czy HMI. Dzięki temu, można monitorować i sterować procesami przemysłowymi z dowolnego miejsca w sieci. Jest to zgodne z dobrą praktyką stosowania znormalizowanych interfejsów komunikacyjnych, które zapewniają niezawodność i kompatybilność. Wartość tego rozwiązania polega na prostocie konfiguracji oraz szerokim wsparciu w oprogramowaniu przemysłowym. Systemy oparte na interfejsie 8P8C zyskują na elastyczności i łatwości integracji, co jest kluczowe w nowoczesnych fabrykach zorientowanych na Przemysł 4.0.

Pytanie 5

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. AQ
B. Q
C. AI
D. I
W sterownikach PLC wejścia analogowe oznacza się symbolem AI, co jest skrótem od 'Analog Input'. To standard w branży, który ułatwia jednoznaczną identyfikację typu sygnału na wejściu. Wejścia analogowe są niezwykle ważne, ponieważ umożliwiają przetwarzanie sygnałów zmieniających się w czasie – na przykład sygnałów z czujników temperatury, ciśnienia czy poziomu cieczy. W praktyce spotkasz się z różnymi typami wejść, które mogą odbierać sygnały prądowe (np. 4-20 mA) lub napięciowe (np. 0-10 V), co daje dużą elastyczność w łączeniu różnych urządzeń pomiarowych. Branża automatyki przemysłowej często wykorzystuje te standardy, aby uprościć integrację systemów od różnych producentów. Ważne jest, aby prawidłowo skonfigurować wejścia analogowe, biorąc pod uwagę parametry sygnału i jego źródło, co pozwala uniknąć błędów w odczycie danych. Z mojego doświadczenia, dobrze działające wejścia analogowe mogą znacznie poprawić efektywność całego systemu, a co za tym idzie – wpływać na optymalizację procesów produkcyjnych.

Pytanie 6

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NO
C. PNP NC
D. NPN NC
Czujnik przedstawiony na schemacie działa w konfiguracji NPN NC, co oznacza, że jego wyjście jest normalnie zamknięte i otwiera się, gdy sygnał jest wykryty. W układzie NPN tranzystor działa jako przełącznik między wyjściem a masą (0 V), co jest typowe w aplikacjach, gdzie urządzenie zasilane jest dodatnim napięciem. W praktyce, takie rozwiązanie jest powszechnie wykorzystywane w przemyśle automatyki, gdzie wymagana jest wysoka niezawodność i precyzja. Czujniki NPN są często stosowane w połączeniu z systemami PLC, które są zaprojektowane do pracy z sygnałami niskiego poziomu. Warto również wspomnieć, że konfiguracja NC (normally closed) jest używana w aplikacjach, gdzie bezpieczeństwo jest kluczowe, ponieważ ewentualne uszkodzenie przewodu prowadzi do otwarcia obwodu, co łatwo można wykryć. Standardy branżowe, takie jak IEC 60947-5-2, określają zasady dla czujników zbliżeniowych, zapewniając zgodność i bezpieczeństwo w różnorodnych aplikacjach.

Pytanie 7

Kolejność dokręcania śrub mocujących płytę jest następująca:

Ilustracja do pytania
A. 4 – 3 – 1 – 2
B. 1 – 2 – 3 – 4
C. 1 – 3 – 4 – 2
D. 4 – 3 – 2 – 1
Prawidłowa kolejność dokręcania to 1–3–4–2. W praktyce technicznej oznacza to, że śruby dokręca się na krzyż, czyli naprzemiennie po przekątnej. Dzięki temu docisk płyty do powierzchni jest równomierny, a naprężenia w materiale rozkładają się symetrycznie. Taki sposób montażu zapobiega wykrzywieniu lub pęknięciu płyty, a także nieszczelnościom w połączeniu – szczególnie gdy pod spodem znajduje się uszczelka. Z mojego doświadczenia wynika, że warto najpierw dokręcać śruby lekko, z momentem wstępnym, a dopiero potem dociągnąć je końcowo momentem zalecanym przez producenta (np. wg normy ISO 898-1). W mechanice, hydraulice i motoryzacji ten sposób jest standardem przy montażu głowic silników, kołnierzy czy obudów przekładni. Równomierne dokręcanie na krzyż to niby drobiazg, ale decyduje o trwałości całego połączenia.

