Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 14:59
  • Data zakończenia: 8 grudnia 2025 15:24

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 2

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje drgania zwory.
B. Zmniejsza napięcie podtrzymania cewki.
C. Zmniejsza siłę docisku zwory.
D. Likwiduje magnetyzm szczątkowy.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 3

Który element stycznika elektromagnetycznego przedstawiono na ilustracji?

Ilustracja do pytania
A. Zworę.
B. Komorę gaszeniową.
C. Sprężynę zwrotną.
D. Cewkę.
Cewka jest kluczowym elementem stycznika elektromagnetycznego, który odgrywa fundamentalną rolę w jego działaniu. Gdy do cewki doprowadzony jest prąd, wytwarza ona pole magnetyczne, które przyciąga ruchomy rdzeń stycznika, powodując zamknięcie styków. Dzięki temu możliwy jest przepływ prądu przez obciążenie, co jest istotne w różnych aplikacjach elektrycznych, od automatyki przemysłowej po systemy oświetleniowe. Cewki stosowane w stycznikach są zazwyczaj projektowane zgodnie z normami IEC oraz DIN, co zapewnia ich niezawodność i efektywność. Przykładem zastosowania stycznika z cewką może być automatyczne włączenie pompy wody w systemach zarządzania budynkami, gdzie cewka aktywuje styki, kiedy poziom wody osiąga określoną wartość. Zrozumienie działania cewki oraz jej roli w stycznikach jest kluczowe dla profesjonalistów w dziedzinie elektrotechniki, co pozwala na poprawne zaprojektowanie oraz efektywne użytkowanie systemów elektrycznych.

Pytanie 4

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Z transformatorem separacyjnym.
C. Telekomunikacyjne.
D. Ze stykiem ochronnym.
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 5

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. czyszczenia urządzeń w rozdzielniach
C. wymiany gniazd zasilających
D. montażu nowych punktów świetlnych
Wiesz, konserwacja instalacji elektrycznych to głównie dbanie o to, co już istnieje. Czyszczenie lamp czy tablic rozdzielczych jest mega ważne, bo brud może doprowadzić do różnych problemów, jak przegrzewanie się czy mniejsza efektywność. Wymiana gniazdek też jest istotna, bo często się zużywają i mogą stwarzać niebezpieczeństwo. Zrozumienie różnicy między montażem a konserwacją to kluczowa sprawa. Często zapominamy, że to różne rzeczy, które wymagają różnych umiejętności. Trzymanie się norm, jak PN-IEC 60364, to podstawa, żeby wszystko działało bezpiecznie i sprawnie. Myślę, że ważne, by nie mylić tych dwóch procesów, bo może to prowadzić do kłopotów.

Pytanie 6

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Obciążenie prądowe i czas reakcji
B. Prąd różnicowy oraz czas reakcji
C. Napięcie w sieci oraz prąd różnicowy
D. Napięcie w sieci oraz prąd obciążeniowy
Wybór parametrów, takich jak prąd obciążenia oraz czas zadziałania, nie jest odpowiedni dla oceny działania wyłącznika różnicowoprądowego. Prąd obciążenia odnosi się do natężenia prądu, które przepływa przez obwód w normalnych warunkach pracy, ale nie dostarcza informacji na temat ewentualnych upływów prądu. Zrozumienie różnicy między prądem obciążenia a prądem różnicowym jest kluczowe, ponieważ to prąd różnicowy jest wskaźnikiem zagrożenia dla bezpieczeństwa. Czas zadziałania w połączeniu z prądem obciążenia nie dostarczy pełnego obrazu skuteczności wyłącznika w sytuacjach awaryjnych. Podobnie, pomiar napięcia sieciowego oraz prądu różnicowego w aspekcie bezpieczeństwa jest niewłaściwy, ponieważ napięcie nie jest bezpośrednio związane z funkcjonowaniem wyłącznika różnicowoprądowego. W kontekście bezpieczeństwa elektrycznego, kluczowe jest, aby wyłącznik reagował na upływ prądu do ziemi, co wskazuje prąd różnicowy, a nie tylko na obciążenie czy napięcie. Ignorowanie tych fundamentalnych różnic prowadzi do błędnego rozumienia działania wyłączników różnicowoprądowych, co może mieć poważne konsekwencje w kwestii bezpieczeństwa użytkowników.

