Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 21:44
  • Data zakończenia: 3 lutego 2026 21:50

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 12
B. 9
C. 3
D. 6
Prawidłowa odpowiedź to 3 pomiary rezystancji izolacji, co wynika z praktyków oceny stanu izolacji przewodów elektroenergetycznych. W przypadku przewodów YDY3x 6 450/700 V, które są typowymi przewodami stosowanymi w instalacjach elektrycznych, kluczowe jest przeprowadzanie pomiarów rezystancji izolacji w różnych punktach. Zgodnie z normą PN-IEC 60364-6, co najmniej trzy pomiary powinny być wykonane dla każdej fazy przewodu oraz dodatkowo dla przewodu neutralnego i ochronnego. W praktyce, pomiary powinny obejmować zarówno wartości rezystancji międzyfazowej, jak i rezystancji do ziemi. Przykładowo, jeśli wykonasz pomiar izolacji na długości przewodu, który wykazuje niską rezystancję, może to wskazywać na uszkodzenie izolacji w tym obszarze. Dodatkowo, regularne pomiary rezystancji izolacji pozwalają na wczesne wykrywanie potencjalnych problemów, co jest istotne dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 2

Ochronnik oznaczony symbolem graficznym pokazanym na rysunku reaguje na

Ilustracja do pytania
A. przeciążenie.
B. przepięcie.
C. upływ prądu.
D. zwarcie doziemne.
Odpowiedź 'przepięcie' jest prawidłowa, ponieważ symbol graficzny przedstawiony na rysunku wskazuje na ochronnik przepięciowy, który ma za zadanie chronić instalację elektryczną przed nagłymi wzrostami napięcia. Przepięcia mogą wynikać z różnych źródeł, takich jak uderzenia pioruna, nagłe zmiany obciążenia w sieci lub awarie sprzętu. Ochronniki przepięciowe są projektowane w taki sposób, aby szybko odprowadzać nadmiar napięcia do ziemi, co minimalizuje ryzyko uszkodzeń urządzeń podłączonych do instalacji. W praktyce, stosowanie takich ochronników jest kluczowe w systemach elektrycznych, szczególnie w obiektach o wysokiej wartości sprzętu, jak serwerownie czy laboratoria. Ważne jest, aby pamiętać, że regularne przeglądy i konserwacja tych urządzeń są niezbędne dla zapewnienia ich prawidłowego działania. Ochronniki przepięciowe powinny być zgodne z odpowiednimi normami, takimi jak PN-EN 61643-11, co zapewnia ich skuteczność oraz bezpieczeństwo użytkowania.

Pytanie 3

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Komutacyjnego
B. Wzbudzenia
C. Twornika
D. Kompensacyjnego
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 4

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór niewłaściwej odpowiedzi na pytanie o rozdzielnicę natynkową może wynikać z mylnego zrozumienia pojęcia rozdzielnicy oraz jej zastosowania. Osoby wskazujące na inne odpowiedzi mogą nie dostrzegać kluczowego aspektu, jakim jest sposób montażu. Na przykład, rozdzielnice podtynkowe, które mogą być mylone z natynkowymi, są zazwyczaj wbudowywane w ścianę, co ogranicza ich widoczność i dostępność. Takie konstrukcje są wykorzystywane głównie w miejscach, gdzie estetyka ma kluczowe znaczenie, jednak nie spełniają funkcji natynkowych, które zapewniają łatwy dostęp do osprzętu elektrycznego. Podobnie, niektóre odpowiedzi mogą odnosić się do konstrukcji, które nie są przeznaczone do montażu na ścianach, a zamiast tego są stosowane w instalacjach przemysłowych lub specjalistycznych, co wprowadza zamieszanie. Ważne jest, aby zrozumieć, że dostosowanie rodzaju rozdzielnicy do konkretnego środowiska oraz potrzeb użytkowania jest kluczowe dla wydajności systemu elektrycznego. Często spotykane błędy myślowe polegają na utożsamianiu wszystkich rozdzielnic z jedną kategorią, co prowadzi do nieprawidłowych wniosków. W praktyce, dobór odpowiedniej rozdzielnicy powinien być zgodny z normami branżowymi oraz powinien uwzględniać specyfikę każdej instalacji elektrycznej.

