Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 22 stycznia 2026 07:49
  • Data zakończenia: 22 stycznia 2026 08:06

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Programem wiersza poleceń w systemie Windows, który umożliwia kompresję oraz dekompresję plików i folderów, jest aplikacja

A. CleanMgr.exe
B. DiskPart.exe
C. Compact.exe
D. Expand.exe
Compact.exe to fajne narzędzie w Windowsie, które pozwala na kompresję i dekompresję plików oraz folderów. Dzięki temu zaoszczędzisz trochę miejsca na dysku, co często się przydaje, szczególnie jak mamy mało przestrzeni. Działa głównie na systemach plików NTFS, które właśnie to wspierają. Możesz na przykład użyć komendy 'compact /c folder', żeby skompresować wybrany folder. A jak chcesz sprawdzić, co jest skompresowane, po prostu wpisz 'compact' bez żadnych dodatkowych opcji. Z mojego doświadczenia, administratorzy korzystają z tego narzędzia, żeby lepiej zarządzać przestrzenią dyskową, a to też może podnieść wydajność systemu. Ogólnie, kompresja danych to dobra praktyka, zwłaszcza jeśli mamy do czynienia z serwerami czy archiwizowaniem istotnych danych - to na pewno pomoże lepiej uporządkować i zabezpieczyć informacje.

Pytanie 2

Aby zrealizować iloczyn logiczny z uwzględnieniem negacji, jaki funktor powinno się zastosować?

A. NAND
B. EX-OR
C. NOT
D. AND
Odpowiedź 'NAND' to strzał w dziesiątkę! Funkcja NAND (czyli NOT AND) działa tak, że jej wynik jest prawdziwy, jeśli przynajmniej jedno z wejść jest fałszywe. To jest mega ważne w różnych układach cyfrowych, bo daje większą elastyczność w obliczeniach logicznych. Weźmy mikroprocesory jako przykład – tam NAND jest używana do budowy bramek logicznych i innych funkcji, takich jak AND czy NOT. Ogólnie rzecz biorąc, w inżynierii komputerowej funkcje NAND są bardzo popularne, bo pozwalają na realizację różnych bramek przy użyciu niewielkiej liczby komponentów. Kiedy projektujesz układy cyfrowe, korzystanie z NAND może naprawdę uprościć schematy oraz zmniejszyć liczbę potrzebnych elementów. To zgodne z najlepszymi praktykami projektowymi, więc fajnie, że to wyszło tak dobrze!

Pytanie 3

Zestaw komputerowy, który został przedstawiony, jest niepełny. Który z elementów nie został wymieniony w tabeli, a jest kluczowy dla prawidłowego funkcjonowania zestawu?

Lp.Nazwa podzespołu
1.Zalman Obudowa R1 Midi Tower bez PSU, USB 3.0
2.Gigabyte GA-H110M-S2H, Realtek ALC887, DualDDR4-2133, SATA3, HDMI, DVI, D-Sub, LGA1151, mATX
3.Intel Core i5-6400, Quad Core, 2.70GHz, 6MB, LGA1151, 14nm, 65W, Intel HD Graphics, VGA, BOX
4.Patriot Signature DDR4 2x4GB 2133MHz
5.Seagate BarraCuda, 3.5", 1TB, SATA/600, 7200RPM, 64MB cache
6.LG SuperMulti SATA DVD+/-R24x,DVD+RW6x,DVD+R DL 8x, bare bulk (czarny)
7.Gembird Bezprzewodowy Zestaw Klawiatura i Mysz
8.Monitor Iiyama E2083HSD-B1 19.5inch, TN, HD+, DVI, głośniki
9.Microsoft OEM Win Home 10 64Bit Polish 1pk DVD
A. Karta graficzna
B. Wentylator procesora
C. Pamięć RAM
D. Zasilacz
Zasilacz jest kluczowym komponentem każdego zestawu komputerowego. Jego podstawową funkcją jest przekształcanie prądu zmiennego z sieci elektrycznej na prąd stały, który zasila poszczególne podzespoły komputera. Bez zasilacza żaden z elementów, takich jak płyta główna, procesor, pamięć RAM czy dyski twarde, nie będzie mógł prawidłowo funkcjonować. Zasilacze są także odpowiedzialne za stabilizację napięcia, co jest kluczowe dla zapobiegania uszkodzeniom sprzętu spowodowanym przez skoki napięcia. Wybierając zasilacz, należy zwrócić uwagę na jego moc, która powinna być dostosowana do zapotrzebowania energetycznego całego zestawu komputerowego. Zasilacze muszą spełniać określone standardy, takie jak ATX, aby pasować do typowych obudów i płyt głównych. Standardy te określają nie tylko fizyczne wymiary, ale także wymagania dotyczące napięć i złączy. Ważną cechą jest również certyfikacja sprawności, jak na przykład 80 PLUS, która świadczy o efektywności przetwarzania energii. Warto pamiętać, że odpowiedni dobór zasilacza wpływa na stabilność i niezawodność całego systemu, a także na jego energooszczędność, co w dłuższej perspektywie przekłada się na niższe rachunki za prąd oraz mniejsze obciążenie środowiska naturalnego.

