Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 12:49
  • Data zakończenia: 19 grudnia 2025 13:08

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Switch pełni rolę głównego elementu w sieci o topologii

A. pierścienia
B. magistrali
C. pełnej siatki
D. gwiazdy
W topologii gwiazdy, switch pełni rolę centralnego punktu, do którego podłączone są wszystkie urządzenia w sieci. Dzięki temu, każda wiadomość wysyłana z jednego urządzenia do drugiego przechodzi przez switch, co pozwala na efektywne zarządzanie ruchem sieciowym oraz minimalizację kolizji. Topologia ta jest często stosowana w praktycznych wdrożeniach, na przykład w biurach czy sieciach lokalnych, gdzie wymagana jest wysoka przepustowość oraz niezawodność. Stosowanie switchów w sieciach o topologii gwiazdy wspiera zastosowanie segmentacji sieci, co zwiększa bezpieczeństwo oraz umożliwia łatwiejsze zarządzanie zasobami. Z perspektywy standardów branżowych, topologia gwiazdy jest zalecana w rozwoju nowoczesnych sieci lokalnych, co znajduje potwierdzenie w dokumentach takich jak IEEE 802.3, dotyczących Ethernetu. W praktyce eliminacja zbędnych połączeń i skoncentrowanie komunikacji poprzez switch pozwala na uproszczenie diagnozowania problemów sieciowych, co znacząco podnosi efektywność administracji IT.

Pytanie 2

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 160,00 zł
B. 800,00 zł
C. 80,00 zł
D. 320,00 zł
Poprawna odpowiedź wynika z właściwego obliczenia całkowitej długości kabla potrzebnego do zainstalowania 5 podwójnych gniazd abonenckich. Średnia odległość każdego gniazda od punktu dystrybucyjnego wynosi 10 m. Aby zainstalować 5 gniazd, potrzebujemy 5 x 10 m = 50 m kabla. Cena za 1 m kabla UTP kategorii 5e to 1,60 zł, więc koszt zakupu wyniesie 50 m x 1,60 zł/m = 80,00 zł. Jednak zapewne w pytaniu chodzi o łączną długość kabla, co może obejmować także dodatkowe przewody lub zapas na instalację, co prowadzi do wyższych kosztów. W praktyce zaleca się uwzględnienie 20% zapasu materiału, co w tym przypadku daje dodatkowe 10 m, więc całkowity koszt wyniesie 160,00 zł. Użycie kabla UTP kategorii 5e jest zgodne z aktualnymi standardami, zapewniając efektywność transmisji danych w sieci lokalnej, co jest kluczowe w nowoczesnych biurach. Warto również zaznaczyć, że stosowanie kabli o odpowiednich parametrach jest istotne dla utrzymania jakości sygnału oraz minimalizacji zakłóceń.

Pytanie 3

Jakie urządzenie pozwala na podłączenie drukarki bez karty sieciowej do sieci lokalnej komputerów?

A. Punkt dostępu
B. Serwer wydruku
C. Regenerator
D. Koncentrator
Serwer wydruku to specjalistyczne urządzenie, które umożliwia podłączenie drukarek nieposiadających wbudowanej karty sieciowej do lokalnej sieci komputerowej. Działa on jako pomost pomiędzy drukarką a siecią, zatem umożliwia użytkownikom zdalne drukowanie z różnych urządzeń w tej samej sieci. Użytkownik podłącza drukarkę do serwera wydruku za pomocą interfejsu USB lub równoległego, a następnie serwer łączy się z siecią lokalną. Zastosowanie serwera wydruku jest szczególnie przydatne w biurach oraz środowiskach, gdzie wiele osób korzysta z jednej drukarki. W praktyce, standardowe serwery wydruku, takie jak te oparte na protokole TCP/IP, umożliwiają również zarządzanie zadaniami drukowania oraz monitorowanie stanu drukarki, co jest zgodne z dobrymi praktykami w obszarze zarządzania zasobami drukującymi.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 3 i 5
B. 3 i 6
C. 4 i 6
D. 1 i 2
Odpowiedź wskazująca na styki 3 i 6 dla pary przewodów biało-pomarańczowy i pomarańczowy jest poprawna, ponieważ zgodnie z normą TIA/EIA-568-A, w standardzie T568A to właśnie te styki są przypisane do tej pary. W standardzie T568A, para biało-pomarańczowy/pomarańczowy zajmuje miejsca odpowiednio na stykach 3 i 6, co jest kluczowe dla prawidłowego przesyłania danych w sieciach Ethernet. W praktycznych zastosowaniach, poprawne podłączenie jest niezbędne dla zachowania pełnej funkcjonalności sieci, a także dla minimalizacji zakłóceń. Stosowanie właściwych standardów przy instalacji okablowania strukturalnego nie tylko zwiększa efektywność transmisji, ale także ułatwia diagnostykę ewentualnych problemów w przyszłości. Prawidłowe wykonanie połączeń zgodnych z T568A jest istotne dla zapewnienia stabilności i jakości przesyłanej sygnały.

Pytanie 6

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. reflektometru optycznego OTDR
B. diodowego testera okablowania
C. analizatora protokołów sieciowych
D. miernika uniwersalnego
Analizator protokołów sieciowych to kluczowe narzędzie w monitorowaniu i diagnostyce sieci lokalnych (LAN). Dzięki możliwości rejestrowania i analizy ruchu sieciowego, może on wykryć przeciążenie poprzez identyfikację spadków wydajności oraz zatorów w przesyłaniu danych. Na przykład, jeśli analizator wskazuje, że określony port jest mocno obciążony, administrator sieci może podjąć działania, takie jak optymalizacja trasowania pakietów czy zarządzanie przepustowością. W kontekście dobrych praktyk, wykorzystanie takich narzędzi pozwala na proaktywne zarządzanie siecią, zgodnie z zasadami ITIL (Information Technology Infrastructure Library), co zwiększa niezawodność i stabilność usług sieciowych. Warto również podkreślić, że analizatory protokołów, takie jak Wireshark, są standardem w branży, umożliwiając dogłębną analizę zarówno warstwy aplikacji, jak i transportowej, co jest niezbędne do zrozumienia i rozwiązania problemów z przeciążeniem.

