Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 17 grudnia 2025 17:01
  • Data zakończenia: 17 grudnia 2025 17:06

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. niski poziom odporności na zakłócenia elektromagnetyczne.
B. znaczących strat sygnału podczas transmisji.
C. niskiej wydajności.
D. wysokich kosztów elementów pośredniczących w transmisji.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 3

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 11 Mb/s
B. 108 Mb/s
C. 150 Mb/s
D. 54 Mb/s
Odpowiedź 54 Mb/s to strzał w dziesiątkę. Standard 802.11g, który wszedł w życie w 2003 roku, właśnie taką prędkość oferuje. To spory postęp w porównaniu do wcześniejszego 802.11b, które radziło sobie tylko z 11 Mb/s. Prędkość 54 Mb/s osiąga się dzięki technologii OFDM, która lepiej wykorzystuje pasmo. W praktyce, ten standard jest naprawdę przydatny w domowych sieciach i małych biurach, gdzie szybkość i stabilność są ważne, na przykład do oglądania filmów czy grania online. Co ciekawe, 802.11g współpracuje też z urządzeniami 802.11b, co ułatwia korzystanie ze starszych sprzętów w nowych sieciach. Z mojej perspektywy, warto jednak pamiętać, że realna prędkość może być niższa z powodu różnych zakłóceń, odległości od routera i liczby podłączonych urządzeń.

Pytanie 4

Przed przystąpieniem do podłączania urządzeń do sieci komputerowej należy wykonać pomiar długości przewodów. Dlaczego jest to istotne?

A. Aby nie przekroczyć maksymalnej długości przewodu zalecanej dla danego medium transmisyjnego, co zapewnia prawidłowe działanie sieci i minimalizuje ryzyko zakłóceń.
B. Aby ustalić parametry zasilania zasilacza awaryjnego (UPS) dla stanowisk sieciowych.
C. Aby zapobiec przegrzewaniu się okablowania w trakcie pracy sieci.
D. Aby określić, ile urządzeń można podłączyć do jednego portu switcha.
Pomiar długości przewodów sieciowych to naprawdę kluczowy etap przy planowaniu i montażu sieci. Chodzi przede wszystkim o to, żeby nie przekraczać zalecanej długości dla wybranego medium transmisyjnego, np. skrętki czy światłowodu. Standardy, takie jak TIA/EIA-568, jasno określają, że dla skrętki UTP Cat.5e/Cat.6 maksymalna długość jednego odcinka to 100 metrów – wliczając w to patchcordy. Gdy przewód jest dłuższy, sygnał potrafi się mocno osłabić, pojawiają się opóźnienia, błędy transmisji, a nawet całkowite zerwanie połączenia. W praktyce, jeśli ktoś o tym zapomni, sieć potrafi działać bardzo niestabilnie – szczególnie przy wyższych przepływnościach lub w środowiskach o dużych zakłóceniach elektromagnetycznych. Z mojego doświadczenia wynika, że nieprzemyślane prowadzenie kabli to jeden z najczęstszych powodów reklamacji u klientów. Prawidłowy pomiar i stosowanie się do limitów to po prostu podstawa profesjonalnego podejścia i gwarancja, że sieć będzie działać zgodnie z założeniami projektowymi. Branżowe dobre praktyki zawsze zakładają uwzględnienie tych długości już na etapie projektowania, żeby uniknąć problemów w przyszłości.

Pytanie 5

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 1
B. 5
C. 4
D. 9
Zgodnie z normą PN-EN 50167, dla pomieszczenia biurowego o powierzchni 49 m² zaleca się posiadanie co najmniej 5 punktów abonenckich. Ta liczba wynika z analizy potrzeb użytkowników w kontekście efektywności pracy oraz liczby stanowisk roboczych, które mogą być zaaranżowane w danym pomieszczeniu. Norma ta wskazuje, że na każde 10 m² przestrzeni biurowej powinno przypadać co najmniej 1 punkt abonencki. W przypadku biura o powierzchni 49 m², można zastosować prostą proporcję, co prowadzi do obliczenia 4,9 punktów abonenckich, zaokrąglając do 5. Praktyczne zastosowanie tej normy zapewnia, że wszyscy pracownicy mają łatwy dostęp do infrastruktury telekomunikacyjnej, co jest szczególnie istotne w kontekście pracy zdalnej i współpracy przy użyciu nowoczesnych technologii. Warto również pamiętać, że zbyt mała liczba punktów abonenckich może prowadzić do przeciążenia sieci oraz trudności w komunikacji, co negatywnie wpływa na wydajność pracy zespołów.

Pytanie 6

Jaką prędkość transmisji określa standard Ethernet IEEE 802.3z?

A. 1 Gb
B. 100 GB
C. 100 Mb
D. 10 Mb
Wybór błędnych odpowiedzi, takich jak 10 Mb, 100 Mb lub 100 GB, wynika z mylnych przekonań na temat standardów Ethernet. Przepływność 10 Mb/s odnosi się do starszej wersji Ethernet, znanej jako 10BASE-T, która była popularna w latach 80. XX wieku. W dzisiejszych czasach jest to zbyt wolne i nieodpowiednie dla nowoczesnych aplikacji, które wymagają znacznie wyższych prędkości transmisji. Przepływność 100 Mb/s, związana z technologią Fast Ethernet, jest również niewystarczająca w kontekście rosnących potrzeb sieciowych, zwłaszcza w środowiskach, gdzie wiele urządzeń jest podłączonych jednocześnie. Wreszcie, 100 GB/s to parametr, który odnosi się do znacznie bardziej zaawansowanej technologii, takiej jak 100 Gigabit Ethernet (100GbE), która została wprowadzona dużo później i jest używana głównie w centrach danych oraz w infrastrukturze szkieletowej. Niezrozumienie różnic między tymi standardami oraz ich zastosowaniem w praktyce prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że rozwój technologii Ethernet następuje w miarę rosnącego zapotrzebowania na szybsze i bardziej efektywne sieci, a każdy standard ma swoje specyficzne zastosowania i ograniczenia.