Pytanie 4

Administrator sieci komputerowej pragnie zweryfikować na urządzeniu z systemem Windows, które połączenia są aktualnie ustanawiane oraz na jakich portach komputer prowadzi nasłuch. W tym celu powinien użyć polecenia

A. arp
B. tracert
C. netstat
D. ping
Polecenie 'netstat' jest narzędziem diagnostycznym w systemie Windows, które umożliwia administratorom sieci komputerowych monitorowanie aktualnych połączeń sieciowych, otwartych portów oraz statystyk protokołów TCP/IP. Użycie tego polecenia pozwala na uzyskanie informacji o tym, które aplikacje nasłuchują na określonych portach oraz jakie połączenia są aktywne, co jest kluczowe w kontekście zarządzania bezpieczeństwem sieci. Na przykład, aby zobaczyć wszystkie aktywne połączenia TCP oraz porty, na których komputer nasłuchuje, można wykorzystać polecenie 'netstat -a'. W praktyce, administratorzy używają tego narzędzia do szybkiego identyfikowania nieautoryzowanych połączeń, co pozwala na wczesne wykrywanie potencjalnych zagrożeń. Ponadto, 'netstat' jest zgodne z najlepszymi praktykami w zakresie monitorowania sieci, co czyni je niezbędnym elementem zestawu narzędzi każdego specjalisty IT.

Pytanie 5

Aby uzyskać optymalną wydajność, karta sieciowa w komputerze stosuje transmisję szeregową.

A. asynchroniczną Full duplex
B. synchroniczną Half duplex
C. asynchroniczną Simplex
D. synchroniczną Simplex
Odpowiedź 'asynchroniczna Full duplex' jest prawidłowa, ponieważ oznacza, że karta sieciowa może jednocześnie wysyłać i odbierać dane, co jest kluczowe dla uzyskania maksymalnej wydajności w komunikacji sieciowej. Asynchroniczne pełne dupleksy są powszechnie stosowane w nowoczesnych sieciach komputerowych, ponieważ umożliwiają bardziej efektywne wykorzystanie dostępnej przepustowości. W praktyce oznacza to, że podczas przesyłania danych można równocześnie odbierać nowe informacje, co znacząco przyspiesza komunikację. Na przykład, wiele nowoczesnych kart sieciowych Ethernet obsługuje tryb Full duplex, co pozwala na jednoczesne przesyłanie i odbieranie ramek danych bez kolizji, co jest zgodne z normami IEEE 802.3. Dodatkowo, asynchroniczny transfer danych jest elastyczny, co sprawia, że nadaje się do różnorodnych zastosowań, od prostych lokalnych sieci po złożone struktury w chmurze. Wdrożenie tej technologii przyczynia się do poprawy wydajności sieci, co z kolei wpływa na lepszą jakość usług oraz doświadczenie użytkowników.

Pytanie 6

W jakiej technologii produkcji projektorów stosowany jest system mikroskopijnych luster, przy czym każde z nich odpowiada jednemu pikselowi wyświetlanego obrazu?

A. LCOS
B. LCD
C. DLP
D. LED
Technologie LCD, LED oraz LCOS różnią się zasadniczo od DLP w sposobie wyświetlania obrazów, co może prowadzić do mylnych wniosków na temat ich zastosowania. LCD (Liquid Crystal Display) wykorzystuje ciekłe kryształy do modulacji światła, które jest podświetlane z tyłu przez źródło światła. W przypadku tej technologii, nie ma mikroskopijnych luster odpowiadających za wyświetlanie poszczególnych pikseli, co skutkuje innym podejściem do tworzenia obrazu. Z kolei technologia LED, będąca połączeniem podświetlenia LED i LCD, również nie korzysta z mikroluster. LED odnosi się głównie do źródła światła, które może być stosowane w różnych projektorach, ale nie definiuje samej technologii wyświetlania. Natomiast LCOS (Liquid Crystal on Silicon) polega na umieszczeniu ciekłych kryształów na podłożu silikonowym, co również nie wykorzystuje mikroskopijnych luster. Każda z tych technologii ma swoje unikalne właściwości, jednak kluczowe jest zrozumienie, że DLP wyróżnia się właśnie zastosowaniem mikroskopijnych luster do zarządzania obrazem. Mylenie tych technologii może prowadzić do nieprawidłowych wyborów przy zakupie sprzętu, w szczególności jeśli celem jest osiągnięcie wysokiej jakości obrazu w konkretnych zastosowaniach, takich jak prezentacje czy kino domowe.

Pytanie 7

Jakie jest zastosowanie maty antystatycznej oraz opaski podczas instalacji komponentu?

A. usunięcia zanieczyszczeń
B. polepszenia warunków higienicznych serwisanta
C. zwiększenia komfortu naprawy
D. neutralizacji ładunków elektrostatycznych
Mata antystatyczna oraz opaska antystatyczna są kluczowymi elementami ochrony podczas pracy z wrażliwymi podzespołami elektronicznymi. Głównym celem ich stosowania jest neutralizacja ładunków elektrostatycznych, które mogą powstać podczas manipulacji komponentami. Ładunki te mogą prowadzić do uszkodzenia delikatnych układów elektronicznych, co jest szczególnie istotne w przypadku sprzętu komputerowego, telefonów czy innych urządzeń wysokiej technologii. Przykładem praktycznym jest użycie maty antystatycznej w warsztacie podczas składania lub naprawy sprzętu. Dzięki jej zastosowaniu, serwisant ma pewność, że potencjalne ładunki elektrostatyczne są skutecznie uziemione, co minimalizuje ryzyko uszkodzenia podzespołów. W branży elektroniki stosuje się normy, takie jak IEC 61340-5-1, które podkreślają konieczność ochrony przed elektrycznością statyczną w obszarach pracy z komponentami wrażliwymi. Takie procedury są standardem w profesjonalnych serwisach i laboratoriach, co podkreśla ich znaczenie w zapewnieniu jakości i bezpieczeństwa pracy.