Pytanie 5

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. jest zasilana bardzo niskim napięciem.
B. posiada podwójną lub wzmocnioną izolację.
C. nie posiada ochrony przed dotykiem pośrednim.
D. ma uziemione przewodzące obudowy odbiorników.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 6

Ile wynosi moc całkowita odbiornika zmierzona w układzie przedstawionym na schemacie, jeżeli watomierze wskazują odpowiednio P1 = 1 000 W i P2 = 500 W?

Ilustracja do pytania
A. 866 W
B. 500 W
C. 1 500 W
D. 2 250 W
W tym układzie mamy klasyczny trójfazowy pomiar mocy metodą dwóch watomierzy. Odbiornik jest niesymetryczny, ale rezystancyjny, więc pracuje z cos φ ≈ 1 (prąd w fazie z napięciem). Dla takiego przypadku obowiązuje bardzo prosta zasada: moc całkowita odbiornika trójfazowego równa się sumie algebraicznej wskazań obu watomierzy. Czyli liczymy po prostu: P = P1 + P2 = 1000 W + 500 W = 1500 W. To właśnie 1 500 W jest mocą czynną pobieraną przez odbiornik z sieci. Warto zauważyć, że metoda dwóch watomierzy jest standardowo stosowana w praktyce przy pomiarach mocy w sieciach trójfazowych 3‑przewodowych (bez przewodu neutralnego), co opisują m.in. normy z serii PN‑EN 61557 oraz podręczniki z pomiarów elektrycznych. Jeżeli obciążenie jest rezystancyjne, watomierze zwykle pokazują wartości dodatnie i interpretacja jest bardzo prosta – wystarczy zsumować wskazania. W rzeczywistych instalacjach, np. w rozdzielniach zasilających silniki trójfazowe, grzałki trójfazowe czy piece oporowe, technik po prostu odczytuje P1 i P2, dodaje je i ma od razu moc całkowitą zestawu. Moim zdaniem to jedno z bardziej praktycznych narzędzi, bo pozwala szybko sprawdzić, czy odbiornik nie przekracza mocy znamionowej zabezpieczeń albo transformatora zasilającego. Dobrą praktyką jest też porównanie wyniku z mocą obliczeniową instalacji, żeby ocenić rezerwę mocy i ewentualnie dobrać odpowiednie przekładniki prądowe i napięciowe do stałych pomiarów energii.

Pytanie 7

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
B. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
C. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.
D. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 8

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YALY
B. YLY
C. YKY
D. YAKY
Odpowiedź YKY jest poprawna, ponieważ przewód ten charakteryzuje się izolacją wykonaną z polichlorku winylu (PVC), co zapewnia mu odpowiednią odporność na działanie warunków atmosferycznych oraz chemikaliów. Przewody YKY są powszechnie stosowane w instalacjach elektrycznych w budynkach, gdzie kluczowe jest zabezpieczenie przed uszkodzeniem i zapewnienie bezpieczeństwa użytkowania. Dodatkowo, przewód ten posiada trzy żyły miedziane, co umożliwia przesył energii elektrycznej w systemach trójfazowych. W zastosowaniach praktycznych, YKY wykorzystywany jest do zasilania maszyn, urządzeń oraz w instalacjach oświetleniowych, gdzie wymagana jest trwałość i odporność na różne czynniki. Standardy branżowe, takie jak PN-EN 50525-2-21, określają wymagania dla przewodów tego typu, podkreślając ich zastosowanie w budownictwie i przemyśle. Wiedza o typach przewodów i ich zastosowaniach jest kluczowa dla każdego specjalisty w dziedzinie elektroinstalacji, co pozwala na właściwy dobór materiałów do konkretnego zadania.