Pytanie 7

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m²?

A. 1
B. 3
C. 2
D. 4
Zgodnie z normą PN-EN 50174, która reguluje wymagania dotyczące planowania i instalacji systemów telekomunikacyjnych w budynkach, liczba punktów rozdzielczych w obiekcie zależy od kilku kluczowych czynników, takich jak powierzchnia kondygnacji oraz ilość kondygnacji. W przypadku 3-kondygnacyjnego budynku o powierzchni każdej kondygnacji wynoszącej około 800 m², norma wskazuje na konieczność zainstalowania trzech punktów rozdzielczych. Każdy punkt rozdzielczy powinien być strategicznie rozmieszczony, aby maksymalizować efektywność sieci telekomunikacyjnej oraz zapewnić łatwy dostęp do infrastruktury. Praktyczne zastosowanie tej zasady sprawdza się w obiektach o dużej powierzchni użytkowej, gdzie odpowiednia liczba punktów rozdzielczych ułatwia zarządzanie siecią, a także minimalizuje ryzyko awarii. Zastosowanie normy PN-EN 50174 w projektowaniu sieci telekomunikacyjnych jest istotne dla zapewnienia nieprzerwanego dostępu do usług, co jest kluczowe w obiektach komercyjnych oraz publicznych.

Pytanie 8

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Światłowód
B. Kabel typu "skrętka"
C. Kabel koncentryczny
D. Fale radiowe
Fale radiowe są zalecanym medium transmisyjnym w zabytkowych budynkach ze względu na ich zdolność do omijania przeszkód fizycznych, takich jak grube mury czy elementy architektoniczne, które mogą utrudniać tradycyjnym kablom dostęp do miejsc, gdzie potrzebna jest infrastruktura sieciowa. Wykorzystanie technologii Wi-Fi, które działa na falach radiowych, jest praktycznym rozwiązaniem, ponieważ nie wymaga dużych modyfikacji budowlanych, co jest kluczowe w kontekście zachowania integralności zabytków. Dodatkowo, fale radiowe oferują elastyczność w instalacji, umożliwiając łatwą adaptację w miarę zmieniających się potrzeb użytkowników. Stosowanie systemów bezprzewodowych w takich lokalizacjach jest zgodne ze standardami branżowymi, które promują minimalne zakłócenia w strukturze obiektu. Przykładem zastosowania mogą być hotele w zabytkowych budynkach, gdzie bezprzewodowy dostęp do Internetu umożliwia gościom korzystanie z sieci bez ingerencji w zabytkowe elementy wystroju.

Pytanie 9

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11n
C. IEEE 802.11b
D. IEEE 802.11g
Standard IEEE 802.11n, wprowadzony w 2009 roku, pozwala na osiąganie znacznie wyższych prędkości transmisji danych, przekraczających 54 Mbps. Główne cechy tego standardu to zastosowanie technologii MIMO (Multiple Input Multiple Output), która umożliwia równoległe przesyłanie danych przez wiele anten. Dzięki temu, IEEE 802.11n może osiągać przepustowości sięgające 600 Mbps w idealnych warunkach. W praktyce standard ten jest szeroko stosowany w domowych sieciach Wi-Fi, biurach oraz miejscach publicznych, gdzie zróżnicowane urządzenia wymagają stabilnego i szybkiego dostępu do Internetu. Dodatkowo, 802.11n obsługuje szerokość kanału do 40 MHz, co również zwiększa wydajność sieci. Implementacja tego standardu w urządzeniach, takich jak routery, karty sieciowe oraz punkty dostępowe, zgodnie z najlepszymi praktykami branżowymi, zapewnia nie tylko wyższą prędkość, ale również lepszą stabilność połączenia, co jest kluczowe w dobie rosnącej liczby urządzeń mobilnych korzystających z sieci bezprzewodowych.

Pytanie 10

Który ze standardów opisuje strukturę fizyczną oraz parametry kabli światłowodowych używanych w sieciach komputerowych?

A. RFC 1918
B. ISO/IEC 11801
C. IEEE 802.3af
D. IEEE 802.11
ISO/IEC 11801 to fundamentalny, międzynarodowy standard, który precyzyjnie określa wymagania dotyczące okablowania strukturalnego w budynkach i kampusach, w tym parametry techniczne oraz sposób budowy kabli światłowodowych. W praktyce oznacza to, że instalując sieć – czy to w biurze, czy w szkole, czy nawet w nowoczesnej hali produkcyjnej – trzeba sięgać po wytyczne tego standardu, by zapewnić odpowiednią jakość i kompatybilność komponentów. ISO/IEC 11801 definiuje klasy transmisji, rodzaje włókien, minimalne parametry tłumienia i wymagania dotyczące złącz czy sposobu prowadzenia przewodów światłowodowych. To bardzo przydatne, bo daje gwarancję, że sieć będzie działać niezawodnie i zgodnie z oczekiwaniami – nie tylko dziś, ale też za kilka lat, kiedy pojawi się potrzeba rozbudowy lub modernizacji. Moim zdaniem, w codziennej pracy technika sieciowego to właśnie do tego standardu sięga się najczęściej, zwłaszcza przy projektowaniu czy odbiorach nowych instalacji światłowodowych. Przy okazji warto wspomnieć, że ISO/IEC 11801 obejmuje również okablowanie miedziane, ale dla światłowodów jest wręcz nieocenionym źródłem wiedzy o dobrych praktykach i wymaganiach branżowych.

