Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:26
  • Data zakończenia: 7 grudnia 2025 10:35

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
C. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
D. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 2

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. rezystancji obwodu twornika.
B. napięcia twornika.
C. prądu wzbudzenia.
D. częstotliwości napięcia zasilania.
Wybór prądu wzbudzenia jako metody regulacji prędkości obrotowej silnika może prowadzić do nieporozumień, ponieważ w rzeczywistości przystosowanie prądu wzbudzenia wpływa na siłę elektromotoryczną (SEM), a nie bezpośrednio na prędkość obrotową. Mimo że zwiększenie prądu wzbudzenia w silniku prądu stałego może w pewnym stopniu zwiększyć moment obrotowy, to nie jest to efektywna metoda regulacji prędkości. Podobnie, zmiana częstotliwości napięcia zasilania jest właściwa dla silników prądu zmiennego, a nie dla silników prądu stałego, gdzie kluczowym parametrem jest napięcie przyłożone do twornika. Rezystancja obwodu twornika także nie jest metodą regulacji prędkości, lecz wpływa na straty mocy oraz wydajność silnika. Często występuje błędne przekonanie, że można regulować prędkość bezpośrednio przez te parametry, co prowadzi do nieefektywności operacyjnych i nieoptymalnych wyników w praktyce. W kontekście zastosowań przemysłowych, wybór niewłaściwej metody regulacji może skutkować nadmiernym zużyciem energii, a także uszkodzeniami silnika, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 3

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła C
B. żyła A
C. żyła B
D. żyła D

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca żyły C jako przerwanej jest prawidłowa z powodu wyników pomiarów rezystancji, które wskazują na istotną przerwę w obwodzie. Rezystancje R_A-B i R_D-A wynoszą 0, co oznacza, że obydwie żyły są w pełni przewodzące, co jest zgodne z teorią obwodów elektrycznych. Z kolei nieskończona rezystancja pomiędzy żyłami B-C i C-D sugeruje, że prąd nie ma możliwości przemieszczenia się przez te żyły, co jest klasycznym objawem uszkodzenia. W praktyce, identyfikacja przerwy w obwodzie jest kluczowa dla diagnostyki systemów elektrycznych, zwłaszcza w instalacjach przemysłowych. Przykład zastosowania tej wiedzy można znaleźć w systemach monitorujących, które regularnie sprawdzają integralność obwodów, co przyczynia się do minimalizacji ryzyka awarii. W kontekście norm, stosuje się procedury testowania rezystancji zgodnie z normami IEC 60364, co pozwala na systematyczne podejście do diagnozowania i utrzymania instalacji elektrycznych.

Pytanie 4

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. upływ prądu
C. przepięcie
D. przeciążenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 5

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YAKY
B. LY
C. YDY
D. OMY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 6

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 4,6 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 0,4 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 7

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony podstawowej.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 8

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Szczypce, wkrętak, lutownica
C. Ściągacz izolacji, lutownica, tester
D. Tester, wkrętak, lutownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 9

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YADY 5x4 mm2
B. YDY 5x2,5 mm2
C. YDY 5x1 mm2
D. YDY 5x1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDY 5x1,5 mm2 jest prawidłowy, ponieważ jego obciążalność długotrwała wynosi 18A, co jest wyższe od prądu znamionowego wyłącznika B16, wynoszącego 16A. W praktyce oznacza to, że przewód ten będzie w stanie efektywnie i bezpiecznie przewodzić prąd w instalacji trójfazowej w układzie TN-S. Takie rozwiązanie jest zgodne z normami PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrze dobrany przewód nie tylko zapewnia bezpieczeństwo, ale także wpływa na efektywność energetyczną całej instalacji. W przypadku przewodów miedzianych, ważne jest, aby ich przekrój był dostosowany do obciążenia, co pozwala uniknąć przegrzewania się izolacji i potencjalnych awarii. Przewód YDY 5x1,5 mm2 jest często stosowany w budownictwie mieszkalnym oraz w małych obiektach przemysłowych, gdzie obciążenia nie są bardzo wysokie, a bezpieczeństwo instalacji jest priorytetem.