Pytanie 7

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 8

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Krzyżowy.
B. Schodowy.
C. Świecznikowy.
D. Grupowy.
Łącznik oznaczony literą P na schemacie montażowym to łącznik krzyżowy, który odgrywa kluczową rolę w układzie sterowania oświetleniem z trzech miejsc. Umożliwia on przełączanie obwodu w sposób, który pozwala na włączanie i wyłączanie oświetlenia z różnych lokalizacji. Przykładowo, w długim korytarzu, gdzie znajdują się trzy punkty dostępu, użycie łączników krzyżowych w połączeniu z łącznikami schodowymi na końcach umożliwia wygodne zarządzanie oświetleniem. Standardy branżowe, takie jak PN-EN 60669-1, wskazują, że użycie łączników krzyżowych w instalacjach oświetleniowych znacząco zwiększa komfort użytkowania oraz efektywność energetyczną. W praktyce, jeśli zainstalujemy łącznik krzyżowy w odpowiednich miejscach, zyskamy pełną kontrolę nad oświetleniem, co jest szczególnie przydatne w większych przestrzeniach.

Pytanie 9

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innej oprawy oświetleniowej, niż C, wskazuje na pewne nieporozumienia dotyczące klasyfikacji i kryteriów doboru opraw według stopnia ochrony IK. Wiele z odpowiedzi A, B i D może wydawać się odpowiednich na pierwszy rzut oka, jednak ich konstrukcja oraz ekspozycja na czynniki zewnętrzne mogą znacząco obniżyć ich wytrzymałość mechaniczną. Oprawy A i B posiadają elementy, które są bardziej narażone na uszkodzenia, takie jak wystające żarówki czy inne komponenty, co czyni je mniej odpornymi na uderzenia. Odpowiedzi te mogą wynikać z błędnego rozumienia, że bardziej estetyczne lub skomplikowane rozwiązania techniczne, takie jak złożone konstrukcje, oferują lepsze zabezpieczenie. W rzeczywistości najważniejszym czynnikiem jest prostota i solidność konstrukcji, co zwiększa odporność na uszkodzenia mechaniczne. Wybór oprawy z wyższym stopniem ochrony IK, jak w przypadku opcji C, jest kluczowy, szczególnie w obszarach narażonych na intensywne użytkowanie. Warto zwrócić uwagę, że nieprzestrzeganie standardów dotyczących odporności mechanicznej może prowadzić do częstszych awarii oraz zwiększonych kosztów eksploatacji. Dlatego zaleca się posługiwanie się wyłącznie sprawdzonymi i odpowiednimi standardami branżowymi w doborze opraw oświetleniowych.

Pytanie 10

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Rtęciowe.
C. Diodowe.
D. Wolframowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 11

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Gniazda wtykowego.
B. Oprawki źródła światła.
C. Puszki łączeniowej.
D. Wtyczki kabla zasilającego.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 12

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Powłoka.
B. Izolacja żyły.
C. Oplot włóknisty.
D. Uzbrojenie.
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 13

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 5-10 krotności prądu znamionowego
B. 10-20 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 14

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy V
D. Przerwa w uzwojeniu fazy W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 15

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 300/300 V
B. 300/500 V
C. 600/1000 V
D. 450/750 V
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 16

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Zwarcie na zaciskach odbiornika Z2 lub Z3.
C. Przerwa w przewodzie neutralnym.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Zwarcia pomiędzy przewodami fazowymi czy na zaciskach odbiorników Z2 lub Z3 są powszechnie mylone z przyczynami nadmiernego wzrostu napięcia na zaciskach Z1. Zwarcie w obwodzie fazowym prowadziłoby do znaczącego wzrostu prądu w danym obwodzie, co skutkowałoby zadziałaniem zabezpieczeń, a tym samym wyłączeniem zasilania, a nie do długotrwałego wzrostu napięcia. Podobnie, zwarcie na zaciskach odbiorników Z2 czy Z3 wpłynęłoby na ich własne parametry pracy, ale nie na napięcia na zaciskach Z1. Przerwa na zaciskach odbiornika Z2 lub Z3 wprowadzałaby natomiast zjawisko wyłączenia jednego z obwodów, co również nie prowadziłoby do wzrostu napięcia na Z1, a raczej do obniżenia jego wartości. Ostatecznie, nieprawidłowe założenie dotyczące braku wpływu przewodu neutralnego na rozkład napięcia jest typowym błędem myślowym. Kluczowym zrozumieniem jest, jak współdziałają ze sobą różne komponenty układu elektrycznego. Normy takie jak PN-IEC 60364 podkreślają znaczenie solidnych połączeń neutralnych dla zachowania stabilności napięcia w całym systemie. Użytkownicy powinni być świadomi potencjalnych konsekwencji niewłaściwego podejścia do analizy układów trójfazowych, co może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa.