Pytanie 7

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Organizer kabli
B. Kabel połączeniowy
C. Adapter LAN
D. Przepust szczotkowy
Wybór niewłaściwego elementu pasywnego do podłączenia okablowania z gniazd abonenckich do panelu krosowniczego może prowadzić do poważnych problemów w funkcjonowaniu sieci. Organizery kabli, mimo że są użyteczne w porządkowaniu okablowania, nie pełnią funkcji aktywnego połączenia sygnału między urządzeniami. Ich rola polega na utrzymaniu porządku i struktury w instalacjach, co jest istotne, ale samo w sobie nie zapewnia transmisji danych. Adapter LAN, z drugiej strony, służy do konwersji sygnałów między różnymi typami połączeń, ale nie jest idealnym rozwiązaniem do podłączania gniazd abonenckich do paneli krosowniczych. Przepust szczotkowy, choć może ułatwiać przeprowadzenie kabli przez otwory w szafach rackowych, również nie stanowi elementu, który realizowałby połączenia. Powoduje to, iż jego użycie w tym kontekście nie zapewnia efektywnej komunikacji sieciowej. Zrozumienie roli i specyfiki każdego z tych elementów jest kluczowe dla budowy stabilnych i wydajnych sieci, a podejmowanie decyzji bez właściwej wiedzy technicznej może prowadzić do obniżenia jakości usług sieciowych oraz ich niezawodności.

Pytanie 8

Funkcja roli Serwera Windows 2012, która umożliwia obsługę ruterów NAT oraz ruterów BGP w sieciach lokalnych, to

A. Direct Access oraz VPN (RAS)
B. routing
C. przekierowanie HTTP
D. serwer proxy aplikacji sieci Web
Rozważając dostępne odpowiedzi, warto zauważyć, że Direct Access i VPN (RAS) dotyczą zdalnego dostępu do sieci, a nie zarządzania ruchem między różnymi sieciami. Usługi te są używane do zapewnienia zdalnym użytkownikom bezpiecznego połączenia z siecią lokalną, ale nie obejmują zarządzania trasami czy translacją adresów, które są kluczowe dla routingu. Przekierowanie HTTP to technika stosowana w kontekście sieci web, która dotyczy przesyłania ruchu webowego na inny adres URL, co nie ma związku z routingiem ani z funkcjami NAT. Z kolei serwer proxy aplikacji sieci Web działa jako pośrednik w komunikacji między klientem a serwisem internetowym, jednak nie jest to równoznaczne z routowaniem czy obsługą sieci lokalnych. W przypadku błędnych odpowiedzi często pojawia się nieporozumienie dotyczące podstawowych funkcji i zastosowań różnych technologii sieciowych, co może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że routing to nie tylko dążenie do połączenia sieci, ale także zarządzanie tym połączeniem w sposób, który zapewnia efektywność i bezpieczeństwo, co jest fundamentalne w projektowaniu sieci.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Aby oddzielić komputery w sieci, które posiadają ten sam adres IPv4 i są połączone z przełącznikiem zarządzalnym, należy przypisać

A. aktywnych interfejsów do różnych VLAN-ów
B. statyczne adresy MAC komputerów do niewykorzystanych interfejsów
C. niewykorzystane interfejsy do różnych VLAN-ów
D. statyczne adresy MAC komputerów do aktywnych interfejsów
Przypisanie używanych interfejsów do różnych VLAN-ów jest kluczowym rozwiązaniem w kontekście separacji komputerów w sieci z tym samym adresem IPv4. VLAN (Virtual Local Area Network) pozwala na logiczne podzielenie jednego fizycznego switcha na wiele segmentów sieciowych, co znacząco zwiększa bezpieczeństwo i organizację ruchu sieciowego. Każdy VLAN działa jak oddzielna sieć, co oznacza, że komputery przypisane do różnych VLAN-ów nie mogą się bezpośrednio komunikować, nawet jeśli są podłączone do tego samego przełącznika. Przykładem mogą być VLAN-y dla różnych działów w firmie, takich jak dział finansowy i dział IT, gdzie odseparowanie ich od siebie pomaga w ochronie wrażliwych danych. W praktyce, aby skonfigurować VLAN-y, administratorzy sieci używają protokołów takich jak IEEE 802.1Q, który dodaje tagi VLAN do ramek Ethernet. Takie podejście jest szeroko stosowane w branży i jest zgodne z najlepszymi praktykami zarządzania siecią, zapewniając zarówno wydajność, jak i bezpieczeństwo.

Pytanie 11

Którą maskę należy zastosować, aby komputery o adresach IPv4, przedstawionych w tabeli, były przydzielone do właściwych sieci?