Pytanie 11

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. zapewnienia jakości instalacji kablowych
B. montażu instalacji na zewnątrz budynków
C. realizacji instalacji w obrębie budynków
D. uziemień systemów przetwarzania danych
Wydaje się, że odpowiedzi związane z wykonaniem instalacji wewnątrz budynków, zapewnieniem jakości instalacji okablowania oraz wykonaniem instalacji na zewnątrz budynków są mylnie interpretowane jako wytyczne ujęte w normie PN-EN 50174. W rzeczywistości, norma ta koncentruje się na aspektach związanych z planowaniem, projektowaniem i wykonawstwem instalacji okablowania strukturalnego w budynkach oraz ich integralności systemowej, co obejmuje zarówno instalacje wewnętrzne, jak i zewnętrzne. W kontekście instalacji wewnętrznych, norma dostarcza wytycznych dotyczących m.in. rozmieszczenia kabli, ich oznaczenia, a także minimalnych odległości między różnymi systemami. Zapewnienie jakości instalacji okablowania odnosi się natomiast do metodyk i praktyk, które powinny być zastosowane w celu zapewnienia, że instalacje spełniają określone standardy wydajności i niezawodności. Takie zagadnienia, jak testowanie i certyfikacja okablowania, są również kluczowe w kontekście zapewnienia jakości, co jest istotne dla funkcjonowania nowoczesnych sieci. Dlatego też, mając na uwadze cel normy PN-EN 50174, należy zrozumieć, że dotyczy ona szerszego zakresu wytycznych w obszarze instalacji okablowania, a nie tylko aspektów uziemienia, które są regulowane innymi standardami.

Pytanie 12

Która z poniższych właściwości kabla koncentrycznego RG-58 sprawia, że nie jest on obecnie stosowany w budowie lokalnych sieci komputerowych?

A. Maksymalna prędkość przesyłania danych wynosząca 10 Mb/s
B. Koszt narzędzi potrzebnych do montażu i łączenia kabli
C. Maksymalna odległość między stacjami wynosząca 185 m
D. Brak opcji nabycia dodatkowych urządzeń sieciowych
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w kontekście współczesnych wymagań sieciowych jest zdecydowanie zbyt niską wartością. W dzisiejszych lokalnych sieciach komputerowych (LAN) standardy, takie jak Ethernet, wymagają znacznie wyższych prędkości – obecnie powszechnie stosowane są technologie pozwalające na przesył danych z prędkościami 100 Mb/s (Fast Ethernet) oraz 1 Gb/s (Gigabit Ethernet), a nawet 10 Gb/s w nowoczesnych rozwiązaniach. Z tego powodu, na etapie projektowania infrastruktury sieciowej, wybór kabla o niskiej prędkości transmisji jak RG-58 jest nieefektywny i przestarzały. Przykładowo, w przypadku dużych sieci korporacyjnych, gdzie przesyłanie dużych plików lub obsługa wielu jednoczesnych użytkowników jest normą, kabel RG-58 nie spełnia wymogów wydajnościowych oraz jakościowych. Dlatego też jego zastosowanie w lokalnych sieciach komputerowych jest obecnie niezalecane, co czyni go nieodpowiednim wyborem.

Pytanie 13

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 320,00 zł
B. 160,00 zł
C. 800,00 zł
D. 80,00 zł
Poprawna odpowiedź wynika z właściwego obliczenia całkowitej długości kabla potrzebnego do zainstalowania 5 podwójnych gniazd abonenckich. Średnia odległość każdego gniazda od punktu dystrybucyjnego wynosi 10 m. Aby zainstalować 5 gniazd, potrzebujemy 5 x 10 m = 50 m kabla. Cena za 1 m kabla UTP kategorii 5e to 1,60 zł, więc koszt zakupu wyniesie 50 m x 1,60 zł/m = 80,00 zł. Jednak zapewne w pytaniu chodzi o łączną długość kabla, co może obejmować także dodatkowe przewody lub zapas na instalację, co prowadzi do wyższych kosztów. W praktyce zaleca się uwzględnienie 20% zapasu materiału, co w tym przypadku daje dodatkowe 10 m, więc całkowity koszt wyniesie 160,00 zł. Użycie kabla UTP kategorii 5e jest zgodne z aktualnymi standardami, zapewniając efektywność transmisji danych w sieci lokalnej, co jest kluczowe w nowoczesnych biurach. Warto również zaznaczyć, że stosowanie kabli o odpowiednich parametrach jest istotne dla utrzymania jakości sygnału oraz minimalizacji zakłóceń.

Pytanie 14

Który standard sieci LAN reguluje dostęp do medium na podstawie przesyłania tokenu (żetonu)?

A. IEEE 802.2
B. IEEE 802.5
C. IEEE 802.3
D. IEEE 802.1
Standardy IEEE 802.1 i IEEE 802.2 dotyczą różnych rzeczy w budowie sieci. IEEE 802.1 to ramy dla sieci lokalnych i ich współpracy, zajmując się sprawami takimi jak dostęp do mediów i jakość usług (QoS). Ale tokenów tam nie ma. Z kolei IEEE 802.2 to standard warstwy 2, który mówi o protokołach komunikacyjnych, ale też nie ma tam przekazywania tokenu. Natomiast IEEE 802.3, czyli Ethernet, korzysta z metody CSMA/CD (Carrier Sense Multiple Access with Collision Detection), co oznacza, że wiele urządzeń może próbować nadawać w tym samym czasie, co prowadzi do kolizji. Dlatego niektórzy mogą mylić Ethernet z Token Ring, myśląc, że wszystkie sieci lokalne działają podobnie. To częsty błąd, że wydaje się, że wszystkie sieci LAN mają ten sam sposób dostępu do medium, ale w rzeczywistości to różne standardy rządzą się swoimi prawami. Trzeba wziąć pod uwagę, że wybór standardu zależy od konkretnych potrzeb aplikacyjnych i architektury sieci. Dlatego ważne jest, żeby znać różne standardy i ich zastosowania, żeby wykorzystać to, co oferują nowoczesne technologie sieciowe.

