Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 listopada 2025 21:47
  • Data zakończenia: 10 listopada 2025 21:55

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Watomierza
C. Reflektometru
D. Waromierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 2

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 10 mm2
B. 12 mm2
C. 20 mm2
D. 16 mm2
Wybór niewłaściwego przekroju przewodu ochronnego ma istotne konsekwencje dla bezpieczeństwa elektrycznego. Wiele osób może uważać, że mniejszy przekrój, taki jak 10 mm2 czy 12 mm2, jest wystarczający do ochrony przewodów fazowych o większym przekroju. W rzeczywistości, takie podejście ignoruje zasady dotyczące przewodów ochronnych, które muszą być dobierane na podstawie potencjalnych prądów zwarciowych oraz wymagań związanych z czasem wyłączenia w przypadku awarii. Zbyt mały przekrój przewodu ochronnego może prowadzić do jego przegrzania, a w skrajnych przypadkach do uszkodzenia instalacji, a nawet pożaru. Ponadto, przewody ochronne muszą być w stanie przewodzić prądy zwarciowe przez odpowiedni czas, aby skutecznie wyłączyć źródło zasilania i zminimalizować ryzyko porażenia prądem. Obliczenia te są oparte na normach, takich jak PN-IEC 60364, które jasno określają zasady doboru przekrojów. Zrozumienie tych zasad jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Warto również zwrócić uwagę, że wybór zbyt dużego przekroju, np. 20 mm2, również może być nieoptymalny, ponieważ może prowadzić do niepotrzebnych kosztów i zwiększonej sztywności instalacji, co może być problematyczne w kontekście montażu i utrzymania. Dlatego ważne jest, aby stosować się do ustalonych norm i praktyk w branży, aby zapewnić optymalne warunki pracy instalacji elektrycznych.

Pytanie 3

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Tuleja kołnierzowa
C. Tuleja redukcyjna
D. Podkładka sprężysta
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 4

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 4.
B. Wyłącznik 1.
C. Wyłącznik 2.
D. Wyłącznik 3.
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 5

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Zmiana rodzaju zastosowanych przewodów
B. Instalacja dodatkowego gniazda elektrycznego
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Wymiana uszkodzonych źródeł światła
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 6

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. G9
B. MR11
C. E14
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 7

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Prąd upływu.
B. Chwilową moc obciążenia.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 8

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,35 mA
B. ±0,02 mA
C. ±0,37 mA
D. ±2,35 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 9

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 8 lat
B. 6 lat
C. 4 lata
D. 5 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 10

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie drutu
B. Z miedzi w formie drutu
C. Z aluminium w formie linki
D. Z miedzi w formie linki
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 11

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 12

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. YAKY
C. OMY
D. LY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 13

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 10 lat
C. 5 lat
D. 1 rok
Przeglądy instalacji elektrycznej co 2 lata, 1 rok czy 10 lat mogą być mylące, ponieważ każdy z tych okresów nie uwzględnia rzeczywistych wymagań dotyczących bezpieczeństwa i stanu technicznego instalacji. Przegląd co 2 lata może wydawać się rozsądny w kontekście częstotliwości, jednak nie odpowiada on rzeczywistym potrzebom użytkowników, ponieważ pomija dłuższe, udokumentowane okresy, w których instalacja może funkcjonować prawidłowo bez poważnych usterek. Z kolei roczny przegląd wydaje się być nadmiernie rygorystyczny i nieekonomiczny, co może prowadzić do zbędnych kosztów. Przegląd co 10 lat z kolei może stwarzać złudne poczucie bezpieczeństwa, ponieważ przez tak długi okres mogą wystąpić zmiany w warunkach użytkowania, które mogą wpłynąć na stan instalacji, takie jak zużycie materiałów czy zmiany norm prawnych. Dlatego kluczowe jest, aby stosować się do ustalonej przez normy praktyki pięcioletniej, co jest uzasadnione zarówno technicznie, jak i prawnymi wymaganiami. Niedostateczna częstotliwość przeglądów może prowadzić do poważnych konsekwencji, takich jak awarie, które niosą za sobą nie tylko ryzyko dla zdrowia i życia, ale również mogą skutkować wysokimi kosztami naprawy i odszkodowań.

Pytanie 14

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Sterownik rolet.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 15

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 100/100 V
C. 450/750 V
D. 300/500 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 16

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP20
C. IP55
D. IP44
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 17

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak ochrony przed wilgocią i pyłem.
B. Najwyższy poziom ochrony.
C. Wykorzystanie separacji ochronnej.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 18

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie temperatury stojana
B. Weryfikacja symetrii napięcia zasilającego
C. Mierzenie prędkości obrotowej
D. Sprawdzenie kierunku obrotów wału silnika
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 19

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V DC
B. 200 V AC
C. 500 V AC
D. 500 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 20

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
B. oznaczenie i zabezpieczenie obszaru roboczego
C. wyłączenie zasilania z instalacji
D. pisemne polecenie do wykonania prac
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 21

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,2 s i 0,4 s
B. 0,8 s i 0,4 s
C. 0,4 s i 0,2 s
D. 0,4 s i 0,8 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 22

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. posiadający aparat różnicowoprądowy
B. który działa z przekaźnikiem czasowym
C. który współdziała z przekaźnikiem sygnalizacyjnym
D. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 23

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Skok napięcia
C. Upływ prądu
D. Zwarcie międzyfazowe
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 24

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. wyłożyć je izolacją żłobkową
B. pokryć je olejem elektroizolacyjnym
C. wstawić w nie kliny ochronne
D. pokryć je lakierem elektroizolacyjnym
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 25

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C10
B. B10
C. C16
D. B16
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 26