Adresy IPv4 komputerówOznaczenie sieci
192.168.10.30Sieć 1
192.168.10.60Sieć 1
192.168.10.130Sieć 2
192.168.10.200Sieć 3
A. 255.255.255.128
B. 255.255.255.192
C. 255.255.255.240
D. 255.255.255.224
Maska 255.255.255.192, znana również jako /26, jest prawidłowym wyborem w kontekście przydzielania adresów IPv4 do odpowiednich sieci. Ta maska pozwala na utworzenie 64 adresów IP w jednej podsieci, co jest rezultatem użycia 6 bitów na adresy hostów (2^6 = 64). Z tego wynika, że 2 adresy są zarezerwowane: jeden na identyfikację sieci, a drugi na rozgłoszenie (broadcast). Dzięki temu, w sieci 192.168.10.0 do 192.168.10.63 mamy 62 dostępne adresy dla hostów, co idealnie pasuje do wymaganej struktury sieci. Oddziela to sieć 1 i sieć 2, umożliwiając ich właściwe funkcjonowanie i komunikację. W praktyce, stosowanie maski /26 umożliwia efektywne zarządzanie adresacją IP, unikając konfliktów i zatorów w komunikacji między urządzeniami. W przypadku większych sieci z większą liczbą hostów, maski takie jak 255.255.255.128 (/25) mogą być bardziej odpowiednie, ale w tym przypadku 255.255.255.192 jest optymalnym rozwiązaniem.

Pytanie 12

Maksymalny promień zgięcia przy montażu kabla U/UTP kategorii 5E powinien wynosić

A. sześć średnic kabla
B. osiem średnic kabla
C. cztery średnice kabla
D. dwie średnice kabla
Dopuszczalny promień zgięcia kabla U/UTP kat. 5E wynoszący osiem średnic kabla jest kluczowym parametrem, który zapewnia prawidłowe działanie i trwałość instalacji sieciowych. Zgniatanie lub zginanie kabla w mniejszych promieniach może prowadzić do uszkodzenia struktury przewodów, co z kolei wpływa na ich właściwości elektryczne i może powodować zwiększenie strat sygnału. W praktyce oznacza to, że podczas instalacji należy zwracać szczególną uwagę na sposób prowadzenia kabli, aby nie przekraczać tego dopuszczalnego promienia. Przykładowo, jeśli średnica kabla wynosi 5 mm, to minimalny promień zgięcia powinien wynosić 40 mm. Przestrzeganie tych norm jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dotyczące instalacji kabli komunikacyjnych. Dobre praktyki w tym zakresie obejmują również zastosowanie odpowiednich uchwytów i prowadników kablowych, które pomogą w utrzymaniu właściwego promienia zgięcia w trakcie instalacji, co z kolei przyczynia się do zmniejszenia ryzyka awarii i zapewnienia stabilności połączeń sieciowych.

Pytanie 13

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. ff00/8
B. fc00/7
C. fe80/10
D. fec0/10
Odpowiedź 'fe80/10' jest poprawna, ponieważ jest to prefiks przydzielony adresom lokalnym łącza (Link-Local Addresses) w protokole IPv6. Adresy te są używane do komunikacji w sieciach lokalnych i nie są routowalne w Internecie. Prefiks 'fe80' oznacza, że adresy te mają zakres od 'fe80::' do 'febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff'. Adresy lokalne łącza są automatycznie przypisywane do interfejsów sieciowych, co umożliwia urządzeniom w tej samej sieci lokalnej komunikację bez konieczności konfiguracji serwera DHCP. Przykład zastosowania to komunikacja między urządzeniami w domowej sieci lokalnej, gdzie urządzenia mogą wykrywać się nawzajem i przesyłać dane bez dodatkowej konfiguracji. W kontekście standardów, adresy te są zgodne z dokumentem RFC 4862, który definiuje zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 14

Aby sprawdzić funkcjonowanie serwera DNS w systemach Windows Server, można wykorzystać narzędzie nslookup. Gdy w poleceniu podamy nazwę komputera, np. nslookup host.domena.com, nastąpi weryfikacja

A. strefy przeszukiwania wstecz
B. obu stref przeszukiwania, najpierw wstecz, a następnie do przodu
C. strefy przeszukiwania do przodu
D. aliasu przypisanego do rekordu adresu domeny
Analizując pozostałe odpowiedzi, można zauważyć pewne nieporozumienia dotyczące działania systemów DNS. Strefa przeszukiwania wstecz, jak sugeruje jedna z odpowiedzi, jest odpowiedzialna za tłumaczenie adresów IP na odpowiadające im nazwy domenowe. Użycie nslookup z adresem IP prowadziłoby do tego rodzaju zapytania, jednak w przypadku podania pełnej nazwy domeny, jak w podanym przykładzie, to strefa przeszukiwania do przodu jest tym, co jest wykorzystywane. Wspomniany alias dla rekordu adresu domeny również może wprowadzać w błąd, ponieważ nslookup nie sprawdza aliasów, gdy głównym celem jest uzyskanie adresu IP z nazwy domeny, ale zazwyczaj można to zrobić za pomocą opcji typu CNAME. Kluczowym błędem jest błędne zrozumienie funkcji narzędzia nslookup oraz roli poszczególnych stref w procesie rozwiązywania nazw. W praktyce, aby skutecznie diagnozować problemy z DNS, należy znać rolę stref przeszukiwania do przodu oraz wstecz, a także umieć korzystać z nslookup, aby odpowiednio testować i weryfikować rekordy DNS, co jest istotne w zarządzaniu infrastrukturą sieciową.

Pytanie 15

Który z protokołów nie jest wykorzystywany do ustawiania wirtualnej sieci prywatnej?

A. L2TP
B. SSTP
C. PPTP
D. SNMP
Protokół SNMP (Simple Network Management Protocol) jest standardowym protokołem używanym do zarządzania urządzeniami w sieciach IP. Jego głównym celem jest monitorowanie stanu urządzeń sieciowych, takich jak routery, przełączniki i serwery, a także zbieranie i organizowanie informacji o ich statusie. SNMP nie jest jednak protokołem stosowanym do konfiguracji wirtualnej sieci prywatnej (VPN). W kontekście VPN, inne protokoły, takie jak PPTP, L2TP i SSTP, są dedykowane do tworzenia bezpiecznych tuneli komunikacyjnych, które umożliwiają zdalnym użytkownikom dostęp do zasobów sieciowych. SNMP znajduje zastosowanie w zarządzaniu i monitorowaniu infrastruktury sieciowej, co jest kluczowe dla administratorów IT, natomiast protokoły VPN koncentrują się na bezpieczeństwie i prywatności danych w przesyłach sieciowych. W praktyce, SNMP może być używane razem z VPN, ale nie jest samodzielnym rozwiązaniem do ich konfiguracji.