Pytanie 9

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Regulację obrotów przez zmianę napięcia twornika.
B. Hamowanie prądnicowe.
C. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
D. Hamowanie dynamiczne.
W kontekście przedstawionego schematu oraz dostępnych odpowiedzi, wiele osób może błędnie zinterpretować sposób regulacji obrotów silnika. Odpowiedzi związane z hamowaniem prądnicowym i dynamicznym dotyczą zupełnie innych mechanizmów, które nie są odpowiednie w kontekście zmiany napięcia twornika. Hamowanie prądnicowe polega na wykorzystaniu energii kinetycznej wirnika do generowania napięcia, co prowadzi do jego spowolnienia, a nie do regulacji prędkości w sposób ciągły. Z kolei hamowanie dynamiczne, które zazwyczaj polega na podłączeniu rezystorów do obwodu silnika, aby rozproszyć energię, jest techniką używaną głównie do zapewnienia szybkiego zatrzymania, co również nie odpowiada za regulację prędkości obrotowej. Kolejna koncepcja, czyli bocznikowanie uzwojenia wzbudzenia, odnosi się do innego aspektu sterowania silnikami prądu stałego, gdzie zmiana wartości prądu wzbudzenia wpływa na siłę elektromotoryczną, ale nie bezpośrednio na napięcie twornika. Użytkownicy mogą zapominać, że każda z tych metod ma swoje zastosowanie w specyficznych warunkach, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że regulacja obrotów przez zmianę napięcia twornika pozostaje najskuteczniejszą metodą w wielu zastosowaniach, gdzie płynność i precyzja są najważniejsze.

Pytanie 10

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. sodowa.
B. żarowa.
C. halogenowa.
D. rtęciowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 11

Na przedstawionej ilustracji wirnika silnika elektrycznego czarną strzałką wskazano

Ilustracja do pytania
A. pierścienie ślizgowe.
B. uzwojenie wirnika.
C. komutator.
D. przewietrznik.
Na ilustracji faktycznie widać pierścienie ślizgowe wirnika silnika elektrycznego. To elementy, które są osadzone na wale i mają postać współosiowych, gładkich pierścieni z metalu przewodzącego. Do tych pierścieni dociskają się szczotki, zwykle z grafitu lub miedzi z domieszkami, i w ten sposób doprowadza się prąd do uzwojeń wirnika w silnikach pierścieniowych lub synchronicznych. W odróżnieniu od komutatora, pierścienie są ciągłe, niepocięte na lamele, a prąd zmienia się w uzwojeniu dzięki zewnętrznemu układowi zasilania, a nie mechanicznej komutacji. W praktyce, przy pracy z silnikami pierścieniowymi np. w suwnicach, przenośnikach taśmowych czy dużych wentylatorach przemysłowych, technik bardzo często ma do czynienia właśnie z pierścieniami ślizgowymi: sprawdza stan powierzchni ślizgowej, dobór i zużycie szczotek, jakość połączeń z uzwojeniem wirnika. Z mojego doświadczenia wielu uczniów myli je z komutatorem, bo w obu przypadkach występują szczotki, ale różnica jest zasadnicza: komutator ma wiele wąskich segmentów izolowanych mikanitem, a pierścienie to zwykle 2–3 szerokie, gładkie powierzchnie. Z punktu widzenia dobrych praktyk eksploatacyjnych ważne jest, żeby pierścienie były czyste, nieprzepalone i miały równomierną, lekko matową powierzchnię – tak zalecają choćby instrukcje producentów silników i normowe wytyczne dotyczące eksploatacji maszyn elektrycznych. Wszelkie rowki, przypalenia czy nadmierne iskrzenie na szczotkach to sygnał do przeglądu. Znajomość budowy wirnika i rozróżnianie pierścieni ślizgowych od innych części bardzo ułatwia diagnozowanie usterek w praktyce serwisowej.