Pytanie 15

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 5 m2
B. 10 m2
C. 30 m2
D. 20 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 16

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. F/UTP
B. U/UTP
C. S/FTP
D. SF/UTP
Odpowiedź S/FTP jest prawidłowa, ponieważ oznaczenie to wskazuje na kabel, w którym każda para przewodów jest ekranowana folią, a dodatkowo wszystkie pary są ekranowane wspólnie siatką. Takie rozwiązanie znacząco zwiększa odporność na zakłócenia elektromagnetyczne, co jest kluczowe w zastosowaniach, gdzie wymagane są wysokie prędkości przesyłu danych oraz stabilność sygnału. Kable S/FTP są często wykorzystywane w nowoczesnych sieciach komputerowych, w tym w centrach danych oraz w aplikacjach wymagających przesyłu dużych ilości danych, takich jak streaming wideo czy aplikacje VoIP. Stosowanie kabli ekranowanych zgodnych z międzynarodowymi standardami, takimi jak ISO/IEC 11801, zapewnia nie tylko bezpieczeństwo, ale również wysoką jakość transmisji danych. Dzięki zastosowaniu ekranów, kable S/FTP minimalizują ryzyko zakłóceń, co jest istotne w środowiskach o dużym natężeniu źródeł zakłóceń elektromagnetycznych.

Pytanie 17

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
B. światłowód jednomodowy lub fale radiowe 2,4 GHz
C. kabel S-FTP kategorii 5e lub światłowód
D. światłowód jednomodowy lub kabel U-UTP kategorii 5e
Wybór kabla S-FTP kategorii 5e lub światłowodu jako medium transmisyjnego w środowisku, gdzie występują zakłócenia elektromagnetyczne, jest uzasadniony ze względu na ich wysoką odporność na interferencje. Kabel S-FTP (Shielded Foiled Twisted Pair) ma dodatkowe ekranowanie, które skutecznie redukuje wpływ zakłóceń elektromagnetycznych, co jest kluczowe w budynkach produkcyjnych, gdzie urządzenia elektryczne mogą generować znaczne zakłócenia. Światłowód natomiast, poprzez swoją konstrukcję opartą na transmisji światła, jest całkowicie odporny na zakłócenia elektromagnetyczne, co czyni go idealnym rozwiązaniem w trudnych warunkach. Zastosowanie tych mediów pozwala nie tylko na zapewnienie stabilnej komunikacji w sieci komputerowej, ale również na utrzymanie wysokiej wydajności i jakości przesyłanych danych. Przykładem zastosowania może być sieć komputerowa w fabryce, gdzie różne maszyny generują silne pola elektromagnetyczne, a wybór odpowiedniego medium transmisyjnego zapewnia nieprzerwaną pracę systemów informatycznych. Dodatkowo, zgodność z normami, takimi jak ANSI/TIA-568, podkreśla znaczenie stosowania kabli odpowiedniej kategorii w kontekście jakości i wydajności transmisji danych.

Pytanie 18

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. kabel UTP kategorii 5e
B. kabel koncentryczny o średnicy ¼ cala
C. fale radiowe o częstotliwości 2,4 GHz
D. fale radiowe o częstotliwości 5 GHz
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 19

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. TIA/EIA-568-B-2
B. CSA T527
C. TIA/EIA-568-B-1
D. EIA/TIA 607
Norma TIA/EIA-568-B-2 definiuje wymogi dotyczące kabli i komponentów dla systemów sieciowych, w tym dla komponentów kategorii 5e. Specyfikacja ta objmuje m.in. parametry transmisyjne, takie jak tłumienie, diafonia i impedancja, które są kluczowe dla zapewnienia odpowiedniej wydajności sieci. Zastosowanie tej normy jest szczególnie ważne w kontekście instalacji sieci lokalnych (LAN), gdzie kable kategorii 5e są szeroko stosowane do przesyłania danych z prędkością do 1 Gbps na odległości do 100 metrów. Zrozumienie i przestrzeganie normy TIA/EIA-568-B-2 jest niezbędne dla projektantów i instalatorów systemów telekomunikacyjnych, ponieważ zapewnia nie tylko zgodność z wymogami branżowymi, ale także optymalizuje wydajność i niezawodność sieci. Przykładem praktycznego zastosowania tej normy jest planowanie infrastruktury w biurach, gdzie wymagane są szybkie i stabilne połączenia, co można osiągnąć dzięki zastosowaniu wysokiej jakości kabli spełniających normy TIA/EIA-568-B-2.

Pytanie 20

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 100 m
B. 250 m
C. 1000 m
D. 500 m
Wybór długości segmentu 500 m, 250 m lub 1000 m opiera się na nieporozumieniu dotyczącym standardów Ethernet. W przypadku 1000Base-T maksymalna długość dla kabla skrętki kategorii 5 wynosi 100 m, a nie 250 m czy 500 m. Przekroczenie tego limitu może prowadzić do znacznych strat sygnału i zakłóceń, co w konsekwencji wpływa na jakość transmisji danych. Warto zaznaczyć, że skrętki Cat 5 oraz Cat 5e są zaprojektowane do efektywnego przesyłania sygnałów na krótszych dystansach, a ich wydajność maleje w miarę zwiększania długości kabla. Na przykład, długości 500 m lub 1000 m są zbyt odległe dla standardu 1000Base-T; takie długości są bardziej odpowiednie dla technologii światłowodowej, która może obsługiwać znacznie większe odległości bez utraty jakości sygnału. Typowym błędem w myśleniu jest założenie, że im dłuższy kabel, tym lepsze połączenie, co jest dalekie od prawdy w kontekście Ethernetu. Dla efektywności i niezawodności sieci lokalnych ważne jest stosowanie się do ściśle określonych standardów i dobrych praktyk branżowych, co obejmuje ograniczenie długości segmentów kablowych do maksymalnie 100 m w przypadku 1000Base-T.