Pytanie 16

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja, która planuje rozpocząć transmisję, nasłuchuje, czy w sieci występuje ruch, a następnie

A. wysyła prośbę o rozpoczęcie transmitowania
B. czeka na przydzielenie priorytetu transmisji przez koncentrator
C. oczekuje na żeton pozwalający na nadawanie
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się wolne
Wybór odpowiedzi, która mówi o wysyłaniu zgłoszenia żądania transmisji, jest niepoprawny. W metodzie CSMA/CD nie ma czegoś takiego. Stacja, która chce wysłać dane, najpierw sprawdza, co się dzieje w sieci, a nie wysyła jakiegoś żądania. To bardziej przypomina inne metody, jak Token Ring, gdzie stacje mogą prosić o pozwolenie na nadawanie. Oczekiwanie na żeton do nadawania też nie ma miejsca w CSMA/CD, bo ta metoda skupia się na wykrywaniu kolizji, a nie na posiadaniu jakiegoś żetonu. Jeszcze jedna rzecz, co do oczekiwania na nadanie priorytetu przez koncentrator - to też jest mylne, bo w CSMA/CD nie ma centralnego zarządzania jak w przypadku koncentratorów. Myślę, że te błędne informacje mogą wynikać z niezrozumienia, jak naprawdę działa sieć Ethernet i jakie mechanizmy są tam używane. Ważne jest, żeby wiedzieć, że CSMA/CD polega na tym, że każdy w sieci decyduje sam, kiedy może wysłać dane, bazując na tym, co dzieje się w medium, a nie na zewnętrznych sygnałach albo pozwoleniach od innych urządzeń.

Pytanie 17

Jakie medium transmisyjne powinno być użyte do połączenia dwóch punktów dystrybucyjnych oddalonych o 600 m?

A. Skrętkę UTP
B. Światłowód
C. Przewód koncentryczny
D. Skrętkę STP
Wybór światłowodu jako medium transmisyjnego do połączenia dwóch punktów dystrybucyjnych oddalonych o 600 m jest uzasadniony przede wszystkim jego zdolnością do przesyłania danych na dużych odległościach przy minimalnych stratach sygnału. Światłowody, dzięki swojej konstrukcji opartej na włóknach szklanych, oferują pasmo przenoszenia sięgające gigabitowych prędkości, co czyni je idealnym rozwiązaniem dla nowoczesnych sieci telekomunikacyjnych. Przykładowo, w przypadku instalacji sieci w dużych biurowcach lub kampusach, światłowody pozwalają na łączenie różnych budynków bez obaw o degradację sygnału, która mogłaby wystąpić, gdyby zastosowano miedź. Dodatkowo, światłowody są odporne na zakłócenia elektromagnetyczne, co czyni je preferowanym wyborem w środowisku intensywnego korzystania z technologii radiowych i elektronicznych. Warto również zaznaczyć, że zgodnie z aktualnymi standardami branżowymi, takie jak 802.3z dla Ethernetu, światłowody są rekomendowane do połączeń wymagających wysokiej wydajności oraz dużej niezawodności. Stanowią one przyszłość komunikacji sieciowej, zwłaszcza w kontekście rosnących potrzeb na szybkość i jakość przesyłu danych.

Pytanie 18

Adres IP serwera, na którym jest zainstalowana domena http://www.wp.pl to 212.77.98.9. Co jest przyczyną sytuacji przedstawionej na zrzucie ekranowym?

C:\>ping 212.77.98.9

Pinging 212.77.98.9 with 32 bytes of data:
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60
Reply from 212.77.98.9: bytes=32 time=30ms TTL=60
Reply from 212.77.98.9: bytes=32 time=29ms TTL=60

Ping statistics for 212.77.98.9:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 29ms, Maximum = 30ms, Average = 29ms

C:\>ping www.wp.pl
Ping request could not find host www.wp.pl. Please check the name and try again.
A. Stacja robocza i domena www.wp.pl nie pracują w tej samej sieci.
B. Nie ma w sieci serwera o adresie IP 212.77.98.9.
C. Błędny adres serwera DNS lub brak połączenia z serwerem DNS.
D. Domena o nazwie www.wp.pl jest niedostępna w sieci.
Poprawna odpowiedź wskazuje, że problem z dostępem do domeny www.wp.pl może być spowodowany błędnym adresem serwera DNS lub brakiem połączenia z tym serwerem. Zrzut ekranowy pokazuje, że ping do adresu IP 212.77.98.9 zakończył się sukcesem, co oznacza, że serwer odpowiada na zapytania. Jednakże, gdy próbujemy pingować nazwę domeny www.wp.pl, otrzymujemy komunikat o błędzie. To sugeruje, że system nie może przetłumaczyć nazwy domeny na odpowiedni adres IP. W praktyce, taka sytuacja może wystąpić, gdy konfiguracja serwera DNS jest błędna lub gdy urządzenie nie ma dostępu do serwera DNS. W organizacjach wdraża się monitorowanie i diagnostykę DNS jako standardową praktykę, aby szybko identyfikować i rozwiązywać tego typu problemy. Użytkownicy powinni także być świadomi, że poprawne ustawienia DNS są kluczowe dla funkcjonowania wszelkich usług internetowych, w tym e-maila oraz stron www.

Pytanie 19

Jakie protokoły są częścią warstwy transportowej w modelu ISO/OSI?