Pytanie 8

Polecenie chmod +x test

A. odbiera wszystkim użytkownikom prawo do zapisu do pliku test.
B. nadaje prawo do odczytu pliku test jego właścicielowi.
C. pozwala na uruchomienie pliku test przez każdego użytkownika.
D. ustawia pełną kontrolę nad wszystkimi plikami znajdującymi sie w katalogu test.
Zagadnienie uprawnień w systemach plików Linux i Unix bywa mylące, bo każda literka i znak w poleceniu chmod ma znaczenie. Wiele osób zakłada, że +x zmienia coś więcej niż tylko prawo wykonywania. To jednak nieprawda – +x dokładnie oznacza tylko dodanie prawa uruchomienia dla wszystkich (czyli właściciela, grupy i innych). To nie ma nic wspólnego z dostępem do odczytu (czyli +r), dlatego nie sprawi, że właściciel nagle może czytać plik, jeśli wcześniej nie miał takiego prawa. Tak samo, jeśli ktoś myśli o zapisie – żadne +x nie odbiera nikomu prawa do zapisu, bo od tego jest -w. Często spotykam się z mylną opinią, że chmod +x pozwala zarządzać pełnymi uprawnieniami do katalogów, ale katalogi rządzą się swoimi prawami. Aby katalog był „pełnokontrolny”, potrzebujesz zupełnie innych uprawnień (na przykład chmod 777 katalog). Błąd wynika też z niezrozumienia, że polecenie działa na konkretny plik, a nie na jego zawartość czy całą strukturę katalogu. Wreszcie, polecenie chmod +x test nie nadaje uprawnień wykonania tylko właścicielowi, ale każdemu użytkownikowi, o ile nie ograniczają tego inne ustawienia systemowe, typu ACL albo SELinux. W praktyce błędy tego typu wynikają z nieodróżniania różnych flag uprawnień i nieczytania dokumentacji. Najlepszą metodą jest zawsze precyzyjnie sprawdzać, co dany parametr zmienia, zanim się go użyje – zwłaszcza jeśli pracujesz na produkcyjnych serwerach, gdzie każde nieprawidłowe uprawnienie może skończyć się poważnym naruszeniem bezpieczeństwa albo dostępności aplikacji. Warto pamiętać, że uprawnienia najlepiej nadawać możliwie najmniejsze, zgodnie z zasadą najmniejszych uprawnień, a chmod +x to tylko jedno z narzędzi do osiągnięcia tego celu.

Pytanie 9

Obudowa oraz wyświetlacz drukarki fotograficznej są bardzo zabrudzone. W celu ich oczyszczenia, należy zastosować

A. wilgotną ściereczkę oraz pianki do czyszczenia plastiku
B. suchą chusteczkę oraz patyczki do czyszczenia
C. ściereczkę nasączoną IPA oraz smar
D. mokrą chusteczkę oraz sprężone powietrze z rurką przedłużającą zasięg
Wilgotna ściereczka oraz pianka do czyszczenia plastiku to najlepszy sposób na usunięcie zabrudzeń z obudowy i wyświetlacza drukarki fotograficznej, ponieważ te materiały są odpowiednio delikatne i skuteczne. Pianka do czyszczenia plastiku została zaprojektowana w taki sposób, aby nie tylko usuwać brud, ale również nie uszkadzać powierzchni plastikowych ani szklanych, co jest kluczowe w przypadku sprzętu elektronicznego. Wilgotna ściereczka, zwłaszcza wykonana z mikrofibry, skutecznie zbiera kurz i zanieczyszczenia, a zarazem nie pozostawia smug. Warto również zwrócić uwagę na standardy czyszczenia sprzętu elektronicznego, które zalecają unikanie substancji chemicznych, mogących uszkodzić powłokę wyświetlacza. Użycie odpowiednich produktów do czyszczenia nie tylko przedłuża żywotność sprzętu, ale także zapewnia jego prawidłowe funkcjonowanie. Przykładem może być regularne czyszczenie drukarki fotograficznej, co zapobiega osadzaniu się kurzu, a w efekcie poprawia jakość wydruków. Dobre praktyki zalecają także unikanie stosowania materiałów, które mogą zarysować powierzchnię, takich jak szorstkie ściereczki czy gąbki.