Pytanie 17

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B20
B. B6
C. B16
D. C6
Wybór nieprawidłowego wyłącznika nadmiarowo-prądowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa instalacji elektrycznej. W przypadku odpowiedzi C6, sugerującej wyłącznik o prądzie znamionowym 6 A, jest to zdecydowanie zbyt mała wartość, biorąc pod uwagę, że obciążalność długotrwała przewodu o przekroju 1,5 mm² w ułożeniu B2 wynosi 16,5 A. Taki wybór może prowadzić do częstych wyłączeń, co staje się uciążliwe dla użytkowników i może być oznaką nieprawidłowego doboru zabezpieczeń. Z kolei wyłącznik B20, mający prąd znamionowy 20 A, przekracza dopuszczalną obciążalność przewodów, co naraża je na ryzyko przegrzania i uszkodzenia. Zastosowanie takiego wyłącznika w obwodzie może w dłuższym okresie prowadzić do poważnych zagrożeń, w tym pożaru. Warto także zauważyć, że wyłącznik B6 również nie jest odpowiedni, gdyż jego nominalny prąd jest zbyt niski, co skutkuje brakiem właściwej ochrony w przypadku obciążeń typowych dla instalacji domowej. Wybór odpowiedniego wyłącznika wymaga zrozumienia obciążenia obwodu oraz zastosowania właściwych norm, takich jak PN-IEC 60898-1, które jasno określają, jak dobierać wyłączniki w zależności od przewodów oraz ich zastosowania. Niezrozumienie tych zasad może prowadzić do poważnych błędów w instalacji, wpływających na bezpieczeństwo użytkowników.

Pytanie 18

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. z bitem M8
B. płaski.
C. PH2
D. TROX
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 19

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gB 20 A
C. aR 16 A
D. gG 16 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 20

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór odpowiedzi B jest słuszny, ponieważ narzędzie to, czyli szczypce do ściągania izolacji, jest kluczowe w procesie naprawy przewodów elektrycznych. Przy lutowaniu przeciętego przewodu LY, fundamentalnym krokiem jest przygotowanie jego końców poprzez usunięcie izolacji, co umożliwia bezpośredni dostęp do miedzianych rdzeni. Użycie odpowiednich narzędzi do ściągania izolacji zapewnia, że miedź nie zostanie uszkodzona, co jest istotne dla uzyskania solidnego połączenia lutowanego. W praktyce, szczypce do ściągania izolacji są zaprojektowane tak, aby zminimalizować ryzyko zgniecenia lub zerwania włókien miedzianych, co mogłoby prowadzić do problemów z przewodnictwem elektrycznym. Zgodnie z normami branżowymi, każdy elektryk powinien mieć w swoim zestawie narzędzi to urządzenie, aby zapewnić rzetelność i bezpieczeństwo wykonywanych połączeń. Dobrą praktyką jest także sprawdzenie, czy końce przewodów są czyste i nieuszkodzone przed przystąpieniem do lutowania, co zapewnia lepszą jakość połączenia.

Pytanie 21

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. hotelowy.
B. dwubiegunowy.
C. schodowy.
D. świecznikowy.
Wybór jednego z pozostałych typów łączników, takich jak dwubiegunowy, hotelowy czy świecznikowy, prowadzi do nieporozumień dotyczących ich funkcji oraz zastosowania. Łącznik dwubiegunowy, w przeciwieństwie do schodowego, służy głównie do włączania i wyłączania zasilania w obwodzie, ale nie umożliwia zdalnej kontroli z dwóch miejsc. Jego zastosowanie zazwyczaj ogranicza się do pojedynczego miejsca, co nie jest odpowiednie w kontekście schodów lub długich korytarzy. Z kolei łącznik hotelowy jest wykorzystywany w specyficznych aplikacjach w hotelach, gdzie ma inną funkcjonalność, najczęściej związaną z systemami zarządzania pokojami. Natomiast łącznik świecznikowy, używany do podłączenia świeczników i lamp, również nie spełnia roli łącznika schodowego, ponieważ nie jest skonstruowany do obsługi oświetlenia z dwóch miejsc jednocześnie. Wybierając nieodpowiedni typ łącznika, można narazić użytkowników na niewygodę lub wręcz niebezpieczeństwo, jeśli oświetlenie będzie nietypowo skonfigurowane. Użycie właściwego oznaczenia ma kluczowe znaczenie w zapewnieniu poprawności instalacji elektrycznej, co jest zgodne z obowiązującymi normami branżowymi.