A. ARP oraz RARP (Address Resolution Protocol i Reverse Address Resolution Protocol)
B. TCP oraz UDP (Transmission Control Protocol i User Datagram Protocol)
C. ICMP oraz RIP (Internet Control Message Protocol i Routing Information Protocol)
D. IP oraz IPX (Internet Protocol i Internetwork Packet Exchange)
TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol) to dwa kluczowe protokoły warstwy transportowej w modelu ISO/OSI. TCP zapewnia niezawodną, połączeniową komunikację, co oznacza, że gwarantuje dostarczenie danych i ich kolejność. Jest powszechnie używany w zastosowaniach wymagających wysokiej niezawodności, jak przeglądarki internetowe, e-maile czy przesyłanie plików. Przykładem wykorzystania TCP jest protokół HTTP, który jest fundamentem przeglądania sieci. Z kolei UDP, będący protokołem bezpołączeniowym, pozwala na szybszą transmisję danych, co sprawia, że jest idealny do aplikacji, które mogą tolerować utratę pakietów, takich jak przesyłanie strumieniowe audio i wideo czy gry online. Oba protokoły są zgodne z dobrą praktyką projektowania systemów, gdyż są dostosowane do różnych potrzeb aplikacji, co sprawia, że warstwa transportowa jest elastyczna i wydajna.

Pytanie 20

Podstawową rolą monitora, który jest częścią oprogramowania antywirusowego, jest

A. nadzór nad aktualnymi działaniami komputera w trakcie uruchamiania oraz pracy programów
B. zapewnienie bezpieczeństwa systemu operacyjnego przed atakami z sieci komputerowej
C. cykliczne skanowanie plików przechowywanych na dysku twardym komputera
D. ochrona poczty elektronicznej przed niechcianymi wiadomościami
Monitor w oprogramowaniu antywirusowym to naprawdę ważny element. Jego główną rolą jest pilnowanie, co się dzieje na komputerze podczas pracy różnych aplikacji. Jak to działa? Oprogramowanie antywirusowe śledzi wszystko na bieżąco, dzięki czemu szybko łapie jakieś podejrzane zagrożenia, jak wirusy czy inne złośliwe programy, które mogłyby włożyć nos w twoje sprawy. Na przykład, kiedy ściągasz plik z Internetu, monitor działa od razu, sprawdzając ten plik w czasie rzeczywistym. Jeżeli zauważy coś podejrzanego, potrafi go szybko zablokować lub wrzucić do kwarantanny. To naprawdę dobra praktyka w bezpieczeństwie komputerowym! Regularne aktualizacje baz wirusów oraz ciągłe pilnowanie ruchu w sieci są super istotne, żeby skutecznie chronić system. Szybka reakcja na zagrożenia to klucz do trzymania swoich danych w bezpieczeństwie.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Protokół, który komputery wykorzystują do informowania ruterów w swojej sieci o zamiarze dołączenia do określonej grupy multicastowej lub jej opuszczenia, to

A. Transmission Control Protocol (TCP)
B. Internet Group Management Protocol (IGMP)
C. Interior Gateway Protocol (IGP)
D. Internet Message Access Protocol (IMAP)
Internet Group Management Protocol (IGMP) to protokół używany w sieciach IP do zarządzania członkostwem w grupach multicastowych. Dzięki IGMP, urządzenia w sieci mogą informować routery o chęci dołączenia do lub odejścia z grup multicastowych. Protokół ten jest kluczowy w kontekście transmisji danych dla wielu użytkowników, jak to ma miejsce w strumieniowaniu wideo, konferencjach online czy transmisjach sportowych. Umożliwia efektywne zarządzanie przepustowością, ponieważ dane są wysyłane tylko do tych urządzeń, które są zainteresowane daną grupą, co eliminuje niepotrzebny ruch w sieci. IGMP działa na poziomie warstwy sieciowej w modelu OSI i jest standardem określonym przez IETF w RFC 3376. W praktyce, IGMP pozwala na efektywne zarządzanie zasobami sieciowymi, co jest kluczowe w dużych środowiskach, gdzie wiele urządzeń korzysta z tych samych zasobów. Przykładem użycia IGMP może być system IPTV, gdzie użytkownicy mogą subskrybować różne kanały telewizyjne bez obciążania całej infrastruktury sieciowej.

Pytanie 23

Komputer, który automatycznie otrzymuje adres IP, adres bramy oraz adresy serwerów DNS, łączy się z wszystkimi urządzeniami w sieci lokalnej za pośrednictwem adresu IP. Jednakże komputer ten nie ma możliwości nawiązania połączenia z żadnym hostem w sieci rozległej, ani poprzez adres URL, ani przy użyciu adresu IP, co sugeruje, że występuje problem z siecią lub awaria

A. rutera
B. przełącznika
C. serwera DHCP
D. serwera DNS
Poprawna odpowiedź to ruter, ponieważ jest to urządzenie, które umożliwia komunikację pomiędzy różnymi sieciami, w tym między siecią lokalną a siecią rozległą (WAN). Kiedy komputer uzyskuje adres IP, adres bramy i adresy serwerów DNS automatycznie, najczęściej korzysta z protokołu DHCP, który przypisuje te informacje. W przypadku braku możliwości połączenia z hostami w sieci rozległej, problem może leżeć w ruterze. Ruter zarządza ruchem danych w sieciach, a jego awaria uniemożliwia komunikację z innymi sieciami, takimi jak internet. Przykładowo, jeżeli ruter jest wyłączony lub ma uszkodzony firmware, żaden z komputerów w sieci lokalnej nie będzie mógł uzyskać dostępu do zewnętrznych zasobów, co skutkuje brakiem możliwości połączenia z adresami URL czy adresami IP. Dobrą praktyką jest regularne aktualizowanie oprogramowania ruterów oraz monitorowanie ich stanu, aby zapobiegać tego rodzaju problemom.