Pytanie 10

Thunderbolt to interfejs

A. równoległy, dwukanałowy, dwukierunkowy, bezprzewodowy.
B. równoległy, asynchroniczny, przewodowy.
C. szeregowy, asynchroniczny, bezprzewodowy.
D. szeregowy, dwukanałowy, dwukierunkowy, przewodowy.
Thunderbolt to naprawdę ciekawe rozwiązanie, które łączy w sobie kilka bardzo nowoczesnych technologii transmisji danych. Właśnie dlatego odpowiedź szeregowy, dwukanałowy, dwukierunkowy, przewodowy jest tutaj prawidłowa. Thunderbolt bazuje na transmisji szeregowej, co pozwala osiągać ogromne prędkości – w nowszych wersjach nawet do 40 Gb/s! Szeregowość jest tu kluczowa, bo właśnie dlatego kabel Thunderbolt może być taki cienki i elastyczny, a mimo to przesyłać tak dużo informacji. Dwukanałowość – to w praktyce znaczy, że przez jeden kabel idą dwa niezależne strumienie danych, co umożliwia np. jednoczesne przesyłanie obrazu i danych albo obsługę kilku urządzeń naraz. Dwukierunkowość (czyli full-duplex) zapewnia, że dane mogą płynąć w obie strony jednocześnie, więc np. możesz jednocześnie korzystać z szybkiego dysku zewnętrznego i przesyłać obraz na monitor. No i przewodowość – tu nie ma miejsca na pomyłkę, Thunderbolt używa specjalnych kabli, a nie komunikacji bezprzewodowej. Moim zdaniem Thunderbolt to taki trochę szwajcarski scyzoryk jeśli chodzi o połączenia komputerowe – podpięcie monitora 4K, dysku SSD i ładowanie laptopa przez jeden kabel to już codzienność w wielu firmach i na uczelniach. Standard ten jest zgodny z dobrymi praktykami branżowymi – stawia na uniwersalność, wysoką przepustowość i niezawodność fizycznych połączeń. Warto też wiedzieć, że w nowszych wersjach Thunderbolt wykorzystuje się złącze USB-C, co jeszcze bardziej zwiększa kompatybilność. W praktyce, jeśli ktoś pracuje z dużą ilością danych, montuje wideo czy korzysta z profesjonalnych stanowisk graficznych, to Thunderbolt jest wręcz nieoceniony. Sam miałem okazję podpiąć kilka monitorów i dysków do MacBooka – wszystko śmigało na jednej wtyczce. To właśnie pokazuje siłę nowoczesnych, przewodowych interfejsów szeregowych, takich jak Thunderbolt.

Pytanie 11

Gdy w przeglądarce internetowej wpiszemy adres HTTP, pojawia się błąd "403 Forbidden", co oznacza, że

A. brak pliku docelowego na serwerze.
B. użytkownik nie dysponuje uprawnieniami do żądanego zasobu.
C. wielkość wysyłanych danych przez klienta została ograniczona.
D. adres IP karty sieciowej jest niewłaściwie przypisany.
Błąd 403 Forbidden wskazuje, że serwer rozumie żądanie, ale odmawia jego wykonania z powodu braku odpowiednich uprawnień użytkownika do dostępu do zasobu. W praktyce oznacza to, że nawet jeśli plik lub zasób istnieje na serwerze, użytkownik nie ma wystarczających uprawnień, aby go zobaczyć lub wykonać. Może to być spowodowane ustawieniami na poziomie serwera, takimi jak reguły w plikach .htaccess, które kontrolują dostęp do określonych katalogów lub plików. W przypadku aplikacji webowych, ważne jest, aby odpowiednio zarządzać uprawnieniami użytkowników, aby zapewnić bezpieczeństwo danych i zasobów. Na przykład, w systemie zarządzania treścią (CMS) można ustawić różne poziomy dostępu dla administratorów, redaktorów i zwykłych użytkowników, co jest zgodne z najlepszymi praktykami w zakresie zabezpieczeń. W kontekście RESTful API, odpowiednie zarządzanie uprawnieniami jest kluczowe dla ochrony danych i zapobiegania nieautoryzowanym dostępom. Zrozumienie błędu 403 Forbidden oraz sposobów zarządzania uprawnieniami użytkowników jest zatem niezbędne dla każdego, kto pracuje z aplikacjami webowymi i zabezpieczeniami sieciowymi.

Pytanie 12

Minimalna ilość pamięci RAM wymagana dla systemu operacyjnego Windows Server 2008 wynosi przynajmniej

A. 1,5 GB
B. 512 MB
C. 1 GB
D. 2 GB
Wybór odpowiedzi wskazujących na wartości poniżej 2 GB, takie jak 512 MB, 1,5 GB czy 1 GB, opiera się na nieaktualnych założeniach dotyczących wymagań systemowych. W początkowych latach istnienia systemów operacyjnych, takie jak Windows Server 2003 czy starsze wersje, rzeczywiście mogły funkcjonować przy mniejszych ilościach pamięci RAM. Jednak wraz z rozwojem technologii oraz wzrostem wymagań aplikacji i usług, minimalne wymagania dotyczące pamięci RAM znacznie się zwiększyły. Użytkownicy często mylą 'minimalne' wymagania z 'zalecanymi', co prowadzi do nieporozumień. Używanie serwera z pamięcią niższą niż 2 GB w kontekście Windows Server 2008 może prowadzić do poważnych problemów wydajnościowych, takich jak wolniejsze działanie aplikacji, długie czasy odpowiedzi oraz częstsze przestoje. W systemach serwerowych pamięć RAM ma kluczowe znaczenie dla utrzymania wydajności i zdolności obsługi wielu jednoczesnych połączeń. Należy również pamiętać, że zbyt mała ilość pamięci może ograniczać możliwości zarządzania zasobami oraz wprowadzać ograniczenia w zakresie funkcjonalności serwera, co w konsekwencji może prowadzić do nieefektywności w operacjach biznesowych.