Pytanie 8

Na ilustracji przedstawiono

Ilustracja do pytania
A. przetwornik PWM.
B. separator sygnałów USB.
C. zadajnik cyfrowo-analogowy.
D. elektroniczny czujnik ciśnienia.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 9

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Sumy rezystancji żył L1, L2, L3 oraz PEN.
B. Rezystancji izolacji między przewodami L1 i L2 i L3.
C. Rezystancji żył L1, L2, L3.
D. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 10

Przyrząd do sprawdzania średnicy otworów przedstawia

A. ilustracja 2.
Ilustracja do odpowiedzi A
B. ilustracja 3.
Ilustracja do odpowiedzi B
C. ilustracja 4.
Ilustracja do odpowiedzi C
D. ilustracja 1.
Ilustracja do odpowiedzi D
Ilustracja 1 przedstawia przyrząd do sprawdzania średnicy otworów, znany jako szczelinomierz lub wzornik do otworów. To narzędzie jest niezwykle przydatne w warsztatach i laboratoriach, gdzie precyzyjne pomiary są kluczowe. Szczelinomierze pozwalają na dokładne określenie średnicy otworu, co jest niezbędne np. przy dopasowywaniu śrub czy trzpieni. W praktyce używanie takiego przyrządu jest szczególnie istotne w branżach takich jak motoryzacja, gdzie dokładność ma bezpośredni wpływ na funkcjonalność i bezpieczeństwo. Z mojego doświadczenia wynika, że szczelinomierze są także używane w przemyśle lotniczym czy w produkcji maszyn, gdzie precyzja ma ogromne znaczenie. Standardy branżowe, jak ISO 286, zalecają używanie takich narzędzi do zapewnienia odpowiedniej tolerancji pasowania. Co więcej, regularna kalibracja tych urządzeń gwarantuje ich niezawodność, co jest kluczowe w utrzymaniu jakości produkcji.

Pytanie 11

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 15,0 V DC
B. 5,4 V DC
C. 10,0 V DC
D. 4,4 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 12

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. brązowym.
B. białym.
C. niebieskim.
D. czerwonym.
Odpowiedź niebieska jest poprawna, ponieważ w systemach elektrycznych zgodnych z normą PN-EN 60446 kolorem niebieskim oznacza się przewody neutralne, czyli te, które są podłączone do bieguna neutralnego zasilania. Praktycznie w każdym przypadku, gdy mamy do czynienia z instalacją elektryczną, neutralne przewody w kolorze niebieskim są kluczowe dla prawidłowego funkcjonowania systemu. Przykładowo, podczas instalacji przemienników częstotliwości, przewód L2 często jest przewodem neutralnym, który uziemia i stabilizuje układ. Ważne jest, aby pamiętać, że właściwe oznaczenie przewodów nie tylko ułatwia serwisowanie, ale przede wszystkim zapewnia bezpieczeństwo i zgodność z przepisami. Moim zdaniem, umiejętność rozpoznawania i prawidłowego łączenia przewodów to fundamentalna umiejętność każdego elektryka, dlatego warto przyłożyć do tego szczególną uwagę. Dobre oznaczenie przewodów to także mniejsze ryzyko pomyłki w przyszłości, co jest jednym z podstawowych standardów w branży elektrycznej.

Pytanie 13

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 1, P2 – 2, P3 – B0,1
B. P1 – 2, P2 – 1, P3 – B10
C. P1 – 1, P2 – 1, P3 – A10
D. P1 – 2, P2 – 2, P3 – A0,1
Wybrana konfiguracja P1 – 2, P2 – 1, P3 – B10 jest prawidłowa, ponieważ pozwala na opóźnione załączenie przekaźnika czasowego na 2 minuty. Ustawienie P1 na 2 oraz P2 na 1 oznacza, że czas opóźnienia wynosi 20 jednostek bazowych. W przypadku P3 ustawionego na B10, przekaźnik działa w trybie opóźnionego załączenia (B), a jednostką bazową jest 10 sekund. Mnożymy więc 20 jednostek przez 10 sekund, co daje nam dokładnie 200 sekund, czyli 2 minuty. W praktyce ustawienia te są często wykorzystywane w aplikacjach, gdzie konieczne jest precyzyjne sterowanie czasowe, np. w automatyce przemysłowej do sterowania sekwencjami maszyn. Ważne jest, aby zawsze stosować się do instrukcji producenta, by uniknąć błędów w konfiguracji. Warto również wiedzieć, że takie przekaźniki są niezastąpione w systemach automatyki budynkowej, gdyż pozwalają na oszczędność energii i zwiększenie efektywności operacyjnej poprzez optymalizację czasu działania urządzeń.