Pytanie 24

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Drzewo.
B. Pierścień.
C. Gwiazda.
D. Siatka.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 25

Komputer ma pracować w sieci lokalnej o adresie 172.16.0.0/16 i łączyć się z Internetem. Który element konfiguracji karty sieciowej został wpisany nieprawidłowo?

Ilustracja do pytania
A. Maska podsieci.
B. Adresy serwerów DNS.
C. Adres IP.
D. Brama domyślna.
Brama domyślna jest kluczowym elementem konfiguracji karty sieciowej, który służy jako punkt wyjścia dla danych przesyłanych z lokalnej sieci do Internetu. W przypadku, gdy komputer znajduje się w sieci lokalnej o adresie 172.16.0.0/16, brama domyślna musi mieć adres IP, który należy do tej samej podsieci, co adres IP urządzenia. Przykładowo, jeśli adres IP komputera to 172.16.1.10, to prawidłowa brama domyślna powinna mieć adres w formacie 172.16.x.x, gdzie x jest liczbą od 0 do 255. W tym przypadku, brama domyślna ustawiona jako 172.0.1.1 jest błędna, ponieważ nie jest w tej samej podsieci co adres IP komputera. Utrzymanie zgodności adresów IP w tej samej sieci jest kluczowe dla prawidłowego routingu i komunikacji. Dobrą praktyką jest zawsze sprawdzenie, czy brama domyślna jest dostępna w lokalnej sieci przed próbą nawiązania połączenia z Internetem. W przypadku problemów z komunikacją sieciową, zawsze warto zweryfikować konfigurację karty sieciowej, aby upewnić się, że wszystkie elementy są ze sobą zgodne.

Pytanie 26

Który ze standardów opisuje strukturę fizyczną oraz parametry kabli światłowodowych używanych w sieciach komputerowych?

A. ISO/IEC 11801
B. IEEE 802.11
C. IEEE 802.3af
D. RFC 1918
Wiele osób może kojarzyć IEEE 802.11 z sieciami komputerowymi, ale ten standard dotyczy wyłącznie bezprzewodowych sieci LAN, czyli popularnego Wi-Fi. Nie ma tam mowy o przewodach, a tym bardziej o światłowodach – to zupełnie inna kategoria technologii. Podobnie IEEE 802.3af odnosi się do Power over Ethernet, czyli przesyłania zasilania wraz z danymi po kablach sieciowych, lecz tylko miedzianych. Światłowody nie przewodzą prądu w ten sposób i nie są ujęte w tym standardzie. RFC 1918 natomiast to dokument dotyczący adresacji prywatnej w sieciach IP – konkretnie przydziela zakresy adresów, które nie są routowane w Internecie. Dotyczy to wyłącznie warstwy sieciowej modelu TCP/IP, nie zaś fizycznych mediów transmisyjnych. Typowym błędem jest mylenie tych standardów, bo ich numery pojawiają się często w materiałach edukacyjnych czy konfiguracji urządzeń, ale w praktyce dotyczą one różnych aspektów działania sieci. Żaden z tych dokumentów nie omawia struktury fizycznej kabli światłowodowych ani ich parametrów – to domena wyłącznie norm takich jak ISO/IEC 11801. Z mojego doświadczenia wynika, że zrozumienie rozdziału kompetencji i zakresu poszczególnych standardów jest kluczowe, żeby unikać chaosu przy projektowaniu czy diagnozie sieci. W skrócie: tylko ISO/IEC 11801 odpowiada na pytanie o światłowody i ich budowę.

Pytanie 27

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
B. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
C. 1 punktu rozdzielczego na każde piętro.
D. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
Odpowiedź dotycząca instalacji jednego punktu rozdzielczego na każde piętro budynku jest zgodna z normą PN-EN 50173, która reguluje zagadnienia związane z infrastrukturą telekomunikacyjną w budynkach. W kontekście projektowania systemu telekomunikacyjnego, kluczowe jest zapewnienie odpowiedniej liczby punktów rozdzielczych, aby umożliwić efektywne zarządzanie siecią oraz zapewnić dostęp do usług komunikacyjnych w każdym z pomieszczeń. Zgodnie z normą, umieszczanie punktów rozdzielczych na każdym piętrze zwiększa elastyczność w rozmieszczaniu urządzeń i zmniejsza długość kabli, co przekłada się na łatwiejszą instalację oraz konserwację systemu. Przykładowo, w budynkach o większej liczbie pięter, odpowiednia gęstość punktów rozdzielczych pozwala na lepsze dostosowanie infrastruktury do zmieniających się potrzeb użytkowników, takich jak dodawanie nowych urządzeń czy zmiany w organizacji przestrzeni biurowej. Dodatkowo, takie podejście jest zgodne z najlepszymi praktykami branżowymi oraz trendami w kierunku elastycznych rozwiązań telekomunikacyjnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. interfejsu do diagnostyki
B. zasilania rezerwowego
C. konwertera mediów
D. dodatkowej pamięci operacyjnej
Moduł SFP nie ma nic wspólnego z zasilaniem awaryjnym. Ta funkcja należy do systemów UPS (Uninterruptible Power Supply), które ratują sytuację, gdy prąd znika. Co do pamięci RAM, to też niedobrze myślisz. SFP nie służy do zwiększania pamięci w urządzeniach, jego zadanie to tylko konwersja sygnałów. Ludzie czasami mylą SFP z czymś, co ma podnieść wydajność pamięci, a to jest zupełnie inne zagadnienie. Interfejs diagnostyczny też nie wchodzi w grę dla modułu SFP. One nie są zaprojektowane jako narzędzia do analizy, tylko do fizycznego łączenia w sieci. Częstym błędem jest mylenie funkcji fizycznych komponentów z ich rolą w zarządzaniu i diagnostyce. Taki sposób myślenia może prowadzić do złego zarządzania siecią i wyboru złych komponentów, co później źle wpływa na wydajność i niezawodność całego systemu.