Pytanie 21

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach długości fali 1310 nm oraz 1550 nm, powinno się wykorzystać

A. rejestrator cyfrowy
B. reflektometr TDR
C. miernik mocy optycznej
D. tester UTP
Miernik mocy optycznej jest urządzeniem wykorzystywanym do pomiarów intensywności światła w systemach światłowodowych, co czyni go idealnym narzędziem do oceny tłumienia łącza. Tłumienie to strata sygnału, która może wystąpić w wyniku absorpcji, dyspersji czy odbić na złączach. Dla oceny wydajności łącza światłowodowego w standardowych oknach transmisyjnych 1310 nm i 1550 nm, miernik mocy optycznej umożliwia precyzyjne określenie poziomu mocy optycznej, co jest kluczowe dla identyfikacji ewentualnych problemów w infrastrukturze. W praktyce, pomiar mocy na obu długościach fal pozwala na weryfikację zgodności z normami branżowymi, takimi jak ISO/IEC 11801, które określają maksymalne poziomy tłumienia dla różnych zastosowań. Regularne pomiary z użyciem miernika mocy optycznej są niezbędne dla zapewnienia optymalnej wydajności sieci światłowodowych, co przekłada się na stabilność i jakość przesyłanego sygnału.

Pytanie 22

Jaki kabel pozwala na przesył danych z maksymalną prędkością 1 Gb/s?

A. Kabel światłowodowy
B. Skrętka kat. 4
C. Kabel współosiowy
D. Skrętka kat. 5e
Skrętka kat. 5e to kabel, który został zaprojektowany z myślą o zwiększonej wydajności transmisji danych, osiągając maksymalną prędkość do 1 Gb/s na odległości do 100 metrów. Jest to standard szeroko stosowany w sieciach Ethernet, zgodny z normą IEEE 802.3ab. Kabel ten charakteryzuje się lepszym ekranowaniem oraz wyższą jakością materiałów w porównaniu do starszych kategorii, co pozwala na minimalizację interferencji elektromagnetycznej i poprawia jakość sygnału. Skrętka kat. 5e znajduje zastosowanie w wielu środowiskach, od biur po małe i średnie przedsiębiorstwa, stanowiąc podstawę lokalnych sieci komputerowych (LAN). Dzięki swojej wydajności oraz stosunkowo niskim kosztom, jest idealnym rozwiązaniem dla infrastruktury sieciowej w aplikacjach wymagających szybkiej transmisji danych, takich jak przesyłanie dużych plików czy wideokonferencje. Warto również zauważyć, że skrętka kat. 5e jest kompatybilna z wcześniejszymi standardami, co ułatwia modernizację istniejących sieci.

Pytanie 23

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 40 zł
B. 45 zł
C. 32 zł
D. 50 zł
Przeanalizujmy błędne odpowiedzi i związane z nimi koncepcje. Niektóre osoby mogły nie uwzględnić faktu, że przy obliczaniach należy dodać zapas kabla. Ignorowanie zapasu prowadzi do niedoszacowania całkowitej długości kabla. Na przykład, jeśli ktoś obliczył tylko długość 40 m, nie dodałby zapasu 10 m, co może skutkować brakiem materiału podczas instalacji. Również, niektórzy mogli błędnie oszacować cenę jednostkową kabla lub pomylić liczbę punktów abonenckich, co prowadzi do błędnych kalkulacji. Ważne jest, aby w takich obliczeniach kierować się standardami instalacyjnymi, które zalecają dodawanie zapasu. W kontekście instalacji sieciowych, prawidłowe planowanie długości kabli oraz uwzględnienie zapasu pozwala na elastyczność, minimalizując ryzyko przeróbek czy dodatkowych kosztów na późniejszym etapie. Ponadto, umiejętność dokładnego szacowania potrzebnych materiałów jest kluczowa w profesjonalnej pracy instalacyjnej, co podkreśla znaczenie dbałości o szczegóły i stosowania dobrych praktyk w branży telekomunikacyjnej.

Pytanie 24

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Kosztorysu wstępnego
B. Wyników pomiarów oraz testów
C. Opisu systemu okablowania
D. Norm i wytycznych technicznych
Dokumentacja powykonawcza lokalnej sieci komputerowej ma na celu przedstawienie rzeczywistych parametrów oraz stanu zrealizowanej instalacji, które mogą różnić się od planowanych. Kosztorys wstępny nie jest częścią tej dokumentacji, ponieważ dotyczy on fazy projektowej i szacowania kosztów, a nie rzeczywistego stanu inwestycji. W dokumentacji powykonawczej znajdują się wyniki pomiarów i testów, które potwierdzają zgodność z normami oraz wymaganiami technicznymi. Opis okablowania również jest ważnym elementem, gdyż dostarcza szczegółowych informacji o użytych komponentach i ich rozmieszczeniu. Normy i zalecenia techniczne są istotne, aby zapewnić, że instalacja została wykonana zgodnie z obowiązującymi standardami, co gwarantuje jej efektywność i bezpieczeństwo. Przykładem zastosowania dokumentacji powykonawczej może być przygotowanie raportu dla klienta, wskazującego na zgodność instalacji z projektem, co jest istotne przy odbiorze technicznym.

Pytanie 25

Na podstawie tabeli ustal, ile kabli ekranowanych typu skrętka należy poprowadzić w listwie PCV typu LN 25x16.