Pytanie 14

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 2.
B. w pozycji 4.
C. w pozycji 1.
D. w pozycji 3.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 15

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. NOT
Uszkodzona bramka to AND. Analizując schemat krok po kroku: pierwsza bramka to OR (oznaczenie ≥1) – przy wejściach 1 i 1 daje wyjście 1, co jest poprawne. Następnie sygnał trafia do bramki AND wraz z sygnałem 0 z dolnej gałęzi. Działanie logiczne AND wymaga, by oba wejścia były równe 1, aby wyjście było również 1. Tymczasem na rysunku widać, że przy wejściach 1 i 0 wyjście bramki AND wynosi 1 – co jest sprzeczne z jej funkcją logiczną. Prawidłowo wynik powinien wynosić 0. To jednoznacznie wskazuje, że bramka AND nie działa prawidłowo – jest uszkodzona. Moim zdaniem to klasyczny przykład diagnostyki prostych układów cyfrowych, gdzie analiza tablicy prawdy pozwala natychmiast wykryć błąd w logice. W praktyce, przy testowaniu rzeczywistych układów, takie błędy można potwierdzić miernikiem logicznym lub oscyloskopem. Czasem uszkodzenie bramki objawia się właśnie nieprawidłowym utrzymywaniem stanu wysokiego mimo niskiego sygnału wejściowego, co wskazuje na zwarcie wewnętrzne lub przebicie tranzystora wyjściowego. Dobrą praktyką serwisową jest porównanie wyników z modelem symulacyjnym albo sprawnym układem, by uniknąć pomyłki przy interpretacji stanów logicznych.

Pytanie 16

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. przegubowy.
B. dynamometryczny.
C. udarowy.
D. grzechotkowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 17

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 1
B. 3
C. 2
D. 4
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 18

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. szczypiec Segera.
B. kluczy płaskich.
C. kluczy nasadowych.
D. wkrętaków płaskich.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 19

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DG-w
B. DY-w
C. LY-w
D. DS-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 20

Element przedstawiony na rysunku to

Ilustracja do pytania
A. czujnik rezystancyjny.
B. czujnik pojemnościowy.
C. termometr rtęciowy.
D. pirometr.
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 21

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

A. omomierza.
B. woltomierza.
C. amperomierza.
D. watomierza.
Woltomierz to narzędzie, które jest nieodzowne, jeśli chcemy zmierzyć napięcie elektryczne w obwodzie, jak na przykład napięcie zasilające cewkę elektrozaworu. Działa on na zasadzie pomiaru różnicy potencjałów między dwoma punktami obwodu. To urządzenie jest skonstruowane tak, by miało wysoką rezystancję, co minimalizuje wpływ na mierzony układ. Kiedy przykładasz woltomierz do cewki, mierzysz napięcie, które dostarczane jest do tego elementu, a nie przepływ prądu czy moc. W praktyce, woltomierze są używane w technice elektrycznej i elektronicznej do diagnozowania i monitorowania systemów, co pozwala na szybką identyfikację ewentualnych problemów z zasilaniem. Standardy przemysłowe, takie jak IEC 61010, określają wymagania bezpieczeństwa i dokładności dla takich urządzeń, co jest istotne w pracy profesjonalistów dbających o bezpieczeństwo i efektywność systemów elektrycznych. Moim zdaniem, każdy kto pracuje z elektryką powinien znać podstawy użycia woltomierza, bo to podstawa w diagnozowaniu problemów z zasilaniem.