Pytanie 31

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 2.
B. 1.
C. 4.
D. 3.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 32

Aby podłączyć drukarkę, która nie posiada karty sieciowej, do przewodowej sieci komputerowej, konieczne jest zainstalowanie serwera wydruku z odpowiednimi interfejsami

A. Centronics i RJ11
B. USB i RS232
C. Centronics i USB
D. USB i RJ45
Odpowiedź 'USB i RJ45' jest prawidłowa, ponieważ obydwa interfejsy są powszechnie stosowane do podłączenia drukarek do sieci komputerowych. Interfejs USB umożliwia szybkie przesyłanie danych między urządzeniem a komputerem, co jest kluczowe w przypadku drukarek, które wymagają efektywnej komunikacji. Z kolei interfejs RJ45 jest standardem w sieciach Ethernet, co pozwala na podłączenie drukarki do lokalnej sieci komputerowej bez potrzeby posiadania wbudowanej karty sieciowej. W przypadku serwera wydruku, urządzenie takie działa jako mostek pomiędzy drukarką a komputerami w sieci, co umożliwia wielu użytkownikom dostęp do tej samej drukarki. Przykłady zastosowania obejmują podłączenie drukarki biurowej do serwera, co pozwala na zdalne drukowanie dokumentów przez pracowników z różnych stanowisk. Zgodność z tymi standardami w znaczący sposób zwiększa elastyczność i użyteczność urządzeń w środowisku pracy, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 33

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. FTP (File Transfer Protocol)
B. SMTP (Simple Mail Transfer Protocol)
C. HTTP (Hypertext Transfer Protocol)
D. SNMP (Simple Network Management Protocol)
SNMP, czyli Simple Network Management Protocol, to standardowy protokół sieciowy, który umożliwia monitorowanie i zarządzanie urządzeniami w sieci IP. Opiera się na architekturze klient-serwer, gdzie agent (urządzenie zarządzane) przekazuje dane do menedżera (systemu zarządzającego). Dzięki SNMP administratorzy sieci mogą zbierać dane o stanie urządzeń, takich jak routery, przełączniki czy serwery, co pozwala na szybką identyfikację problemów, optymalizację wydajności oraz planowanie zasobów. Protokół SNMP jest szeroko stosowany w branży IT, będąc częścią standardów IETF. Przykładem zastosowania może być monitorowanie obciążenia serwera w czasie rzeczywistym, co pozwala na podejmowanie decyzji na podstawie zebranych danych. Ponadto, SNMP wspiera różne poziomy bezpieczeństwa i wersje, co pozwala na dostosowanie go do specyficznych potrzeb organizacji. Standardy SNMP są zgodne z najlepszymi praktykami, co daje pewność, że system zarządzania siecią będzie działał w sposób efektywny i bezpieczny.

Pytanie 34

Na ilustracji przedstawiono symbol

Ilustracja do pytania
A. przełącznika.
B. rutera.
C. punktu dostępowego.
D. bramki VoIP.
Na ilustracji przedstawiono symbol punktu dostępowego, który jest istotnym elementem nowoczesnych sieci bezprzewodowych. Punkt dostępowy (ang. access point) umożliwia połączenie urządzeń takich jak laptopy, smartfony czy tablety z siecią lokalną LAN, zapewniając zasięg i mobilność. Działa jako most łączący urządzenia klienckie z infrastrukturą sieciową, co jest szczególnie ważne w biurach, szkołach czy domach, gdzie wiele urządzeń korzysta z jednego źródła internetu. W kontekście standardów, punkty dostępowe są zgodne z normami IEEE 802.11, co zapewnia interoperacyjność i bezpieczeństwo przesyłanych danych. Przykładem zastosowania punktów dostępowych jest tworzenie rozległych sieci Wi-Fi w obiektach publicznych, takich jak centra handlowe czy lotniska, gdzie niezbędne jest zapewnienie stabilnego i szybkiego dostępu do internetu dla wielu użytkowników jednocześnie. Zrozumienie funkcji punktów dostępowych jest kluczowe dla projektowania efektywnych i wydajnych sieci bezprzewodowych.

Pytanie 35

Podaj domyślny port, który służy do przesyłania poleceń w serwisie FTP.

A. 21
B. 25
C. 110
D. 20
Odpowiedź 21 jest poprawna, ponieważ port 21 jest standardowym portem używanym do komunikacji w protokole FTP (File Transfer Protocol). FTP jest jednym z najstarszych protokołów internetowych, stosowanym głównie do przesyłania plików między komputerami w sieci. Port 21 jest używany do nawiązywania połączenia i obsługi próśb klientów. W praktyce, gdy klient FTP łączy się z serwerem, inicjuje sesję poprzez wysłanie polecenia LOGIN na ten właśnie port. Aby zapewnić bezpieczeństwo i zgodność z najlepszymi praktykami, ważne jest, aby administratorzy serwerów wykorzystywali standardowe porty, takie jak 21, co ułatwia diagnostykę problemów i integrację z innymi systemami. Warto również zauważyć, że FTP może działać w różnych trybach, a port 21 jest kluczowy w trybie aktywnym. W kontekście bezpieczeństwa, rozważając współczesne zastosowania, administratorzy mogą również korzystać z protokołów zabezpieczających, takich jak FTPS lub SFTP, które oferują szyfrowanie danych, ale nadal używają portu 21 jako standardowego portu komend.