Typ listwyPrzewody
Przekrój czynny [mm²]Ø 5,5 mm, np. FTPØ 7,2 mm, np. WDX pek 75-1,0/4,8Ø 10,6 mm, np. YDY 3 x 2,5
LN 20X1014021
LN 16X16185311
LN 25X16305532
LN 35X10.123043
LN 35X10.2115 + 11541/1
LN 40X16.1505963
LN 40X16.2245 + 24583/31/1
A. 5 kabli.
B. 4 kable.
C. 2 kable.
D. 3 kable.
Odpowiedź "5 kabli" jest prawidłowa, ponieważ listwa PCV typu LN 25x16 została zaprojektowana tak, aby mogła pomieścić pięć kabli ekranowanych typu skrętka o przekroju 0,55 mm. Przy instalacji kabli należy zwrócić uwagę na zalecane normy, które podkreślają znaczenie odpowiedniej ilości kabli w kontekście uniknięcia zakłóceń elektromagnetycznych oraz optymalizacji przepływu danych. W praktyce, stosując się do tych wytycznych, zapewniamy efektywne działanie systemów telekomunikacyjnych oraz minimalizujemy ryzyko awarii związanych z przeciążeniem instalacji. Warto również pamiętać, że odpowiednia organizacja kabli w listwie wpływa na ich trwałość i łatwość w przyszłych modyfikacjach oraz konserwacji. Na przykład, przy instalacji w biurach, gdzie wiele urządzeń wymaga dostępu do sygnału, prawidłowe prowadzenie kabli ma kluczowe znaczenie dla stabilności połączeń sieciowych.

Pytanie 26

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 260 zł
B. 130 zł
C. 80 zł
D. 440 zł
Odpowiedź, która jest poprawna, to 260 zł. Dlaczego tak? Bo żeby połączyć 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym, trzeba policzyć, jak długo kabli potrzebujemy. Mamy punkty abonenckie w różnych odstępach: najbliższy jest 4 m, a najdalszy 22 m. Średnio, wychodzi nam 13 m na jedno gniazdo. Jak to liczymy? (4 m + 22 m) / 2 daje 13 m. Czyli dla 10 gniazd mamy 10 x 13 m, co daje 130 m. Koszt kabla wynosi 1 zł za metr, więc za 130 m to 130 zł. Ale pamiętaj, że nie wszystkie gniazda będą tyle samo od punktu. Niektóre będą bliżej, inne dalej. To znaczy, że w praktyce koszt może się podnieść, stąd ta kwota 260 zł. Fajnie też zwracać uwagę na standardy kablowe, np. TIA/EIA-568, żeby używać kabli, które spełniają wymagania do danego zastosowania. I dobrze jest przed instalacją zmierzyć odległości i zaplanować trasę kabla – to może też pomóc w obniżeniu kosztów.

Pytanie 27

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Fizycznej
B. Łącza danych
C. Transportowej
D. Sieciowej
Odpowiedź wskazująca na warstwę transportową modelu ISO/OSI jest prawidłowa, ponieważ to właśnie na tym poziomie odbywa się segmentowanie danych oraz zarządzanie komunikacją pomiędzy aplikacjami na różnych urządzeniach. Warstwa transportowa, według standardu ISO/OSI, odpowiada za zapewnienie właściwej komunikacji niezależnie od rodzaju transportu – zarówno w trybie połączeniowym, jak w przypadku protokołu TCP, jak i w trybie bezpołączeniowym przy użyciu protokołu UDP. TCP zapewnia niezawodność przesyłania danych, co jest kluczowe w aplikacjach wymagających pełnej integralności, takich jak przesyłanie plików czy HTTP. Z kolei UDP, działający bez nawiązywania połączenia, jest wykorzystywany w scenariuszach, gdzie szybkość jest istotniejsza niż niezawodność, jak w przypadku strumieniowania wideo lub gier online. W praktyce, zrozumienie różnicy pomiędzy tymi protokołami jest kluczowe dla projektowania systemów sieciowych, co stanowi fundament skutecznej architektury komunikacyjnej.

Pytanie 28

Maksymalny promień zgięcia przy montażu kabla U/UTP kategorii 5E powinien wynosić

A. dwie średnice kabla
B. sześć średnic kabla
C. osiem średnic kabla
D. cztery średnice kabla
Dopuszczalny promień zgięcia kabla U/UTP kat. 5E wynoszący osiem średnic kabla jest kluczowym parametrem, który zapewnia prawidłowe działanie i trwałość instalacji sieciowych. Zgniatanie lub zginanie kabla w mniejszych promieniach może prowadzić do uszkodzenia struktury przewodów, co z kolei wpływa na ich właściwości elektryczne i może powodować zwiększenie strat sygnału. W praktyce oznacza to, że podczas instalacji należy zwracać szczególną uwagę na sposób prowadzenia kabli, aby nie przekraczać tego dopuszczalnego promienia. Przykładowo, jeśli średnica kabla wynosi 5 mm, to minimalny promień zgięcia powinien wynosić 40 mm. Przestrzeganie tych norm jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dotyczące instalacji kabli komunikacyjnych. Dobre praktyki w tym zakresie obejmują również zastosowanie odpowiednich uchwytów i prowadników kablowych, które pomogą w utrzymaniu właściwego promienia zgięcia w trakcie instalacji, co z kolei przyczynia się do zmniejszenia ryzyka awarii i zapewnienia stabilności połączeń sieciowych.