Pytanie 12

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Megaomomierza induktorowego
B. Amperomierza cęgowego
C. Mostka prądu zmiennego
D. Omomierza szeregowego
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 13

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór niewłaściwego narzędzia do wycinania bruzd pod przewody instalacji podtynkowej może prowadzić do kilku istotnych problemów. Często osoby decydują się na użycie narzędzi, które nie są przeznaczone do tego celu, co skutkuje nieefektywnym i nieprecyzyjnym wykonaniem. Na przykład, stosowanie pił lub narzędzi ręcznych może prowadzić do niekontrolowanego cięcia, co nie tylko zwiększa czas pracy, ale także może spowodować uszkodzenia strukturalne ścian. Ponadto, niewłaściwe podejście do obróbki materiałów, takich jak beton czy cegła, może skutkować powstawaniem dużych ilości pyłu oraz osypujących się odpadów, co jest niebezpieczne dla zdrowia. Przy wycinaniu bruzd, istotne jest, aby narzędzie było odpowiednio przystosowane do rodzaju materiału, co zapewnia nie tylko precyzję, ale również efektywność. Warto również pamiętać, że stosowanie niewłaściwego narzędzia narusza standardy bezpieczeństwa i może prowadzić do wypadków. Dlatego kluczowe jest, aby wybierać narzędzia, które są zgodne z wymaganiami branżowymi, co zapewnia nie tylko efektywność, ale także bezpieczeństwo podczas pracy.

Pytanie 14

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Najwyższy poziom ochrony.
B. Brak ochrony przed wilgocią i pyłem.
C. Wykorzystanie separacji ochronnej.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 15

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 20 A, 16 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 16

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 4,5 µF i połączyć równolegle.
B. 4,5 µF i połączyć szeregowo.
C. 18 µF i połączyć równolegle.
D. 18 µF i połączyć szeregowo.
Wybór kondensatora o pojemności 4,5 µF i połączenie go szeregowo jest koncepcją, która nie spełnia wymogów wymiany uszkodzonego kondensatora. Połączenie szeregowe powoduje, że łączna pojemność kondensatorów jest mniejsza niż pojedynczej kondensatora; w przypadku dwóch kondensatorów o pojemności 4,5 µF, łączna pojemność wyniesie 2,25 µF, co jest znacznie poniżej wymaganej wartości 9 µF. Warto pamiętać, że połączenie szeregowe zwiększa napięcie pracy układu, ale nie jest odpowiednie w sytuacji, gdy potrzebujemy określonej pojemności. Inną błędną koncepcją jest dobór kondensatorów o pojemności 18 µF. Połączenie takich kondensatorów w szereg również nie przyczyni się do uzyskania wymaganej wartości pojemności; w tym przypadku łączna pojemność wyniesie 9 µF, ale napięcie robocze znacznie wzrosłoby, co stwarza ryzyko uszkodzenia wrażliwych komponentów w obwodzie. W każdej sytuacji, kluczowe jest zapewnienie odpowiedniego dopasowania zarówno pojemności, jak i napięcia pracy, aby uniknąć potencjalnych uszkodzeń urządzenia. Dlatego ważne jest, aby przy wymianie kondensatorów kierować się zarówno teorią, jak i praktycznymi aspektami ich działania w układzie elektrycznym.

Pytanie 17

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 18

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 5 do 10
B. 3 do 5
C. 10 do 20
D. 2 do 3
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 19

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 500 V i 300 V
B. 200 V i 500 V
C. 200 V i 300 V
D. 300 V i 500 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 20

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Gniazdo typu B jest odpowiednie dla systemu TN-S, ponieważ zapewnia oddzielne zaciski dla przewodów ochronnego PE i neutralnego N. W systemie TN-S, kluczowym aspektem jest zachowanie separacji między tymi dwoma przewodami na całej długości instalacji, co minimalizuje ryzyko zakłóceń i zapewnia bezpieczeństwo użytkowników. Przykład zastosowania gniazda typu B można znaleźć w instalacjach elektrycznych w budynkach komercyjnych, gdzie stosowane są różnorodne odbiorniki elektryczne wymagające niezawodnego uziemienia oraz neutralnego przewodu. Dzięki oddzieleniu tych przewodów, osoby obsługujące gniazdo są lepiej chronione przed porażeniem elektrycznym. Zgodność z normami takimi jak PN-EN 60364-4-41, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym, jest kluczowa dla zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 21