Pytanie 22

Na podstawie przedstawionych w tabeli danych katalogowych wskaż zasilacz, którego należy użyć do zasilania akcesoriów napędu bram garażowych.

Dane katalogowe napędu bram garażowych
Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów [mA]200
Układ logicznyAutomatyczny/półautomatyczny
Wyprowadzenie płytyOtwieranie/stop/zabezpieczenia/układ kontrolny/ lampka błyskowa 24 V DC
Czas świecenia lampy oświetleniowej2 min


Zasilacz1234
Napięcie wejściowe110 ÷ 230 V AC,
50 ÷ 60 Hz
110 ÷ 230 V AC,
50 ÷ 60 Hz
230 V AC,
50 Hz
230 V AC,
50 Hz
Napięcie wyjściowe13,8 V DC12 V DC24 V AC24 V DC
Maksymalny prąd wyjściowy0,25 A2 A0,5 A0,3 A
A. 1
B. 2
C. 4
D. 3
Zastanówmy się, dlaczego zasilacz nr 4 jest najlepszym wyborem. Po pierwsze, napięcie zasilania akcesoriów według danych katalogowych wynosi 24 V DC. To oznacza, że potrzebujemy zasilacza, który dostarczy właśnie takie napięcie wyjściowe. Zasilacz nr 4 spełnia ten wymóg, ponieważ jego napięcie wyjściowe wynosi 24 V DC. To jest kluczowe, ponieważ użycie zasilacza o niewłaściwym napięciu mogłoby uszkodzić akcesoria lub spowodować ich nieprawidłowe działanie. Po drugie, maksymalne obciążenie akcesoriów wynosi 200 mA, co oznacza, że zasilacz musi dostarczać przynajmniej taki prąd. Zasilacz nr 4 może dostarczać prąd do 0,3 A, czyli 300 mA, co jest wystarczające. W praktyce stosowanie zasilacza, który ma trochę większy zapas prądu, jest dobrą praktyką, bo zapewnia stabilność zasilania i wydłuża żywotność sprzętu. Branża często zaleca, aby zasilacze miały przynajmniej 20% marginesu w stosunku do maksymalnego poboru prądu akcesoriów. Pamiętajmy, że odpowiedni dobór zasilacza to nie tylko kwestia jego parametrów elektrycznych, ale także bezpieczeństwa i niezawodności całego systemu. Moim zdaniem, zawsze warto zwracać uwagę na te szczegóły, bo mogą one decydować o długoterminowym funkcjonowaniu urządzeń.

Pytanie 23

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. sterownik PLC.
B. panel operatorski.
C. zasilacz impulsowy.
D. koncentrator sieciowy.
To urządzenie to sterownik PLC, czyli programowalny sterownik logiczny. Jest ono kluczowym elementem w automatyce przemysłowej, używane do sterowania procesami produkcyjnymi i maszynami. PLC mogą być programowane w językach takich jak ladder logic, co pozwala na elastyczne dostosowanie działania do konkretnych potrzeb. Przykładowo, w fabrykach używa się ich do sterowania liniami montażowymi czy systemami pakowania. Warto zauważyć, że PLC są zaprojektowane tak, aby mogły pracować w trudnych warunkach, są odporne na zakłócenia elektromagnetyczne i wibracje. Dzięki temu, są niezawodne i cenione w przemyśle. Standardy takie jak IEC 61131 określają, jak powinny być programowane i stosowane, co zapewnia ich unifikację i możliwość współpracy z różnymi systemami. W praktyce, dobry technik czy inżynier automatyki powinien umieć nie tylko programować PLC, ale też diagnozować ewentualne problemy i optymalizować działanie całych systemów. Także, świetnie, że rozpoznałeś to urządzenie!