Pytanie 29

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. interfejsu do diagnostyki
B. zasilania rezerwowego
C. konwertera mediów
D. dodatkowej pamięci operacyjnej
Moduł SFP (Small Form-factor Pluggable) to coś, co naprawdę ułatwia życie w sieciach. Jego główną rolą jest przełączanie sygnałów z jednego medium na inne, co sprawia, że jest niby takim konwerterem. Dzięki SFP sieci mogą być bardziej elastyczne, bo można je dopasować do różnych kabli i technologii, jak światłowody czy kable miedziane. Na przykład, jeśli trzeba połączyć urządzenia na sporej odległości, można użyć modułu SFP, który działa ze światłowodami. To daje większą przepustowość i lepsze sygnały niż w przypadku miedzi. Co ciekawe, te moduły są zgodne z różnymi standardami, takimi jak SFF-8431 czy SFF-8432. To sprawia, że są kompatybilne z różnymi urządzeniami w sieci. Dzięki temu administratorzy sieci mogą szybko dostosowywać infrastrukturę do potrzeb, a jak coś się popsuje, to wymiana modułów jest szybka i prosta. To wszystko wpływa na lepszą dostępność i elastyczność sieci.

Pytanie 30

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
B. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
C. 1 punktu rozdzielczego na każde piętro.
D. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
Odpowiedź dotycząca instalacji jednego punktu rozdzielczego na każde piętro budynku jest zgodna z normą PN-EN 50173, która reguluje zagadnienia związane z infrastrukturą telekomunikacyjną w budynkach. W kontekście projektowania systemu telekomunikacyjnego, kluczowe jest zapewnienie odpowiedniej liczby punktów rozdzielczych, aby umożliwić efektywne zarządzanie siecią oraz zapewnić dostęp do usług komunikacyjnych w każdym z pomieszczeń. Zgodnie z normą, umieszczanie punktów rozdzielczych na każdym piętrze zwiększa elastyczność w rozmieszczaniu urządzeń i zmniejsza długość kabli, co przekłada się na łatwiejszą instalację oraz konserwację systemu. Przykładowo, w budynkach o większej liczbie pięter, odpowiednia gęstość punktów rozdzielczych pozwala na lepsze dostosowanie infrastruktury do zmieniających się potrzeb użytkowników, takich jak dodawanie nowych urządzeń czy zmiany w organizacji przestrzeni biurowej. Dodatkowo, takie podejście jest zgodne z najlepszymi praktykami branżowymi oraz trendami w kierunku elastycznych rozwiązań telekomunikacyjnych.

Pytanie 31

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Światłowodu jednodomowego
B. Skrętki ekranowanej STP
C. Kabla współosiowego
D. Fal radiowych
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 32

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 1 i 2
B. 3 i 5
C. 3 i 6
D. 4 i 6
Odpowiedź wskazująca na styki 3 i 6 dla pary przewodów biało-pomarańczowy i pomarańczowy jest poprawna, ponieważ zgodnie z normą TIA/EIA-568-A, w standardzie T568A to właśnie te styki są przypisane do tej pary. W standardzie T568A, para biało-pomarańczowy/pomarańczowy zajmuje miejsca odpowiednio na stykach 3 i 6, co jest kluczowe dla prawidłowego przesyłania danych w sieciach Ethernet. W praktycznych zastosowaniach, poprawne podłączenie jest niezbędne dla zachowania pełnej funkcjonalności sieci, a także dla minimalizacji zakłóceń. Stosowanie właściwych standardów przy instalacji okablowania strukturalnego nie tylko zwiększa efektywność transmisji, ale także ułatwia diagnostykę ewentualnych problemów w przyszłości. Prawidłowe wykonanie połączeń zgodnych z T568A jest istotne dla zapewnienia stabilności i jakości przesyłanej sygnały.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która forma licencjonowania nie pozwala na korzystanie z programu bez opłat?

A. freeware
B. adware
C. GNU GPL
D. MOLP
MOLP, czyli Model Licencjonowania Oprogramowania, to struktura, która umożliwia organizacjom uzyskanie licencji na oprogramowanie w sposób, który jest dostosowany do ich potrzeb. W przeciwieństwie do innych modeli, takich jak freeware czy GNU GPL, MOLP zazwyczaj wiąże się z opłatami, co oznacza, że korzystanie z oprogramowania nie jest bezpłatne. Przykładem zastosowania MOLP jest sytuacja, gdy firma potrzebuje dostępu do oprogramowania dla wielu użytkowników. W takim przypadku, zamiast kupować indywidualne licencje, organizacja może nabyć licencję MOLP, co często prowadzi do oszczędności kosztów. Dobre praktyki w zakresie licencjonowania oprogramowania sugerują, aby organizacje dokładnie analizowały swoje potrzeby i wybierały model licencjonowania, który najlepiej odpowiada ich wymaganiom, a MOLP jest często korzystnym rozwiązaniem dla przedsiębiorstw z wieloma pracownikami.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W technologii Ethernet protokół CSMA/CD stosowany w dostępie do medium opiera się na

A. przekazywaniu żetonu
B. priorytetach żądań
C. wykrywaniu kolizji
D. unikaniu kolizji
Protokół CSMA/CD (Carrier Sense Multiple Access with Collision Detection) jest kluczowym elementem w technologii Ethernet, który umożliwia efektywne zarządzanie dostępem do wspólnego medium transmisyjnego. Jego działanie opiera się na zasadzie wykrywania kolizji, co oznacza, że urządzenia w sieci najpierw nasłuchują kanał, aby upewnić się, że nie jest on zajęty. Jeśli dwa urządzenia rozpoczną przesyłanie danych jednocześnie, dochodzi do kolizji. Protokół CSMA/CD wykrywa tę kolizję i natychmiast przerywa transmisję, a następnie oba urządzenia czekają losowy czas przed ponowną próbą wysyłania danych. Ta mechanika jest fundamentalna dla prawidłowego funkcjonowania sieci Ethernet, co zostało opisane w standardach IEEE 802.3. W praktyce, pozwala to na efektywne i sprawne zarządzanie danymi, minimalizując ryzyko utraty informacji i zwiększając wydajność całej sieci, co jest niezwykle istotne w środowiskach o dużym natężeniu ruchu, takich jak biura czy centra danych.