Pytanie 13

Urządzenie peryferyjne, które jest kontrolowane przez komputer i wykorzystywane do obsługi dużych, płaskich powierzchni, a do produkcji druków odpornych na czynniki zewnętrzne używa farb rozpuszczalnikowych, to ploter

A. tnący
B. piaskowy
C. solwentowy
D. kreślący
Odpowiedź 'solwentowy' jest prawidłowa, ponieważ plotery solwentowe są specjalistycznymi urządzeniami przeznaczonymi do druku na różnych powierzchniach, w tym na materiałach wielkoformatowych. Te urządzenia wykorzystują farby na bazie rozpuszczalników, które zapewniają wysoką odporność na czynniki zewnętrzne, takie jak promieniowanie UV, woda czy różne substancje chemiczne. Dzięki temu, wydruki wykonane przy użyciu ploterów solwentowych są idealne do zastosowań zewnętrznych, na przykład w reklamie, gdzie wytrzymałość i żywotność wydruków są kluczowe. Plotery te oferują również szeroki wachlarz kolorów oraz możliwość uzyskiwania intensywnych barw, co czyni je popularnym wyborem w branży graficznej. Warto również zwrócić uwagę na standardy ekologiczne, które dotyczą tych technologii, takie jak wdrażanie rozwiązań mających na celu ograniczenie emisji lotnych związków organicznych (VOC). Przykładowe zastosowania to produkcja banerów, naklejek czy billboardów, które muszą być odporne na różne warunki atmosferyczne. W związku z tym, wybór plotera solwentowego jest często decyzją strategiczną w kontekście zapewnienia jakości i trwałości wydruków.

Pytanie 14

Wskaż ilustrację, która przedstawia symbol bramki logicznej NOT?

Ilustracja do pytania
A. C
B. A
C. D
D. B
Odpowiedź C jest poprawna ponieważ symbol bramki logicznej NOT przedstawiany jest jako trójkąt z małym kółkiem na końcu. To kółko jest znane jako inwersja i oznacza negację sygnału wejściowego czyli zamianę 1 na 0 oraz 0 na 1. Bramki NOT są fundamentalnym elementem w projektowaniu układów cyfrowych i są często używane w kombinacyjnych i sekwencyjnych układach logicznych do odwracania sygnałów. W praktyce znajdują zastosowanie w różnorodnych urządzeniach elektronicznych takich jak komputery telefony czy systemy wbudowane. Zgodnie ze standardami inżynierii bramka NOT jest często integrowana w układy scalone jako część bardziej skomplikowanych struktur logicznych. Dzięki swojej prostocie i wszechstronności bramki NOT są kluczowe w optymalizacji obwodów cyfrowych pozwalając na realizację bardziej złożonych operacji logicznych. Ich prawidłowe rozpoznanie i zrozumienie działania jest istotne dla każdego specjalisty zajmującego się elektroniką i projektowaniem układów scalonych ponieważ stanowią one podstawę do tworzenia bardziej zaawansowanych układów logicznych.

Pytanie 15

Podczas uruchamiania (krótko po zakończeniu testu POST) komputer się zawiesza. Jakie mogą być możliwe przyczyny tej awarii?

A. Brak podłączonej myszki komputerowej
B. Niepoprawnie skonfigurowana drukarka
C. Nieprawidłowe napięcie zasilania procesora
D. Zbyt wiele ikon na pulpicie
Zasilanie procesora to naprawdę ważna sprawa, bo złe napięcie może namieszać w działaniu komputera. Procesor to jeden z kluczowych elementów i jeśli napięcie jest zbyt niskie, to po prostu może się zawiesić. Z drugiej strony, jak napięcie jest za wysokie, to może się przegrzać i uszkodzić. Dlatego warto używać zasilaczy, które spełniają normy ATX i mają dobre certyfikaty, żeby mieć pewność, że wszystko działa tak jak powinno. Dobrze jest też monitorować, jak pracują nasze podzespoły - programy takie jak HWMonitor czy CPU-Z mogą być w tym bardzo pomocne. Troska o prawidłowe napięcie zasilania to klucz do sprawnego działania komputera, zarówno dla tych, co budują sprzęt, jak i dla tych, co zajmują się konserwacją.

Pytanie 16

Jakie znaczenie ma zaprezentowany symbol graficzny?