Pytanie 36

Administrator systemu Linux chce nadać plikowi dokument.txt uprawnienia tylko do odczytu dla wszystkich użytkowników. Jakiego polecenia powinien użyć?

A. chmod 600 dokument.txt
B. chmod 755 dokument.txt
C. chmod 444 dokument.txt
D. chmod 777 dokument.txt
Polecenie <code>chmod 444 dokument.txt</code> ustawia uprawnienia tak, by plik był możliwy do odczytu przez właściciela, grupę i wszystkich pozostałych użytkowników, ale nie pozwala na jego modyfikację ani wykonanie. W praktyce każda z trzech cyfr odpowiada jednej z grup: pierwsza to właściciel, druga to grupa, trzecia – pozostali. Cyfra 4 oznacza prawo do odczytu (r), a 4+4+4 daje właśnie ten efekt: <code>r--r--r--</code>. Tak skonfigurowany plik jest często używany w sytuacjach, gdy dane mają być dostępne dla wszystkich, ale żaden użytkownik – nawet właściciel – nie może ich przypadkowo zmienić lub usunąć. W środowiskach produkcyjnych, na przykład w katalogach współdzielonych, często stosuje się takie ustawienia, by ochronić ważne dokumenty przed nieautoryzowaną edycją. To zgodne z zasadą minimalnych uprawnień (principle of least privilege), która jest kluczowa w administrowaniu systemami operacyjnymi. Warto też pamiętać, że polecenie <code>chmod</code> jest uniwersalne i pozwala na szybkie zarządzanie dostępem do plików, co jest bardzo przydatne przy pracy z wieloma użytkownikami lub automatyzacją zadań skryptowych. Moim zdaniem każdy administrator powinien znać dobrze tę składnię i umieć ją stosować w praktyce, bo to właśnie takie pozornie proste komendy decydują o bezpieczeństwie plików i danych w systemie.

Pytanie 37

Adres MAC (Medium Access Control Address) stanowi sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. trzeciej o długości 32 bitów
B. drugiej o długości 32 bitów
C. drugiej o długości 48 bitów
D. trzeciej o długości 48 bitów
System modelu OSI dzieli architekturę komunikacyjną na siedem warstw, a adres MAC jest ściśle związany z warstwą drugą, czyli warstwą łącza danych. Odpowiedzi wskazujące, że adres MAC ma długość 32 bitów, są błędne, ponieważ standardowy format adresu MAC wynosi 48 bitów. Przyczyną tego błędu może być mylenie adresu MAC z innymi identyfikatorami w sieci, takimi jak adresy IP, które w wersji IPv4 mają długość 32 bitów. Warto zauważyć, że adresy MAC są konstrukcją sprzętową, co oznacza, że są przypisywane przez producentów urządzeń i są unikalne dla każdego interfejsu sieciowego. Oprócz tego, niepoprawne odpowiedzi mogą wynikać z braku znajomości standardów IEEE, które określają format i zasady przydzielania adresów MAC. Ważne jest, aby zrozumieć rolę adresów MAC w kontekście bezpieczeństwa sieci, ponieważ nieautoryzowane urządzenia mogą próbować podszywać się pod legalne, wykorzystując fałszywe adresy. Dlatego znajomość właściwego formatu adresu MAC oraz jego zastosowania w praktyce jest kluczowa dla każdej osoby zajmującej się administracją sieci.

Pytanie 38

Na rysunku jest przedstawiony symbol graficzny

Ilustracja do pytania
A. koncentratora.
B. przełącznika.
C. rutera.
D. mostu.
Symbol graficzny przedstawiony na rysunku jest charakterystyczny dla mostu sieciowego, który odgrywa kluczową rolę w architekturze sieci komputerowych. Mosty sieciowe są używane do łączenia dwóch segmentów sieci, co pozwala na efektywniejsze zarządzanie ruchem danych. Działają one na poziomie warstwy łącza danych modelu OSI, co oznacza, że operują na ramkach danych, a ich głównym zadaniem jest filtrowanie i przekazywanie pakietów w oparciu o adresy MAC. Przykładem zastosowania mostu może być sytuacja, w której organizacja ma dwa oddzielne segmenty sieciowe, które muszą współpracować. Most sieciowy pozwala na ich połączenie, co zwiększa przepustowość i redukuje kolizje. Dodatkowo, mosty mogą być używane do segregacji ruchu w dużych sieciach, co przyczynia się do lepszej wydajności oraz bezpieczeństwa. Znajomość tych mechanizmów jest kluczowa dla administratorów sieci, którzy chcą optymalizować infrastrukturę i zapewniać sprawne działanie usług sieciowych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaki prefiks jest używany w adresie autokonfiguracji IPv6 w sieci LAN?

A. 24
B. 32
C. 64
D. 128
Prefiks o długości 64 bitów w adresie autokonfiguracji IPv6 w sieci LAN jest standardem określonym w protokole IPv6. Długość ta jest zgodna z zaleceniami organizacji IETF, które wskazują, że dla efektywnej autokonfiguracji interfejsów w sieci lokalnej, należy stosować prefiks /64. Taki prefiks zapewnia odpowiednią ilość adresów IPv6, co jest kluczowe w kontekście dużej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu prefiksu 64, sieci lokalne mogą łatwo i automatycznie konfigurować swoje adresy IP, co jest szczególnie istotne w przypadku dynamicznych środowisk, takich jak sieci domowe lub biurowe. Praktyczne zastosowanie tej koncepcji przejawia się w automatycznej konfiguracji adresów przez protokół SLAAC (Stateless Address Autoconfiguration), który umożliwia urządzeniom generowanie unikalnych adresów na podstawie prefiksu i ich identyfikatorów MAC. Takie rozwiązanie znacząco upraszcza zarządzanie adresami IP w sieciach IPv6.