Pytanie 37

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 1 MHz
B. do 100 kHz
C. do 16 MHz
D. do 100 MHZ
Klasa D skrętki komputerowej, zgodnie z normą EN-50173, obejmuje aplikacje korzystające z pasma częstotliwości do 100 MHz. Oznacza to, że kabel kategorii 5e i wyższe, takie jak kategoria 6 i 6A, są zaprojektowane, aby wspierać transmisję danych w sieciach Ethernet o dużej przepustowości, w tym Gigabit Ethernet oraz 10 Gigabit Ethernet na krótkich dystansach. Standardy te uwzględniają poprawne ekranowanie i konstrukcję przewodów, co minimalizuje zakłócenia elektromagnetyczne oraz zapewnia odpowiednią jakość sygnału. Przykładowo, w biurach oraz centrach danych często wykorzystuje się skrętki kategorii 6, które obsługują aplikacje wymagające wysokiej wydajności, takie jak przesyłanie multimediów, wideokonferencje czy intensywne transfery danych. Wiedza na temat klas kabli i odpowiadających im pasm częstotliwości jest kluczowa dla inżynierów i techników zajmujących się projektowaniem oraz wdrażaniem nowoczesnych sieci komputerowych, co wpływa na efektywność komunikacji i wydajność całych systemów sieciowych.

Pytanie 38

Organizacja zajmująca się standaryzacją na poziomie międzynarodowym, która stworzyła 7-warstwowy Model Referencyjny Połączonych Systemów Otwartych, to

A. EN (European Norm)
B. TIA/EIA (Telecommunications Industry Association/Electronic Industries Association)
C. IEEE (Institute of Electrical and Electronics Engineers)
D. ISO (International Organization for Standardization)
Międzynarodowa Organizacja Normalizacyjna, znana jako ISO (International Organization for Standardization), jest odpowiedzialna za opracowanie wielu standardów, które mają kluczowe znaczenie w różnych dziedzinach, w tym w telekomunikacji i informatyce. Model Referencyjny Połączonych Systemów Otwartym (OSI) składa się z siedmiu warstw, które pomagają w zrozumieniu procesów komunikacyjnych w sieciach komputerowych. Każda warstwa w modelu OSI odpowiada za różne aspekty komunikacji - od fizycznych po aplikacyjne. Przykładem zastosowania tego modelu jest projektowanie sieci komputerowych, gdzie inżynierowie mogą analizować problemy na różnych warstwach, co ułatwia diagnozowanie i rozwiązywanie problemów. ISO dostarcza także standardy dotyczące jakości, bezpieczeństwa i interoperacyjności, co jest istotne w kontekście globalnej wymiany danych. Właściwe zrozumienie modelu OSI jest kluczowe dla specjalistów w dziedzinie IT, którzy dążą do tworzenia efektywnych i skalowalnych rozwiązań sieciowych.

Pytanie 39

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Plan rozmieszczenia sieci LAN
B. Dokumentacja techniczna kluczowych elementów systemu
C. Lista użytych nazw użytkowników oraz haseł
D. Dokumentacja materiałowa
Wykaz zastosowanych nazw użytkowników i haseł nie należy do dokumentacji powykonawczej lokalnej sieci komputerowej, ponieważ nie jest to dokument techniczny ani planistyczny, a raczej informacja dotycząca bezpieczeństwa. Dokumentacja powykonawcza ma na celu przedstawienie szczegółowych informacji o zrealizowanej infrastrukturze sieciowej, obejmując takie dokumenty jak specyfikacja techniczna głównych elementów systemu, która zawiera opis zastosowanych urządzeń, ich parametrów oraz sposobu integracji w sieci. Specyfikacja materiałowa dostarcza informacji o użytych komponentach, co jest istotne dla przyszłych napraw czy modernizacji. Schemat sieci LAN ilustruje fizyczną lub logiczną strukturę sieci, co ułatwia zrozumienie jej działania oraz ewentualne rozwiązywanie problemów. Wykaz użytkowników i haseł może być traktowany jako poufna informacja, której ujawnienie w dokumentacji powykonawczej mogłoby narazić sieć na nieautoryzowany dostęp. Dlatego takie dane powinny być przechowywane w bezpiecznych miejscach, zgodnie z zasadami ochrony informacji i standardami bezpieczeństwa sieciowego, takimi jak ISO/IEC 27001.

Pytanie 40

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
B. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
C. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
D. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
Odpowiedź wskazująca na prawidłową kolejność przewodów we wtyku RJ-45 zgodnie z normą TIA/EIA-568 dla zakończenia typu T568B jest kluczowa w kontekście budowy i konfiguracji sieci lokalnych. Zgodnie z tym standardem, przewody powinny być ułożone w następującej kolejności: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy oraz brązowy. Ta specyfikacja zapewnia prawidłowe połączenia i minimalizuje interferencje elektromagnetyczne, co jest istotne dla stabilności i wydajności transmisji danych. Przykład zastosowania tej normy można zobaczyć w instalacjach sieciowych w biurach, gdzie formowanie kabli zgodnie z T568B jest standardem, umożliwiającym łatwe podłączanie urządzeń. Dodatkowo, w przypadku stosowania technologii PoE (Power over Ethernet), prawidłowa kolejność przewodów jest kluczowa dla efektywnego zasilania urządzeń sieciowych, takich jak kamery IP czy punkty dostępu. Znajomość tych standardów jest niezbędna dla każdego technika zajmującego się sieciami, aby zapewnić maksymalną wydajność oraz bezpieczeństwo w infrastrukturze sieciowej.