Pytanie 24

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. NPN NC
B. NPN NO
C. PNP NC
D. PNP NO
Odpowiedź NPN NC jest prawidłowa, ponieważ czujnik na schemacie wskazuje na tranzystor NPN z wyjściem normalnie zamkniętym (NC). W przypadku wyjść typu NPN, prąd płynie od kolektora do emitera, co oznacza, że wyjście czujnika jest połączone z masą, gdy czujnik jest aktywowany. Wyjście NC oznacza, że w stanie nieaktywnym obwód jest zamknięty, a po aktywacji czujnika obwód się otwiera. To konsekwentnie stosowane rozwiązanie, zwłaszcza w aplikacjach, gdzie konieczne jest zapewnienie bezpieczeństwa. W praktycznych zastosowaniach, takie czujniki są często używane w systemach automatyki przemysłowej. Pomagają w monitorowaniu i kontrolowaniu pozycji elementów maszyn, dostarczając istotnych informacji o stanie systemu. Standardy przemysłowe często zalecają stosowanie wyjść typu NPN NC ze względu na ich niezawodność i bezpieczeństwo, szczególnie w sytuacjach, gdzie błąd w detekcji mógłby prowadzić do uszkodzenia sprzętu lub obrażeń.

Pytanie 25

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. Ex-NOR
B. NOR
C. Ex-OR
D. OR
Funkcja Ex-OR, znana także jako XOR, jest jedną z podstawowych operacji logicznych wykorzystywanych w systemach cyfrowych i automatyce. Charakteryzuje się tym, że zwraca wartość prawdziwą tylko wtedy, gdy dokładnie jedno z wejść jest prawdziwe. W kontekście drabinki logicznej przedstawionej na rysunku, widzimy, że układ realizuje sumę logiczną wykluczającej lub (o czym świadczy połączenie szeregowe i równoległe styczników). Praktycznie, Ex-OR jest szeroko stosowany w aplikacjach, gdzie istotne jest wykrycie różnicy pomiędzy sygnałami, np. w układach zabezpieczeń, gdzie różne stany wejściowe mogą odpowiadać za różne tryby pracy. W standardach automatyki przemysłowej, takich jak IEC 61131, Ex-OR jest często używany do realizacji zaawansowanych funkcji kontrolnych. Moim zdaniem, zrozumienie tej funkcji jest kluczowe dla każdego automatyka, ponieważ pozwala na projektowanie elastycznych i funkcjonalnych systemów sterowania.

Pytanie 26

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PD
B. PI
C. PID
D. P
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 27

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. optycznego.
B. pojemnościowego.
C. magnetycznego.
D. indukcyjnego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 28

Który z czujników należy zamontować w układzie sterowania wyłączarką, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz odporność na wibracje i zmiany temperatury 0 ÷ 90°C?

Ilustracja do pytania
A. HPD1408-PK
B. HPD1204-PK
C. HPD1406-NK
D. HPD1202-NK
Wybór czujnika HPD1202-NK jest trafny, ponieważ spełnia on wymagania dotyczące zasięgu oraz odporności na zmiany temperatury. Czujnik ten działa w zakresie od 0 do 1,6 mm, co pokrywa się z wymaganiem 0,8 ÷ 0,9 mm. Jest to istotne, gdyż precyzyjne określenie zasięgu czujnika ma kluczowe znaczenie w precyzyjnych aplikacjach jak np. sterowanie wyłączarką. Dodatkowo, HPD1202-NK może pracować w temperaturach od -20 do 110°C, co daje duży margines bezpieczeństwa i pozwala na pracę w trudnych warunkach środowiskowych. Warto też zwrócić uwagę na klasę ochrony IP67, która zabezpiecza czujnik przed pyłem i krótkotrwałym zanurzeniem w wodzie, co jest często niezbędne w aplikacjach przemysłowych. Z doświadczenia wiem, że wybór odpowiedniego czujnika to nie tylko kwestia parametrów, ale też niezawodności i odporności na warunki pracy. W praktyce, taki czujnik sprawdzi się w aplikacjach, gdzie wymagana jest nie tylko precyzja, ale i wytrzymałość.

Pytanie 29

Które ze stwierdzeń dotyczących prowadzenia przewodów sygnałowych w układach sterowania napędami nie jest poprawne?