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
B. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
D. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
Wybierając jedną z niepoprawnych odpowiedzi, można dostrzec kilka kluczowych nieporozumień związanych z kolejnością zamontowanych elementów w rozdzielnicy. Na przykład, w odpowiedzi, w której jako pierwszy wymieniony jest przekaźnik bistabilny, brakuje zrozumienia podstawowych zasad ochrony elektrycznej. Wyłącznik różnicowoprądowy powinien znajdować się na początku, ponieważ jego funkcją jest ochrona przed porażeniem prądem, a nie sterowanie obwodami. Umiejscowienie go na końcu systemu naraża użytkowników na niebezpieczeństwo. Kolejnym błędem jest pominięcie wyłącznika nadprądowego, który jest kluczowy w przypadku zwarcia. W odpowiedziach, w których pojawiają się automaty schodowe lub ochronniki przeciwprzepięciowe na początku listy, wprowadza się zamieszanie w hierarchii zabezpieczeń. Automaty schodowe pełnią inną funkcję, polegającą na sterowaniu oświetleniem w miejscach przejść, a nie na zabezpieczaniu instalacji. Ochronniki przeciwprzepięciowe powinny być umieszczane w późniejszej kolejności, jako dodatkowe zabezpieczenie, a nie jako pierwszy element w rozdzielnicy. Właściwe zrozumienie i kolejność tych urządzeń jest niezbędna do zapewnienia efektywności oraz bezpieczeństwa instalacji elektrycznych, zgodnie z normami branżowymi. Typowe błędy myślowe, takie jak niewłaściwe przypisanie funkcji poszczególnym elementom, mogą prowadzić do niebezpiecznych sytuacji oraz awarii w instalacjach, dlatego tak ważne jest przyswojenie sobie tej wiedzy.

Pytanie 22

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Żarowej
B. Halogenowej
C. Sodowej
D. Rtęciowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 23

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Funkcja budynku
B. Warunki atmosferyczne, którym podlega instalacja
C. Liczba odbiorników zasilanych z instalacji
D. Typ instalacji
Liczba odbiorników zasilanych z instalacji elektrycznej nie ma bezpośredniego wpływu na wymagania dotyczące częstotliwości sprawdzeń okresowych instalacji. Częstotliwość tych sprawdzeń jest przede wszystkim zależna od warunków zewnętrznych, w jakich funkcjonuje instalacja, przeznaczenia budynku oraz rodzaju instalacji. Na przykład, instalacje znajdujące się w warunkach trudnych, takich jak wysokie wilgotności czy narażenie na agresywne substancje chemiczne, wymagają częstszych przeglądów niż te w standardowych warunkach. Praktyka pokazuje, że zarówno w budynkach mieszkalnych, jak i przemysłowych, kluczowe jest, aby dostosować harmonogram kontrolowania stanu technicznego do specyfiki obiektów. Zgodnie z normami IEC 60364 oraz PN-EN 50110-1, kategorie ryzyka i warunki pracy powinny być brane pod uwagę przy ustalaniu częstotliwości przeglądów. Na przykład, w obiektach użyteczności publicznej i przemysłowych, gdzie występuje wyższe ryzyko uszkodzenia sprzętu elektrycznego, sprawdzenia powinny być przeprowadzane regularnie, nawet niezależnie od liczby odbiorników.

Pytanie 24

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Ściąganie izolacji z przewodu.
C. Klejenie na gorąco przewodu kabelkowego.
D. Zaciskanie końcówki tulejkowej.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 25

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YLY 2,5 mm2
C. ALY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 26

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. A.
B. D.
C. C.
D. B.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.

Pytanie 27

Które z uzwojeń bocznikowego silnika prądu stałego uległo przerwaniu, jeśli nastąpił gwałtowny wzrost prędkości obrotowej jego wirnika?