Pytanie 10

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Wolframowy.
C. Rtęciowy.
D. Halogenowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówka LED, którą przedstawiono na ilustracji, jest doskonałym przykładem nowoczesnych rozwiązań oświetleniowych. Charakteryzuje się ona nie tylko wysoką efektywnością energetyczną, ale także długą żywotnością, sięgającą nawet 25 000 godzin. Diody LED, umieszczone na żółtych paskach wewnątrz szklanej bańki, zapewniają równomierne rozproszenie światła, co wpływa na komfort użytkowania. W przeciwieństwie do tradycyjnych żarówek wolframowych, które emitują dużą ilość ciepła, żarówki LED pozostają chłodne podczas pracy, co zwiększa bezpieczeństwo i zmniejsza ryzyko pożaru. Ponadto, żarówki LED są dostępne w różnych temperaturach barwowych, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb użytkownika. Przykładem zastosowania żarówek LED mogą być systemy oświetleniowe w biurach, gdzie ich wysoka efektywność przekłada się na zmniejszenie kosztów energii oraz poprawę jakości pracy dzięki lepszemu oświetleniu. Warto również zauważyć, że według norm unijnych i standardów efektywności energetycznej, stosowanie żarówek LED jest promowane jako sposób na ograniczenie emisji CO2 oraz zmniejszenie wpływu na środowisko.

Pytanie 11

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. FB
B. FE
C. PEN
D. PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 12

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. TN-C
C. TN-S
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 13

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z aluminium w formie drutu
C. Z miedzi w formie linki
D. Z aluminium w formie linki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 14

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YADY 5x6 mm2
B. YDY 5x2,5 mm2
C. YDY 5x1,5 mm2
D. YADY 5x4 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDY 5x2,5 mm2 do trójfazowej instalacji wtynkowej z wyłącznikiem B20 to dobry ruch. Ten przewód ma obciążalność prądową 26A, co spokojnie wystarcza na te 20A, które wymaga zabezpieczenie B20. W praktyce oznacza to, że nie ma ryzyka, że przewód się przegrzeje, a to jest kluczowe dla bezpieczeństwa. Kiedy dobierasz przewody, pamiętaj, żeby zawsze myśleć o maksymalnym obciążeniu, bo to ważne. W trójfazowych instalacjach dobór przewodów musi być starannie przemyślany, żeby zrównoważyć obciążenia na poszczególnych fazach. Fajnie, że bierzesz pod uwagę normy, jak PN-IEC 60364 – to pokazuje, że robisz to odpowiedzialnie. Zwróć też uwagę na czynniki zewnętrzne, takie jak temperatura czy położenie przewodów – mogą one wpłynąć na ich obciążalność.

Pytanie 15

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. w lokalach mieszkalnych w miejscach o łatwym dostępie
D. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi, wyłącznie w zamkniętych szafkach, jest prawidłowa z kilku powodów. Przede wszystkim, umiejscowienie liczników w lokalach mieszkalnych może prowadzić do utrudnionego dostępu dla personelu technicznego oraz stwarzać zagrożenie dla bezpieczeństwa mieszkańców. Zgodnie z normami branżowymi, takimi jak PN-EN 62053, liczniki powinny być instalowane w miejscach, które zapewniają ich łatwą eksploatację, ale nie mogą naruszać prywatności użytkowników lokali mieszkalnych. Zastosowanie zamkniętych szafek nie tylko zabezpiecza urządzenia przed zniszczeniem, ale także minimalizuje ryzyko nieautoryzowanego dostępu. Przykładowo, w wielu nowoczesnych budynkach mieszkalnych, liczniki są zlokalizowane w wydzielonych pomieszczeniach technicznych, co pozwala na efektywne zarządzanie energią oraz ułatwia przeprowadzanie niezbędnych pomiarów i konserwacji. Takie podejście jest zgodne z najlepszymi praktykami w zarządzaniu budynkami i zapewnia bezpieczeństwo oraz komfort mieszkańców.