A. Przewody sygnałowe należy prowadzić w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania.
B. Przewody sygnałowe należy prowadzić w odległości minimum 20 cm od przewodów zasilających.
C. Końcówki nieużywanych żył przewodów sygnałowych w szafie należy połączyć ze sobą i uziemić.
D. Wszystkie krzyżowania przewodów sygnałowych z innymi rodzajami przewodów należy wykonać pod kątem prostym.
Wybór odpowiedzi mówiącej, że przewody sygnałowe powinny być prowadzone w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania, jest błędny. Koryta i rury PVC nie oferują właściwości ekranujących, które są kluczowe dla przewodów sygnałowych. Głównym celem prowadzenia przewodów sygnałowych w ekranie jest ochrona sygnałów przed zakłóceniami elektromagnetycznymi, które mogą powodować błędy w transmisji danych. W praktyce, zamiast PVC, stosuje się specjalne koryta metalowe lub przewody ekranowane, których zadaniem jest odizolowanie sygnałów od zewnętrznych pól elektromagnetycznych. Dobrym przykładem są przewody z ekranem z oplotu miedzianego lub aluminiowego, które są skuteczne w tłumieniu zakłóceń. Norma PN-EN 60204-1 podkreśla znaczenie stosowania odpowiednich materiałów w instalacjach elektrycznych, aby zapewnić właściwe działanie systemów sterowania. Przy projektowaniu systemów sterowania warto pamiętać, że właściwe ekranowanie jest kluczowe dla niezawodności całego układu. Warto również mieć na uwadze, że złe praktyki w tym zakresie mogą prowadzić do przestojów produkcyjnych związanych z błędami sterowania.

Pytanie 30

Na ilustracji przedstawiono

Ilustracja do pytania
A. przekaźnik.
B. bezpiecznik.
C. stycznik.
D. dławik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 31

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. bimetalowe.
C. rezystancyjne metalowe
D. rezystancyjne półprzewodnikowe.
Pt100 to popularny typ rezystancyjnego czujnika temperatury, który wykonany jest z platyny (stąd oznaczenie Pt). Często używa się go w aplikacjach przemysłowych ze względu na jego precyzję i stabilność. Charakterystyczne dla czujników Pt100 jest to, że przy 0°C mają one rezystancję równo 100 Ω. Zmiana temperatury powoduje zmianę rezystancji, co pozwala na dokładne pomiary. W systemach automatyki, takich jak ten, używa się przetworników, które konwertują zmiany rezystancji na sygnał prądowy, standardowo 4-20 mA. Dlaczego 4-20 mA? Jest to standard przemysłowy, pozwalający na wykrycie awarii (np. złamany kabel daje prąd poniżej 4 mA). Pt100 są preferowane w wielu branżach, zwłaszcza tam, gdzie wymagana jest duża dokładność pomiaru temperatury, np. w przemyśle chemicznym, spożywczym czy farmaceutycznym. Dzięki zastosowaniu platyny, czujniki te charakteryzują się dużą liniowością i szerokim zakresem pomiaru, co czyni je uniwersalnym wyborem dla inżynierów.

Pytanie 32

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 220 ÷ 240 V
B. 254 ÷ 277 V
C. 380 ÷ 420 V
D. 440 ÷ 480 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 33

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Korbowód.
B. Wał korbowy.
C. Dźwignię.
D. Wodzik.
Wał korbowy to kluczowy element silnika tłokowego, który przekształca ruch posuwisto-zwrotny tłoka w ruch obrotowy. Dzięki temu możemy wytwarzać moment obrotowy wykorzystywany do napędu pojazdu. Wał korbowy jest zwykle wykonany z wytrzymałych materiałów, takich jak stal stopowa, aby sprostać obciążeniom dynamicznym i zmiennym, jakie działają na silnik podczas pracy. W konstrukcji silnika wał korbowy jest połączony z korbowodem, który łączy go bezpośrednio z tłokiem. Wał korbowy musi być doskonale wyważony, aby zapobiec drganiom, które mogłyby prowadzić do uszkodzenia innych komponentów. W praktyce, wał korbowy jest podparty na łożyskach ślizgowych, co zmniejsza tarcie i zapewnia płynność ruchu. Warto również wspomnieć o nowoczesnych rozwiązaniach, jak zastosowanie materiałów kompozytowych w produkcji wałów korbowych, co jest trendem w przemyśle motoryzacyjnym, dążącym do zmniejszenia masy silnika i poprawy jego efektywności. Z mojego doświadczenia, dobrze zaprojektowany wał korbowy wpływa znacząco na żywotność i osiągi silnika.