A. Twornika.
B. Komutacyjne.
C. Kompensacyjne.
D. Wzbudzenia.
Prawidłowo – w silniku bocznikowym prądu stałego gwałtowny wzrost prędkości obrotowej przy stałym napięciu zasilania jest typowym objawem przerwania uzwojenia wzbudzenia. W takim silniku uzwojenie wzbudzenia (bocznikowe) jest połączone równolegle z twornikiem i zasilane tym samym napięciem. Strumień magnetyczny w szczelinie powietrznej jest wprost zależny od prądu płynącego w tym uzwojeniu. Jeżeli obwód wzbudzenia zostanie przerwany, prąd wzbudzenia spada praktycznie do zera, a więc zanika strumień główny maszyny. Z równania prędkości elektromaszynowej n ≈ U / (k·Φ) widać, że przy spadku strumienia Φ dąży ona do bardzo dużych wartości – stąd nagłe rozbieganie się silnika. W praktyce warsztatowej i przemysłowej jest to bardzo niebezpieczny stan, dlatego zgodnie z dobrymi praktykami projektuje się układy zabezpieczeń, które kontrolują ciągłość obwodu wzbudzenia i przy jego przerwaniu natychmiast odłączają zasilanie twornika. W wielu instrukcjach eksploatacji maszyn DC wyraźnie podkreśla się konieczność sprawdzenia rezystancji uzwojenia wzbudzenia przed pierwszym uruchomieniem, a także po naprawach. Moim zdaniem, jeśli ktoś poważnie myśli o pracy z maszynami prądu stałego, to skojarzenie: przerwa we wzbudzeniu = ryzyko rozbiegania, powinno być automatyczne. W nowoczesnych napędach DC stosuje się często dodatkowe czujniki prędkości oraz układy elektroniczne, które przy nienaturalnym wzroście obrotów wyłączają napęd, ale klasyczna, podręcznikowa przyczyna takiego zachowania to właśnie zanik wzbudzenia. Dlatego odpowiedź „uzwojenie wzbudzenia” idealnie opisuje mechanizm fizyczny stojący za takim objawem usterki.

Pytanie 28

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S191C25
B. S193C25
C. S193B25
D. S191B25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 29

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania pierścieni Segera.
B. zaciskania złączek Wago.
C. profilowania przewodów.
D. wciskania łożysk.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do pierścieni Segera, które odgrywają kluczową rolę w branży mechanicznej i motoryzacyjnej. Umożliwiają one szybki i efektywny montaż oraz demontaż pierścieni zabezpieczających, które są powszechnie stosowane do zabezpieczania elementów na wałach lub w otworach. Dzięki charakterystycznym końcówkom, które pasują do otworów w pierścieniach, użytkownik może łatwo rozszerzyć lub ściągnąć pierścień Segera bez ryzyka uszkodzenia zarówno narzędzia, jak i zamontowanych komponentów. W praktyce użycie szczypiec do pierścieni Segera znacznie zwiększa efektywność pracy, minimalizując czas potrzebny na wymianę elementów, co jest niezbędne w kontekście utrzymania ruchu czy serwisowania maszyn. Ponadto, stosowanie odpowiednich narzędzi, takich jak te szczypce, wpisuje się w dobre praktyki inżynieryjne, które zalecają korzystanie z dedykowanych narzędzi do specyficznych zadań, co pozwala na uniknięcie błędów związanych z używaniem nieodpowiednich rozwiązań. Dlatego też, znajomość i umiejętność posługiwania się szczypcami do pierścieni Segera jest nie tylko korzystna, ale wręcz niezbędna w wielu dziedzinach techniki.

Pytanie 30

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Pomocniczych
B. Przesyłowych
C. Odbiorczych
D. Wytwórczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 31

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W2 a W3
B. Uszkodzony przewód pomiędzy W1 a S191B10
C. Uszkodzone przewody pomiędzy W1 a W2
D. Uszkodzony przewód pomiędzy W3 a E1
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 32

Który z przedstawionych wyłączników nie zapewni skutecznej ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S 230/400 V, w którym zmierzona wartość impedancji zwarcia L-PE wynosi 1 Ω?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór wyłącznika z innych opcji jako rozwiązania problemu ochrony przeciwporażeniowej w obwodzie zasilanym z sieci TN-S może wynikać z błędnego zrozumienia funkcji i zastosowań poszczególnych typów wyłączników. Wiele osób może myśleć, że każdy wyłącznik różnicowoprądowy wystarczy, aby zapewnić pełną ochronę przed porażeniem, co jest mylnym przekonaniem. Wyłączniki różnicowoprądowe są zaprojektowane głównie do wykrywania upływności prądu, a nie do przerywania obwodu w przypadku zwarć lub przeciążeń. Zastosowanie wyłącznika, który nie ma odpowiednich parametrów do reagowania na sytuacje awaryjne, może prowadzić do sytuacji, w której nieprawidłowe działanie instalacji elektrycznej będzie miało poważne konsekwencje. W praktyce stosowanie wyłączników nadprądowych w połączeniu z różnicowoprądowymi pozwala na uzyskanie wyższej jakości ochrony. Należy pamiętać, że norma PN-EN 61008-1 określa wymagania dotyczące wyłączników różnicowoprądowych, a także ich zastosowanie w różnych instalacjach elektrycznych. Zrozumienie różnic i funkcji każdego z tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 33