Pytanie 22

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną z biegunami utajonymi.
C. Synchroniczną jawnobiegunową.
D. Komutatorową prądu przemiennego.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 23

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Bezpiecznik aparatowy.
C. Izolator wsporczy.
D. Wkładkę topikową bezpiecznika mocy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 24

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Ściągania izolacji z przewodu.
C. Docinania przewodu.
D. Zaciskania końcówek oczkowych.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 25

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
B. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
Wybór innych odpowiedzi opiera się na mylnych założeniach dotyczących właściwości przewodu oraz jego zastosowania. W przypadku sznura mieszkaniowego pięciożyłowego w izolacji polietylenowej, zrozumienie oznaczeń jest kluczowe. Sznury mieszaniowe zazwyczaj mają zastosowanie w różnych aplikacjach niż przewody oponowe, których elastyczność i odporność na uszkodzenia mechaniczne są ich kluczowymi cechami. Izolacja polietylenowa jest z kolei mniej odporna na wysokie temperatury i substancje chemiczne, co czyni ją mniej odpowiednią do zastosowań, które wymagają wyższej ochrony. W odniesieniu do przewodu pięciożyłowego, nie jest on zgodny z oznaczeniem OMY, które odnosi się do przewodów trzyżyłowych. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej również nie pasuje do opisanego oznaczenia, gdyż przewody warsztatowe są przeznaczone do innych zastosowań, często związanych z przemysłem. Typowe błędy wynikają z nieprawidłowego rozumienia oznaczeń przewodów oraz ich właściwości. Kluczowe znaczenie ma zrozumienie, że wybór odpowiedniego przewodu powinien być oparty na jego zastosowaniu, a także na właściwych normach i standardach branżowych, takich jak PN-EN 50525, które precyzują, jakie przewody powinny być stosowane w określonych warunkach.

Pytanie 26

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 27

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 28

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. oznaczenie i zabezpieczenie obszaru roboczego
B. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
C. wyłączenie zasilania z instalacji
D. pisemne polecenie do wykonania prac
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 29

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Przymiar kreskowy, ołówek traserski, rysik
C. Rysik, kątownik, punktak, młotek
D. Przymiar taśmowy, poziomnica, ołówek traserski
Wybór narzędzi do trasowania miejsca zamontowania rozdzielnicy podtynkowej powinien być dokładnie przemyślany, aby uniknąć błędów, które mogą wpłynąć na jakość i bezpieczeństwo instalacji. Użycie rysika, kątownika, punktaka i młotka, mimo że może wydawać się logiczne, nie jest idealnym podejściem w kontekście precyzyjnego trasowania. Rysik służy do pozostawiania śladów na twardych powierzchniach, ale nie zapewnia dokładności wymaganej do precyzyjnego wyznaczenia lokalizacji rozdzielnicy. Kątownik, choć przydatny do tworzenia kątów prostych, nie jest narzędziem do miar; jego właściwe zastosowanie wymaga współpracy z narzędziami pomiarowymi. Punktak oraz młotek mogą być użyte do oznaczania punktów, jednak ich zastosowanie jest mniej precyzyjne w kontekście trasowania. Z kolei sznurek traserki, mimo że pomocny w dachu do wyznaczania prostych linii, nie zastąpi precyzji przymiaru taśmowego i poziomnicy, które są dedykowane do dokładnych pomiarów. Typowym błędem myślowym jest założenie, że jakiekolwiek narzędzie do oznaczania wystarczy do wyznaczenia miejsca montażu. W rzeczywistości, aby prace były zgodne z normami oraz zapewniały bezpieczeństwo, konieczne jest użycie narzędzi pomiarowych, które gwarantują wysoką dokładność oraz powtarzalność pomiarów. Dobre praktyki w branży budowlanej i elektrycznej zalecają stosowanie narzędzi, które są przystosowane do specyficznych zadań, a zastosowanie przymiaru taśmowego, poziomnicy i ołówka traserskiego jest standardem w tego typu pracach.