Pytanie 34

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

Ilustracja do pytania
A. będzie naciśnięty tylko przycisk S1
B. będą naciśnięte tylko przyciski S1 i S2
C. będzie naciśnięty tylko przycisk S3
D. będą naciśnięte tylko przyciski S1 i S3
Patrząc na ten schemat, widać bardzo typową sytuację w automatyce, gdzie lampka sygnalizacyjna H1 jest włączana poprzez zestaw styków przekaźników. Moim zdaniem, świetny przykład, bo pokazuje, jak istotne jest zrozumienie kolejności załączania poszczególnych elementów sterujących. Gdy naciśniesz tylko S1, zasilasz cewkę K1, więc styki K1 na drodze do lampki się zamykają. Jednak przyciski S2 i S3, które sterują odpowiednio K2 i K3, nie są wciśnięte, co oznacza, że styki K2 i K3 pozostają rozwarte. Zwróć uwagę, że H1 świeci tylko wtedy, gdy przez cały szereg styków K1, K2, K3 popłynie prąd – a to możliwe wyłącznie, gdy wszystkie te styki są zwarte, czyli gdy KAŻDA z cewek jest zasilona. Tutaj jednak kluczowa jest analiza, jak są podpięte styki K1, K2, K3 – a w tym przypadku tylko naciśnięcie S1 daje zamknięcie jednej gałęzi bez blokady przez pozostałe przekaźniki. W praktyce takie układy często spotyka się przy sterowaniu oświetleniem sygnalizacyjnym, np. w szafach sterowniczych, gdzie chcesz, aby lampka zapalała się tylko przy bardzo konkretnej kombinacji stanów. W branży automatyki zawsze warto zwracać uwagę na typ połączeń (równoległe czy szeregowe), bo od tego zależy interpretacja działania. Standardem jest takie planowanie logiki, by uniknąć przypadkowego załączenia sygnalizacji. Moim zdaniem, kto ogarnia takie schematy, świetnie radzi sobie potem z rozbudowanymi układami w praktyce.

Pytanie 35

Które przyłącze procesowe jest zastosowane w przedstawionym czujniku?

Parametry techniczne czujnika

- Ekonomiczny przetwornik ciśnienia

- Zakres pomiarowy: 0 ... 1 bar / 0 ... 250 bar

- Dokładność: 0,3%

- Przyłącze procesowe: G¼"

- Sygnał wyjściowy: 4 ... 20 mA

- Przyłącze elektryczne: wtyczka kątowa

- Temperatura medium: -25 ... 85 °C

- Zasilanie: 9 ... 30 V DC

Ilustracja do pytania
A. Zewnętrzny gwint 1/8”
B. Wewnętrzny gwint 1/8”
C. Zewnętrzny gwint 1/4”
D. Wewnętrzny gwint 1/4"
Dokładnie, ten czujnik ma przyłącze procesowe o gwincie zewnętrznym G¼”, który jest powszechnie stosowany w przemysłowych aplikacjach pomiaru ciśnienia. Ten typ przyłącza jest często wybierany ze względu na jego niezawodność i kompatybilność z różnymi systemami. G¼” to standardowy gwint metryczny, co oznacza, że jest szeroko stosowany na całym świecie, dzięki czemu łatwo znaleźć odpowiednie przejściówki czy złączki. Warto zauważyć, że gwint ten zapewnia dobrą szczelność i jest odporny na wysokie ciśnienia, co czyni go idealnym wyborem dla przetworników ciśnienia. W praktyce, wybór odpowiedniego przyłącza procesowego jest kluczowy, aby zapewnić prawidłowe działanie czujnika i uniknąć problemów z przeciekami. Dlatego też zrozumienie, jakie przyłącze jest używane, jest niezbędne dla inżynierów i techników podczas instalacji i konserwacji systemów pomiarowych. W branży przyjęło się, że wybierając komponenty instalacji, takie jak czujniki, zwraca się szczególną uwagę na zgodność przyłączy, co ułatwia montaż i późniejszą obsługę układu.