Ilustracja do pytania
A. generator dźwięku
B. przetwornik analogowo-cyfrowy
C. przetwornik cyfrowo-analogowy
D. filtr dolnoprzepustowy
Symbol A/D oznacza przetwornik analogowo-cyfrowy który jest kluczowym elementem w systemach cyfrowych umożliwiającym przekształcanie sygnałów analogowych na postać cyfrową. Jest to niezbędne w urządzeniach takich jak komputery czy smartfony które operują na danych cyfrowych. Przetwornik A/D mierzy wartość napięcia sygnału analogowego i przypisuje mu odpowiadającą mu wartość cyfrową co pozwala na dalsze przetwarzanie i analizę danych. Przykładem zastosowania jest digitalizacja dźwięku w systemach audio gdzie sygnał z mikrofonu przekształcany jest na sygnał cyfrowy aby można było go zapisać edytować lub przesłać. Przetworniki A/D są również używane w automatyce przemysłowej do monitorowania sygnałów z czujników co pozwala na dokładną kontrolę procesów produkcyjnych. Standardy takie jak IEEE 1241 określają metody testowania przetworników A/D co jest istotne dla zapewnienia ich dokładności i niezawodności w zastosowaniach krytycznych. Dobór odpowiedniego przetwornika A/D zależy od wymagań aplikacji takich jak rozdzielczość szybkość próbkowania i tolerancja błędów. Wybierając przetwornik należy również brać pod uwagę koszty i wymagania energetyczne co jest szczególnie ważne w urządzeniach mobilnych.

Pytanie 17

Które systemy operacyjne są atakowane przez wirusa MS Blaster?

A. DOS
B. Linux
C. MS Windows 2000/NT/XP
D. MS Windows 9x
Wybór systemu Linux jako jednego z infekowanych przez wirus MS Blaster jest błędny, ponieważ Linux jest systemem operacyjnym, który z natury różni się od systemów Microsoftu pod względem architektury i zabezpieczeń. Systemy Linux mają inne mechanizmy zarządzania dostępem i segregacji procesów, co czyni je mniej podatnymi na ataki typu MS Blaster. Kolejna odpowiedź, MS Windows 9x, obejmuje starsze wersje systemu operacyjnego, które również nie były celem tego wirusa. Windows 9x, w tym Windows 95 i 98, były oparte na całkowicie innej architekturze i nie zawierały tych samych komponentów sieciowych, co Windows 2000, NT i XP. Co więcej, DOS, jako system operacyjny, również nie był narażony na ataki tego typu; nie obsługiwał on protokołów sieciowych, które były podatne na exploity wykorzystywane przez wirus. Rozumienie, które systemy operacyjne są zagrożone przez konkretne wirusy, wymaga znajomości ich architektury oraz znanych luk w zabezpieczeniach. Dlatego ważne jest, aby edukować się na temat różnic między systemami operacyjnymi oraz regularnie aktualizować wiedzę na temat najnowszych zagrożeń w dziedzinie bezpieczeństwa IT.

Pytanie 18

Adresy IPv6 są reprezentowane jako liczby

A. 128 bitowe, wyrażane w postaci ciągów szesnastkowych
B. 32 bitowe, wyrażane w postaci ciągów binarnych
C. 64 bitowe, wyrażane w postaci ciągów binarnych
D. 256 bitowe, wyrażane w postaci ciągów szesnastkowych
Adresy IPv6 są reprezentowane jako 128-bitowe wartości, co oznacza, że mogą one zawierać znacznie więcej unikalnych adresów niż ich poprzednicy w wersji IPv4, które mają długość 32 bity. W praktyce, IPv6 jest zapisywany w postaci szesnastkowych ciągów znaków, które są podzielone na osiem grup po cztery cyfry, co ułatwia odczytywanie i zarządzanie tymi adresami. Na przykład, adres IPv6 może wyglądać jak 2001:0db8:85a3:0000:0000:8a2e:0370:7334. W kontekście standardów, IPv6 zostało zaprojektowane zgodnie z dokumentem RFC 8200, który definiuje jego format i zasady działania. Przejście na IPv6 jest kluczowe dla rozwoju Internetu, ponieważ liczba dostępnych adresów w IPv4 jest niewystarczająca dla rosnącej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu IPv6, możliwe jest nie tylko większe przydzielanie adresów, ale także wprowadzenie ulepszonych mechanizmów zarządzania ruchem oraz bezpieczeństwa, co jest zgodne z dobrą praktyką w projektowaniu nowoczesnych sieci.

Pytanie 19

Aby możliwe było skierowanie wydruku na twardy dysk, konieczne jest w ustawieniach drukarki wybranie opcji drukowania do portu

A. LPT
B. USB001
C. COM
D. FILE
Wybór opcji USB001, LPT lub COM to nie to, co chcesz, jeśli chcesz zapisać dokument na dysku. USB001 to port, który przypisuje się do drukarek podłączanych przez USB, więc efektem jest, że wydrukujesz to bezpośrednio na drukarce, a nie zapiszesz na dysku. LPT to stary port, który kiedyś używano do drukowania, a COM to port szeregowy. Wybierając te porty, mylisz pojęcia, bo one nie służą do zapisywania plików. Fajnie by było, gdyby ludzie wiedzieli, jak działają porty drukarskie, bo jak się nie znasz, to możesz narobić sobie problemów z zarządzaniem dokumentami. Lepiej wybrać opcję FILE, bo wtedy można archiwizować dokumenty, edytować je i dzielić się z innymi. To jest ważne w dzisiejszej pracy, gdzie organizacja i efektywność są kluczowe.