Pytanie 16

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Piła do metalu
B. Poziomnica
C. Młotek
D. Ściągacz izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 17

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. weryfikacja oznaczeń obwodów oraz zabezpieczeń
B. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
C. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. pomiar rezystancji uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 18

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i L3
B. L1 i L3
C. L1 i PE
D. N i PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 19

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii kablowej zasilającej budynek.
B. instalacji elektrycznej.
C. linii napowietrznej niskiego napięcia.
D. instalacji odgromowej budynku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 20

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Przenośną.
C. Biurową.
D. Punktową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 21

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Żarówka halogenowa
C. Świetlówka tradycyjna
D. Lampa rtęciowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 22

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do ściągania izolacji z żył przewodów.
C. do docinania przewodów.
D. do zaciskania końcówek tulejkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 23

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych klatkowych.
B. Uniwersalnych.
C. Asynchronicznych pierścieniowych.
D. Synchronicznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 24

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.

Pytanie 25

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Nadpalony styk wyłącznika światła
B. Uszkodzony obwód zasilający piekarnik
C. Zbyt mały przekrój przewodów zasilających pomieszczenie
D. Słaby styk w lampie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na za mały przekrój przewodów zasilających pomieszczenie jest poprawna, ponieważ zbyt mały przekrój może prowadzić do nadmiernego spadku napięcia w instalacji elektrycznej. W momencie, gdy piekarnik elektryczny, który pobiera znaczne ilości prądu, jest włączony, powoduje to wzrost obciążenia na obwodzie zasilającym. Jeśli przewody zasilające są niewłaściwie dobrane do obciążenia, mogą nie być w stanie dostarczyć wystarczającej ilości energii, co skutkuje chwilowym spadkiem napięcia i przygasaniem żarówek oświetleniowych. Praktycznym przykładem może być sytuacja, gdy piekarnik i inne urządzenia są podłączone do jednego obwodu, co zwiększa obciążenie. Zgodnie z normami PN-IEC 60364, projektując instalacje elektryczne, należy dobierać przekroje przewodów na podstawie przewidywanego obciążenia, co pozwala uniknąć takich problemów. W przypadku zauważenia takich objawów, warto skonsultować się z elektrykiem, który oceni sytuację i doradzi ewentualne zmiany w instalacji.

Pytanie 26

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. TT
C. IT
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 27

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Zmieniając ustawienie dźwigni "ON-OFF"
B. Tworząc zwarcie w obwodzie zabezpieczonym
C. Naciskając przycisk "TEST"
D. Sprawdzając napięcie oraz prąd wyłącznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 28

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Każdorazowo podczas badań okresowych instalacji
B. Co najmniej raz na dwa lata
C. Przed każdym uruchomieniem urządzenia
D. Zgodnie z instrukcją obsługi danego odbiornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Zgodnie z instrukcją obsługi danego odbiornika' jest prawidłowa, ponieważ każda instalacja elektryczna oraz jej komponenty, takie jak odbiorniki, mają specyficzne wymagania dotyczące konserwacji określone przez producenta. Instrukcje obsługi zawierają zalecenia dotyczące częstotliwości przeglądów, które są dostosowane do charakterystyki danego urządzenia, jego zastosowania oraz warunków eksploatacyjnych. Na przykład, urządzenia używane w warunkach dużej wilgotności, jak np. piece elektryczne w łazienkach, mogą wymagać częstszych przeglądów. Regularna konserwacja pozwala na wczesne wykrywanie ewentualnych usterek, co wpływa na bezpieczeństwo użytkowania i niezawodność działania odbiorników. Ponadto, stosowanie się do zaleceń producenta związanych z konserwacją jest również zgodne z przepisami prawa, co może być istotne w przypadku inspekcji technicznych. Warto przy tym pamiętać, że w razie braku dostępu do instrukcji, należy zwrócić się o pomoc do specjalistów, którzy mogą ocenić stan techniczny urządzeń oraz zalecić odpowiednie działania.