Pytanie 36

Dokładna obróbka elementów współpracujących ze sobą polegająca na usuwaniu drobnych cząstek materiału w obecności pasty ściernej to

A. honowanie.
B. struganie.
C. docieranie.
D. szlifowanie.
Docieranie to proces, który pozwala na uzyskanie bardzo dokładnych wymiarów i gładkości powierzchni poprzez delikatne usuwanie materiału. Technika ta jest szczególnie popularna w przemyśle mechanicznym, gdzie precyzyjne dopasowanie elementów jest kluczowe, na przykład w produkcji części optycznych czy narzędzi precyzyjnych. Docieranie polega na użyciu pasty ściernej, która jest rozprowadzana pomiędzy powierzchniami, a następnie poddana kontrolowanemu tarciu. Dzięki temu możliwe jest usunięcie mikroskopijnych nierówności, co w praktyce oznacza doskonałe dopasowanie współpracujących elementów. Moim zdaniem, to trochę jak sztuka, bo wymaga cierpliwości i precyzji. W branży lotniczej i motoryzacyjnej docieranie jest nieodłącznym elementem zapewniającym niezawodność i bezpieczeństwo. Standardy, takie jak ISO 9001, często podkreślają znaczenie tej techniki w zachowaniu jakości produkcji. Warto również wspomnieć, że dobór odpowiedniej pasty ściernej, zależnie od materiału, jest kluczowy dla powodzenia całego procesu.

Pytanie 37

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 0.
B. I2 = 0, I3 = 1.
C. I2 = 1, I3 = 0.
D. I2 = 1, I3 = 1.
Niepoprawne odpowiedzi wynikają z błędnego zrozumienia funkcji czujników B1 i B2 oraz ich wpływu na wejścia sterownika I2 i I3. Przy wsuniętym tłoczysku, tylko czujnik B1 powinien być aktywowany, co oznacza, że na I2 pojawia się sygnał logiczny 1, a na I3 sygnał logiczny 0, ponieważ B2 nie jest aktywowany. Często spotykanym błędem jest założenie, że oba czujniki mogą być aktywowane jednocześnie w tej pozycji, co prowadzi do błędnej odpowiedzi, że I3 również wynosi 1. Innym częstym nieporozumieniem jest mylenie stanów czujników, zakładając, że brak sygnału to stan wysoki, co jest przeciwieństwem rzeczywistości. W praktyce, zgodnie z zasadami działania czujników krańcowych, aktywacja czujnika (czyli przejście do stanu wysokiego) następuje w momencie, gdy element wykonawczy znajduje się w określonej pozycji. Uważam, że zrozumienie tych zależności jest kluczowe, aby uniknąć problemów w projektach automatyki, gdzie błędne założenia mogą prowadzić do nieprawidłowego działania całego systemu.

Pytanie 38

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 30 mm
B. 60 mm
C. 10 mm
D. 20 mm
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 39

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. zawór.
B. filtr.
C. manometr.
D. smarownicę.
Manometr to urządzenie, które służy do pomiaru ciśnienia gazów lub cieczy. Na schemacie zespołu przygotowania powietrza ten symbol wskazuje na obecność manometru. W praktyce manometry są niezwykle istotne w systemach pneumatycznych, ponieważ pomagają monitorować i utrzymywać odpowiednie ciśnienie robocze. Bez prawidłowego ciśnienia, systemy mogą działać nieefektywnie lub, co gorsza, uszkodzić się. W standardach inżynieryjnych, manometry są zazwyczaj montowane w miejscach łatwo dostępnych, aby umożliwić szybki odczyt i ocenę sytuacji. Ich zastosowanie jest szerokie - od przemysłowych kompresorów, przez systemy grzewcze, aż po instalacje wodociągowe. Dzięki manometrom można szybko zdiagnozować problemy z ciśnieniem, co jest kluczowe w utrzymaniu bezpieczeństwa i efektywności systemów. Moim zdaniem, umiejętność prawidłowego odczytywania i interpretowania wskazań manometrów jest jednym z podstawowych elementów wiedzy każdego technika zajmującego się systemami pneumatycznymi czy hydraulicznymi. To nie tylko teoria, ale praktyka, którą warto znać.

Pytanie 40

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Termoelektryczny.
B. Pirometryczny.
C. Rezystancyjny.
D. Dylatacyjny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.