Pytanie 20

Każdy następny router IP na drodze pakietu

A. zwiększa wartość TTL przesyłanego pakietu o jeden
B. zmniejsza wartość TTL przesyłanego pakietu o jeden
C. zwiększa wartość TTL przesyłanego pakietu o dwa
D. zmniejsza wartość TTL przesyłanego pakietu o dwa
Odpowiedź jest poprawna, ponieważ każdy router, który przetwarza pakiet IP, zmniejsza wartość pola Time to Live (TTL) o jeden. TTL to liczba, która jest używana do określenia maksymalnego czasu życia pakietu w sieci i zapobiega jego nieskończonemu krążeniu w przypadku błędów trasowania. Kiedy pakiet osiąga router, jego TTL jest zmniejszane o jeden, a gdy wartość TTL osiągnie zero, pakiet jest odrzucany. W praktyce pozwala to na zarządzanie ruchem sieciowym oraz na identyfikację i eliminację potencjalnych pętli w sieci. Warto pamiętać, że standardy takie jak RFC 791 definiują tę funkcjonalność, a jej poprawne działanie jest kluczowe dla stabilności i wydajności sieci. Przykładem zastosowania tej zasady może być analiza trasowania pakietów w protokołach takich jak traceroute, które umożliwiają administracji sieciowej monitorowanie i diagnozowanie problemów z routowaniem.

Pytanie 21

Jakie gniazdo w notebooku jest przeznaczone do podłączenia kamery cyfrowej przez interfejs i.Link?

A. S/PDiF
B. RJ-45
C. DB-15F
D. IEEE 1394
Odpowiedź IEEE 1394 to strzał w dziesiątkę. Ten standard, znany też jako FireWire, stworzono głównie do przesyłania danych wideo i audio na żywo. Dzięki niemu możemy podłączać różne sprzęty, jak kamery cyfrowe czy zewnętrzne dyski twarde, co jest bardzo przydatne. Przykładowo, kiedy przesyłasz materiał z kamery do laptopa, to liczy się czas, a złącze IEEE 1394 to naprawdę fajne rozwiązanie, bo osiąga prędkości do 400 Mb/s (FireWire 400) i 800 Mb/s (FireWire 800). Takie parametry robią różnicę, szczególnie w profesjonalnych zastosowaniach. Warto też dodać, że ten standard pozwala na łańcuchowe podłączanie urządzeń, co daje więcej możliwości na różne konfiguracje. W produkcjach filmowych, wybór odpowiedniego złącza ma ogromny wpływ na cały proces.

Pytanie 22

Jaki procesor powinien być zastosowany podczas składania komputera stacjonarnego opartego na płycie głównej Asus M5A78L-M/USB3 AMD760G socket AM3+?

A. AMD APU A4 6320 3800MHz FM2
B. AMD APU A8 7650K 3300MHz FM2+ BOX
C. AMD FX 8300 3300MHz AM3+ OEM
D. AMD A8-7600 S.FM2 BOX
Odpowiedź AMD FX 8300 3300MHz AM3+ OEM jest prawidłowa, ponieważ procesor ten jest zgodny z gniazdem AM3+, które obsługuje płyta główna Asus M5A78L-M/USB3. Płyta ta została zaprojektowana z myślą o procesorach AMD FX, co zapewnia pełną kompatybilność oraz optymalne wykorzystanie możliwości sprzętowych. FX 8300, jako procesor ośmiordzeniowy, oferuje solidną wydajność w zastosowaniach multimedialnych i grach, a także w obliczeniach wielowątkowych. Dzięki technologii Turbo Core, procesor ten może dynamicznie zwiększać swoją częstotliwość, co sprzyja wydajności w wymagających zadaniach. Przykładowo, w grach komputerowych, które korzystają z wielu rdzeni, FX 8300 zapewnia lepsze rezultaty w porównaniu do procesorów z niższą liczbą rdzeni. Standardy montażu komputerowego wymagają, aby procesor był dopasowany do gniazda oraz płyty głównej, co w tym przypadku jest spełnione. Użycie niewłaściwego procesora, jak w przypadku innych opcji, mogłoby prowadzić do problemów z uruchomieniem systemu czy ogólną niekompatybilnością sprzętu.

Pytanie 23

Jaką maksymalną prędkość danych można osiągnąć w sieci korzystającej z skrętki kategorii 5e?

A. 10 Mb/s
B. 1 Gb/s
C. 100 Mb/s
D. 10 Gb/s
Maksymalna prędkość transmisji danych w sieciach Ethernet przy zastosowaniu skrętki kategorii 5e wynosi 1 Gb/s, co jest zgodne z normą IEEE 802.3ab. Skrętki kategorii 5e są powszechnie stosowane w lokalnych sieciach komputerowych, oferując nie tylko odpowiednią przepustowość, ale również poprawioną jakość sygnału w porównaniu do wcześniejszych kategorii. Dzięki zastosowaniu tej kategorii kabli, możliwe jest wsparcie dla aplikacji takich jak streaming wideo, gry online oraz szybkie przesyłanie dużych plików. W praktycznych zastosowaniach, sieci oparte na skrętce 5e mogą obsługiwać różne urządzenia, w tym komputery, drukarki oraz urządzenia IoT, co czyni je wszechstronnym rozwiązaniem w biurach i domach. Ponadto, zgodność z obowiązującymi standardami zapewnia interoperacyjność z innymi systemami i urządzeniami, co jest kluczowe w dzisiejszym złożonym środowisku sieciowym.