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Wiertarkę, punktak, zestaw wkrętaków
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 34

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. LGu 3×1,5 mm2
B. YDY 3×1,5 mm2
C. OMYp 3×1,5 mm2
D. YDYt 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 35

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Podłączenie instalacji oświetleniowej nie powinno być realizowane w sposób, który nie przestrzega zasad bezpieczeństwa i dobrych praktyk branżowych. Wiele błędnych podejść skupia się na niewłaściwym połączeniu przewodów elektrycznych. Na przykład, gdy przewód fazowy jest podłączony bezpośrednio do żarówki, a przewód neutralny jest odłączony, żarówka może pozostawać pod napięciem, co zwiększa ryzyko porażenia prądem w przypadku, gdy osoba zdecyduje się na wymianę żarówki. Tego rodzaju błędy wynikają z braku zrozumienia roli przewodów w obwodzie elektrycznym oraz podstawowych zasad działania włączników. Ponadto, niewłaściwe podłączenie przewodu ochronnego PE może prowadzić do niebezpiecznych sytuacji, w których brak odpowiedniego uziemienia stwarza ryzyko wystąpienia przepięć. Kluczowe jest, aby każdy instalator elektryczny stosował się do norm i standardów, takich jak normy IEC czy krajowe przepisy dotyczące instalacji elektrycznych, które określają, jak prawidłowo podłączać instalacje oświetleniowe, aby zapewnić maksymalne bezpieczeństwo użytkowników. Zrozumienie tych zasad jest niezbędne, aby uniknąć niebezpiecznych sytuacji, które mogą prowadzić do uszkodzeń lub nawet tragicznych w skutkach wypadków.

Pytanie 36

Którą z wymienionych czynności należy wykonać podczas oględzin instalacji elektrycznej?

A. Poprawić mocowanie przewodów w urządzeniach elektrycznych.
B. Wymienić wyłącznik różnicowoprądowy w rozdzielnicy.
C. Sprawdzić wizualnie osprzęt, zabezpieczenia i środki ochrony przeciwporażeniowej.
D. Zmierzyć rezystancję izolacji przewodów.
W tym pytaniu kluczem jest zrozumienie, czym są oględziny instalacji elektrycznej, a czym już są czynności pomiarowe lub naprawczo–montażowe. W praktyce zawodowej te etapy się wyraźnie rozdziela, chociaż wiele osób ma tendencję do wrzucania wszystkiego do jednego worka pod hasłem „sprawdzenie instalacji”. Oględziny to etap podstawowy, głównie wizualny, bez ingerencji w układ i bez wykonywania jeszcze pomiarów, chyba że mówimy o bardzo prostych kontrolach, typu sprawdzenie ciągłości przewodu ochronnego próbówką, ale to już trochę inna bajka. Częstym błędem jest utożsamianie oględzin z pomiarami. Pomiar rezystancji izolacji przewodów jest typową czynnością pomiarową, wykonywaną przy użyciu miernika rezystancji izolacji (megomierza) przy napięciach rzędu 250–1000 V DC, zgodnie z wymaganiami norm. To już jest etap badań po oględzinach, a nie sama wizualna kontrola. Takie pomiary wymagają odpowiedniej procedury, odłączenia odbiorników, często wyłączenia napięcia i zachowania ścisłych zasad BHP. Dlatego nie można tego traktować jako zwykłych oględzin. Podobnie bywa z odpowiedziami sugerującymi jakąś modyfikację instalacji. Wymiana wyłącznika różnicowoprądowego w rozdzielnicy to typowa czynność serwisowo–montażowa. Wchodzi się wtedy ingerencyjnie w układ, z zachowaniem procedur odłączenia zasilania, doboru właściwego typu i parametrów RCD oraz późniejszego sprawdzenia poprawności działania. To na pewno nie jest element oględzin, tylko już praca naprawcza lub modernizacyjna. Z kolei poprawianie mocowania przewodów w urządzeniach i osprzęcie też jest działaniem naprawczym. Oględziny mogą wykazać, że przewody są luźne, źle wprowadzone do osprzętu, dławiki nie trzymają, izolacja jest pod zaciskiem zamiast żyły itp., ale sam moment dokręcania zacisków czy poprawiania mocowania to już kolejny krok – usuwanie stwierdzonych nieprawidłowości. Typowy błąd myślowy polega na tym, że ktoś myśli: „skoro przy oględzinach widzę usterkę, to od razu ją naprawiam, więc to część oględzin”. W rzeczywistości w dokumentacji i normach wyraźnie rozdziela się: najpierw oględziny (wzrokowa ocena zgodności z projektem, normami, BHP, kompletności osprzętu, stanu mechanicznego i ochrony przeciwporażeniowej), a dopiero potem prace montażowe i pomiary. Z mojego doświadczenia warto mieć to w głowie, bo na egzaminach i w praktyce zawodowej takie rozróżnienie bardzo porządkuje sposób działania i ułatwia poprawne planowanie kontroli okresowych instalacji.