Pytanie 30

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 31

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S191C25
C. S191B25
D. S193C25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 32

Schemat przedstawia układ podłączenia żarówki

Ilustracja do pytania
A. rtęciowej.
B. łukowej.
C. sodowej.
D. fluorescencyjnej.
Odpowiedź o lampach fluorescencyjnych jest na pewno trafna. Schemat pokazuje, jak działa zapłonnik, który jest kluczowy dla tych lamp. One świecą dzięki wyładowaniom elektrycznym w gazie w środku lampy. W praktyce, lampy fluorescencyjne są bardzo popularne, szczególnie w biurach, bo są energooszczędne i mogą świecić nawet do 15 000 godzin. Fajnie, że emitują mniej ciepła niż zwykłe żarówki, więc są też bardziej eco. No i warto wiedzieć, że zgodnie z normami EN 60598-1, trzeba uwzględniać zapłonniki, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie.

Pytanie 33

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 250 V
C. 1000 V
D. 500 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 34

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-1, II-4, III-2, IV-3
C. I-2, II-4, III-1, IV-3
D. I-4, II-3, III-2, IV-1
Analizując zastosowane podejścia w niepoprawnych odpowiedziach, widać, że błędnie interpretują one zasady dotyczące podłączenia łącznika krzyżowego. Wiele osób może mylnie sądzić, że wystarczy zamienić miejscami wejścia i wyjścia bez zrozumienia ich funkcji. Na przykład, konfiguracja I-2, II-4, III-1, IV-3 sugeruje, że wejście 2 pełni rolę głównego źródła sygnału, co jest niezgodne z funkcją łącznika krzyżowego. Tego typu błędne myślenie można przypisać braku zrozumienia, jak sygnały elektryczne przepływają przez system, co prowadzi do nieprawidłowego sterowania oświetleniem. Kolejnym typowym błędem jest nieodróżnianie między funkcją wejść a wyjść łącznika. Wejścia 1 i 4 mają za zadanie przyjmować sygnały sterujące, a wyjścia 2 i 3 są odpowiedzialne za przekazywanie energii do oświetlenia. Niezrozumienie tej struktury może prowadzić do nieefektywnego działania całego układu oraz problemów z instalacją. Ważne jest, aby zrozumieć, że każdy element ma swoją określoną rolę w systemie elektrycznym i nie można dowolnie zmieniać ich funkcji bez konsekwencji dla bezpieczeństwa i wydajności instalacji.

Pytanie 35

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 0,5 MΩ
B. 1,5 MΩ
C. 1,0 MΩ
D. 2,0 MΩ
Odpowiedź 1,0 MΩ jest poprawna, ponieważ zgodnie z normami dotyczącymi izolacji przewodów, minimalna wymagana wartość rezystancji izolacji dla instalacji na napięcie znamionowe do 500 V, w tym dla systemów FELV, powinna wynosić co najmniej 1,0 MΩ. Wysoka wartość rezystancji izolacji jest kluczowa dla zapewnienia bezpieczeństwa operacyjnego instalacji, minimalizując ryzyko porażenia prądem oraz uszkodzenia sprzętu spowodowanego przebiciem. Przykładowo, w praktyce, przeprowadzanie regularnych pomiarów rezystancji izolacji w instalacjach elektrycznych może pomóc w wczesnym wykryciu problemów, takich jak degradacja izolacji z powodu starzenia, wilgoci czy uszkodzeń mechanicznych. Wartości poniżej 1,0 MΩ mogą wskazywać na konieczność wymiany przewodów lub przeprowadzenia naprawy. Dobre praktyki branżowe zalecają, aby przed oddaniem do użytku nowej instalacji przeprowadzić pomiary rezystancji izolacji oraz regularnie je kontrolować, aby zapewnić, że nie spadnie poniżej tej wartości.