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 3 szt.
C. 13 szt.
D. 10 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 27

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (40 ÷ 60) %
B. (60 ÷ 90) %
C. (0 ÷ 10) %
D. (90 ÷ 100) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 28

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru rezystancji
B. Woltomierza
C. Miernika z funkcją pomiaru pojemności
D. Amperomierza
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 29

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. płaskie
B. sektorowe
C. wielodrutowe
D. jednodrutowe
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 30

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IZ ≤ IN ≤ IB
B. IB ≤ IZ ≤ IN
C. IN ≤ IB ≤ IZ
D. IB ≤ IN ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 31

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 32

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,5% + 3 cyfry
C. ±2,0% + 2 cyfry
D. ±1,0% + 4 cyfry
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 33

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 12
B. 6
C. 9
D. 3
Prawidłowa odpowiedź to 3 pomiary rezystancji izolacji, co wynika z praktyków oceny stanu izolacji przewodów elektroenergetycznych. W przypadku przewodów YDY3x 6 450/700 V, które są typowymi przewodami stosowanymi w instalacjach elektrycznych, kluczowe jest przeprowadzanie pomiarów rezystancji izolacji w różnych punktach. Zgodnie z normą PN-IEC 60364-6, co najmniej trzy pomiary powinny być wykonane dla każdej fazy przewodu oraz dodatkowo dla przewodu neutralnego i ochronnego. W praktyce, pomiary powinny obejmować zarówno wartości rezystancji międzyfazowej, jak i rezystancji do ziemi. Przykładowo, jeśli wykonasz pomiar izolacji na długości przewodu, który wykazuje niską rezystancję, może to wskazywać na uszkodzenie izolacji w tym obszarze. Dodatkowo, regularne pomiary rezystancji izolacji pozwalają na wczesne wykrywanie potencjalnych problemów, co jest istotne dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 34

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt niski prąd znamionowy wyłącznika
B. Zbyt wysoka moc zasilanego odbiornika
C. Niewłaściwe napięcie zasilania
D. Słabo dokręcone złącza wyłącznika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 35

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodu neutralnego
B. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
C. Ciągłości przewodów fazowych
D. Rezystancji izolacji przewodu uziemiającego
Pomiar ciągłości przewodu neutralnego oraz przewodów fazowych, chociaż istotny w kontekście sprawdzania integralności obwodów elektrycznych, nie jest wystarczający, aby ocenić skuteczność ochrony przeciwporażeniowej dla odbiorników I klasy ochronności w sieci TT. Ciągłość przewodu neutralnego jest krytyczna dla prawidłowego funkcjonowania układów elektrycznych, ale nie zapewnia informacji o jakości uziemienia. Przewody neutralne i fazowe mogą być sprawne, ale jeśli uziemienie jest niewłaściwe, może to prowadzić do niebezpiecznych sytuacji, w których obudowa urządzenia może stać się naładowana prądem. Z kolei pomiar rezystancji izolacji przewodu uziemiającego również nie dostarcza pełnych informacji o skuteczności ochrony przeciwporażeniowej, ponieważ dotyczy on tylko stanu izolacji, a nie efektywności połączenia z ziemią. Typowym błędem myślowym jest zakładanie, że dobre wyniki tych pomiarów automatycznie zapewniają bezpieczeństwo, podczas gdy kluczowe jest, aby obudowa była podłączona do efektywnego systemu uziemienia. Normy, takie jak PN-IEC 60364, jasno wskazują, że uziemienie jest fundamentalnym elementem systemów ochrony przed porażeniem elektrycznym. Dlatego regularne pomiary rezystancji uziomu są niezbędne do zapewnienia bezpieczeństwa i zgodności z przepisami.

Pytanie 36

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Instalacja nowych punktów świetlnych
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Zamiana zużytych urządzeń na nowe
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 37

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. YDY
B. DY
C. YDYp
D. LgY
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 38

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu pierścieni ślizgowych oraz komutatorów
B. poziomu drgań i skuteczności układu chłodzenia
C. stanu przewodów ochronnych oraz ich połączeń
D. ustawienia zabezpieczeń i stanu osłon części wirujących
Odpowiedź dotycząca stanu pierścieni ślizgowych i komutatorów jest właściwa, ponieważ podczas przeprowadzania oględzin urządzeń napędowych w czasie postoju nie jest to element, który zazwyczaj podlega rutynowym kontrolom. Pierścienie ślizgowe i komutatory są kluczowymi komponentami w silnikach prądu stałego oraz w niektórych alternatorach, jednak ich stan ocenia się głównie podczas przeglądów większych, planowanych konserwacji. W codziennych oględzinach, które mają na celu zapewnienie bezpieczeństwa i operacyjności urządzeń, bardziej koncentruje się na aspektach takich jak kontrola przewodów ochronnych, które zapewniają bezpieczeństwo operatorów, poziom drgań, które mogą wskazywać na problemy mechaniczne, oraz działania układu chłodzenia, aby zapobiec przegrzewaniu. Przykładowo, w praktyce inżynieryjnej standardy takie jak ISO 9001 obejmują kontrolę jakości i bezpieczeństwa, kładąc nacisk na utrzymanie systemów w dobrym stanie operacyjnym, co potwierdza, że elementy takie jak osłony części wirujących oraz zabezpieczenia są kluczowe w codziennych kontrolach.

Pytanie 39

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Założyć gumowy wężyk na uszkodzoną izolację przewodu
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Wymienić uszkodzony przewód na nowy o takim samym przekroju
D. Pomalować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 40

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Bezpiecznik aparatowy.
C. Wkładkę topikową bezpiecznika mocy.
D. Izolator wsporczy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.