Pytanie 29

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Samoczynne wyłączenie zasilania.
B. Połączenie wyrównawcze.
C. Separację odbiornika.
D. Użycie odbiorników II klasy ochronności.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 30

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 31

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
D. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 32

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Pomiar rezystancji izolacji
B. Weryfikacja braku zwarć międzyzwojowych
C. Sprawdzenie kondycji wycinków komutatora
D. Wyważanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 33

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. stanu izolacji przewodów.
B. asymetrii napięcia zasilającego.
C. stanu izolacji uzwojeń silnika.
D. skuteczności samoczynnego wyłączenia napięcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar stanu izolacji przewodów to naprawdę ważna rzecz, bo dzięki temu możemy mieć pewność, że instalacje elektryczne są bezpieczne i działają jak należy. Gdy łączniki są odłączone, to super moment, żeby przyjrzeć się przewodom zasilającym, bo to one są kluczowe dla całego systemu. Izolacja musi być w dobrym stanie, żeby uniknąć zwarć i innych nieprzyjemnych sytuacji. Z tego co wiem, normy takie jak IEC 60364 oraz nasze krajowe przepisy mówią, że regularne sprawdzanie izolacji to mus, szczególnie w instalacjach w fabrykach czy budynkach publicznych. Przykład? Gdyby izolacja się zepsuła, prąd mógłby uciekać do ziemi, a to naprawdę grozi porażeniem. Dlatego ważne jest, żeby korzystać z odpowiednich testerów izolacji, które działają, gdy łączniki są odłączone, bo to daje pewność, że pomiar jest dokładny. Powinno to być częścią planu konserwacji, żeby wszystko działało sprawnie i bezpiecznie przez dłuższy czas.

Pytanie 34

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 35

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski
B. Dwa klawisze i cztery niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 36

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w sypialniach.
B. w holach.
C. w łazienkach.
D. we wszystkich pomieszczeniach.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 37

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 38

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. niepewne zamocowanie puszki rozgałęźnej do podłoża.
B. uszkodzenie przewodu między punktami 2 – 3.
C. przerwa w przewodzie neutralnym.
D. zwarcie międzyprzewodowe między punktami 5 – 6.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na zwarcie międzyprzewodowe między punktami 5 – 6 jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji układu wykazała wartość 0 Ω. W normalnych warunkach, gdy łącznik jest otwarty, oczekiwalibyśmy, że rezystancja będzie nieskończona, co wskazuje na brak przepływu prądu. W przypadku stwierdzenia rezystancji równej 0 Ω, mamy do czynienia z niepożądanym połączeniem, czyli zwarciem, które prowadzi do ciągłego zasilania żarówki. Takie sytuacje mogą występować w wyniku uszkodzenia izolacji przewodów lub błędów w instalacji elektrycznej. W praktyce, aby zapobiegać takim usterkom, zaleca się regularne przeglądy i pomiary instalacji, zgodnie z normami PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa elektrycznego. Prawidłowa diagnoza i naprawa zwarć są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji.

Pytanie 39

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 40

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z numerem 4 jest trafna, bo w schematach elektrycznych łącznik świecznikowy zazwyczaj oznaczamy właśnie tym symbolem. Zgodnie z różnymi normami, zarówno międzynarodowymi, jak i krajowymi, jak PN-EN 60617, te graficzne znaki muszą być jednolite, żeby każdy mógł łatwo je rozczytać. Łącznik świecznikowy to ważny element, który pozwala na włączanie i wyłączanie świateł, więc jego oznaczenie musi być zgodne z przyjętymi zasadami. Na przykład, przy projektowaniu nowych instalacji elektrycznych w domach, odpowiednie oznaczenie łączników jest kluczowe, żeby później wszystko działało bez problemu i było łatwe w obsłudze. Jak się dobrze znasz na symbolach graficznych, to przyczyniasz się do tego, że praca z instalacjami elektrycznymi jest bezpieczniejsza i bardziej efektywna.