Pytanie 36

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących pomiarów mocy w układach trójfazowych. Na przykład, niektórzy mogą sądzić, że wystarczy zmierzyć moc jedynie jednego watomierza, co prowadzi do niedoszacowania rzeczywistej mocy całkowitej odbiornika. Takie podejście jest błędne, ponieważ nie uwzględnia różnic w prądach i napięciach w poszczególnych fazach, co jest kluczowe w przypadku układów niesymetrycznych. Inna często spotykana pomyłka to zakładanie, że moc w każdym z trzech faz jest identyczna, co jest prawdziwe tylko w idealnych warunkach symetrycznych. W rzeczywistości, w układach, gdzie występują różnice, całkowita moc musi być obliczana jako suma mocy z dwóch watomierzy, co jest praktycznym zastosowaniem zasady superpozycji. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat wydajności systemu energetycznego. Dodatkowo, wiele osób ma trudności z interpretacją wyników pomiarów, co może być spowodowane brakiem wiedzy na temat zasad działania watomierzy i ich zastosowania w różnych konfiguracjach. Kluczowe jest zrozumienie, że pomiar energii elektrycznej w systemach trójfazowych wymaga starannego podejścia i znajomości metodologii, aby unikać potencjalnych błędów i zapewnić dokładność analizy energetycznej.

Pytanie 37

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Rozpoznawanie symboli graficznych w instalacjach elektrycznych jest zadaniem wymagającym precyzyjnej wiedzy, która nie ogranicza się jedynie do identyfikacji poszczególnych oznaczeń. W kontekście przedstawionych ilustracji, częsty błąd polega na myleniu symboli neutralnego przewodu z innymi oznaczeniami. Każda ilustracja, która nie przedstawia linii z kropką na końcu, może być mylnie interpretowana jako symbol przewodu neutralnego. Na przykład, symbole graficzne wykorzystywane do oznaczenia przewodu fazowego czy ochronnego mają swoją specyfikę, a ich zrozumienie jest kluczowe dla poprawności wykonania instalacji. Uczestnicy mogą również wpaść w pułapkę skojarzeń z innymi standardami, co prowadzi do błędnych decyzji. Ważne jest, aby zrozumieć, że każdy przewód w instalacji pełni określoną rolę, a znajomość tych ról oraz ich graficznych reprezentacji jest fundamentalna. Nieprawidłowe podejście do oznaczeń może prowadzić do poważnych problemów w instalacji elektrycznej, takich jak zwarcia czy nieprawidłowe funkcjonowanie podłączonych urządzeń. W praktyce, zrozumienie konieczności prawidłowego oznaczania przewodów nie tylko wspiera bezpieczeństwo, ale także przyczynia się do efektywności systemów elektrycznych. W związku z tym, warto investować czas w naukę i doskonalenie umiejętności rozpoznawania poszczególnych symboli w zgodzie z obowiązującymi normami.

Pytanie 38

Który z symboli przedstawionych na rysunkach jest stosowany na schematach montażowych?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór symbolu innego niż przedstawiony na rysunku C. wskazuje na niezrozumienie podstawowych zasad oznaczania elementów w schematach montażowych. Każdy symbol na schemacie ma swoje specyficzne znaczenie i zastosowanie, które są ściśle określone przez normy branżowe, takie jak IEC 60617 czy ANSI Y32. W przypadku symboli A., B. i D., każdy z tych symboli nie odpowiada standardowym oznaczeniom używanym w elektronice. Na przykład, symbol A. mógłby być mylony z innym komponentem, takim jak kondensator czy opornik, co prowadzi do błędnej interpretacji funkcjonalności obwodu. W praktyce, takie pomyłki mogą skutkować nieprawidłowym montażem, a w konsekwencji awarią urządzenia. Ważne jest, aby przed podjęciem decyzji w odniesieniu do schematów montażowych, zrozumieć, jakie elementy są na nich przedstawione i jak wpływają na działanie całego układu. Dlatego kluczowe jest dokładne zapoznanie się z normami i dobrymi praktykami, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niewłaściwych wyborów w procesie projektowania elektronicznego.

Pytanie 39

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
B. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
C. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 40

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór złej piły do cięcia korytek może narobić bałaganu. Piły A, B czy D, które są raczej do drewna, nie nadają się do metalu. Jak próbujesz nimi ciąć metal, to wyjdziesz na tym źle - krawędzie będą postrzępione i to nie będzie ładnie wyglądać, a potem może być problem z montażem, bo elementy mogą się nie łączyć prawidłowo. Co więcej, cięcie metalu wymaga więcej siły, co może być męczące, a nawet grozić kontuzjami. Używanie piły do drewna do metalu to też szybkie zużycie narzędzia, a to niepotrzebnie zwiększa koszty. Dlatego tak ważne jest, żeby wiedzieć, które narzędzia do czego używać, bo to wpływa nie tylko na efektywność, ale i bezpieczeństwo podczas pracy.