Pytanie 37

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 6,40 V
B. 7,07 V
C. 10,00 V
D. 4,50 V
Wartość średnia napięcia wyjściowego nieobciążonego prostownika jednopołówkowego zasilanego napięciem sinusoidalnym o wartości skutecznej 10 V można obliczyć, korzystając z odpowiednich wzorów. Dla prostownika jednopołówkowego, wartość średnia napięcia DC (Vdc) jest równa wartości szczytowej napięcia AC (Vp) podzielonej przez π. Wartość szczytowa napięcia sinusoidalnego oblicza się jako: Vp = Vrms × √2, co dla Vrms = 10 V daje Vp ≈ 14,14 V. Następnie obliczamy wartość średnią: Vdc = Vp / π ≈ 14,14 V / 3,14 ≈ 4,50 V. To pokazuje, że prostownik jednopołówkowy nie jest w stanie dostarczyć pełnej wartości skutecznej napięcia AC, a wartość średnia jest znacznie niższa. W praktyce, znajomość tej zależności jest kluczowa w projektowaniu zasilaczy, gdzie stosuje się prostowniki do konwersji napięcia AC na DC, co pozwala na zasilanie urządzeń elektronicznych. Wiedza ta jest również fundamentalna w kontekście analizy obwodów elektrycznych oraz zapewnienia optymalnego działania systemów zasilania.

Pytanie 38

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. miernika izolacji
B. omomierza
C. wskaźnika kolejności faz
D. mostka LC
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 39

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 40

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. parametrów wyłączników RCD.
B. rezystancji izolacji.
C. ciągłości połączeń.
D. impedancji pętli zwarcia.
Poprawna odpowiedź to rezystancja izolacji, ponieważ miernik przedstawiony na rysunku nie posiada zakresu do jej pomiaru. Rezystancja izolacji jest kluczowym parametrem, który pozwala ocenić jakość izolacji przewodów i urządzeń elektrycznych. W praktyce, pomiar ten jest realizowany za pomocą specjalistycznych mierników, które generują napięcia o wysokiej wartości, co umożliwia dokładne zbadanie stanu izolacji. Wartości rezystancji izolacji powinny być zgodne z normami, takimi jak PN-EN 60204-1, które określają minimalne wymagania dla sprzętu elektrycznego stosowanego w maszynach. Regularne pomiary rezystancji izolacji są istotne dla zapewnienia bezpieczeństwa użytkowników oraz zapobiegania potencjalnym zagrożeniom, takim jak porażenie prądem czy zwarcia. Dlatego kluczowe jest posiadanie odpowiedniego wyposażenia, które pozwoli na przeprowadzenie tych pomiarów.