Pytanie 24

Umowa, na podstawie której użytkownik ma między innymi dostęp do kodu źródłowego oprogramowania w celu jego analizy i ulepszania, to licencja

A. GNU GPL
B. OEM
C. MOLP
D. OLP
GNU GPL to jedna z popularniejszych licencji open source, która daje szansę każdemu na dostęp do kodu źródłowego oprogramowania. Dzięki temu można go analizować, zmieniać i dzielić się nim z innymi. To fajne, bo sprzyja współpracy i innowacjom wśród programistów. Przykładowo, Linux, który jest rozwijany przez wielu ludzi, korzysta z tej licencji. Z mojego doświadczenia, korzystanie z GNU GPL to krok w dobrym kierunku, bo to pozwala na większą transparentność i tworzenie lepszego oprogramowania, które odpowiada na potrzeby użytkowników. W ogóle, takie licencje są bardzo ważne w ruchu open source, bo dostępność kodu to klucz do rozwoju technologii i współpracy w IT.

Pytanie 25

Aby w systemie Windows nadać użytkownikowi możliwość zmiany czasu systemowego, potrzebna jest przystawka

A. services.msc
B. secpol.msc
C. eventvwr.msc
D. certmgr.msc
Odpowiedzi takie jak 'eventvwr.msc', 'certmgr.msc' oraz 'services.msc' nie są właściwe w kontekście przydzielania praw użytkownikom do zmiany czasu systemowego. 'Eventvwr.msc' odnosi się do Podglądu zdarzeń, który służy do monitorowania i analizy zdarzeń systemowych i aplikacyjnych, co nie ma związku z przydzielaniem uprawnień użytkowników. Może być używane do diagnostyki, ale nie do zarządzania politykami bezpieczeństwa. Z kolei 'certmgr.msc' to narzędzie do zarządzania certyfikatami, które nie ma zastosowania w kontekście uprawnień związanych z czasem systemowym. Użytkownicy mogą mylnie sądzić, że certyfikaty mają wpływ na czas systemowy, ale w rzeczywistości certyfikaty są używane głównie do zapewnienia bezpieczeństwa komunikacji. 'Services.msc' z kolei umożliwia zarządzanie usługami systemowymi, co również nie dotyczy przydzielania praw użytkownikom. Typowym błędem myślowym jest przekonanie, że wszystkie przystawki do zarządzania systemem mają podobne funkcje, podczas gdy każda z nich odpowiada za zupełnie inny aspekt funkcjonowania systemu. Kluczowe jest zrozumienie, że przydzielanie praw użytkownikom wymaga odwołania do narzędzi zarządzających politykami bezpieczeństwa, a nie do narzędzi monitorujących czy zarządzających usługami.

Pytanie 26

Który podzespół nie jest kompatybilny z płytą główną MSI A320M Pro-VD-S socket AM4, 1 x PCI-Ex16, 2 x PCI-Ex1, 4 x SATA III, 2 x DDR4- max 32 GB, 1 x D-SUB, 1x DVI-D, ATX?

A. Dysk twardy 500GB M.2 SSD S700 3D NAND
B. Pamięć RAM Crucial 8GB DDR4 2400MHz Ballistix Sport LT CL16
C. Procesor AMD Ryzen 5 1600, 3.2GHz, s-AM4, 16MB
D. Karta graficzna Radeon RX 570 PCI-Ex16 4GB 256-bit 1310MHz HDMI, DVI, DP
Wybór dysku twardego 500GB M.2 SSD S700 3D NAND jako niekompatybilnego z płytą główną MSI A320M Pro-VD-S jest jak najbardziej trafny. Wynika to z podstawowej cechy tej płyty – ona po prostu nie ma złącza M.2, które jest wymagane do podłączenia tego typu nośnika SSD. W praktyce, nawet jeśli ten dysk wyglądałby na pierwszy rzut oka jak dobry wybór, nie da się go fizycznie zamontować w tej konstrukcji. To częsty błąd, zwłaszcza przy zakupach podzespołów – ludzie kierują się wydajnością czy pojemnością, ale nie sprawdzają zgodności mechanicznej i elektrycznej. W tej płycie głównej możemy wykorzystać wyłącznie dyski ze złączem SATA III. Moim zdaniem, zawsze warto przed zakupem nowego sprzętu rzucić okiem nie tylko na specyfikację, ale i na fotki płyty – wtedy od razu widać, czego realnie się spodziewać. Branżowym standardem jest, by sprawdzać nie tylko standard interfejsu (np. SATA vs M.2), ale i fizyczne możliwości podłączenia. Często też starsze płyty główne nie obsługują nowoczesnych dysków M.2 NVMe lub SATA M.2, bo po prostu nie mają odpowiedniego slotu – dokładnie jak w tym przypadku. Praktycznie, zawsze warto mieć w głowie, że wybierając podzespoły do komputera liczy się nie tylko wydajność, ale też zwykła kompatybilność sprzętowa. Dobrą praktyką jest korzystanie z oficjalnych list kompatybilności producenta lub konfiguratorów sprzętu. Takie podejście oszczędza niepotrzebnych wydatków i rozczarowań.

Pytanie 27

Jakie polecenie w systemie Windows powinno być użyte do obserwacji listy bieżących połączeń karty sieciowej w komputerze?

A. Ping
B. Telnet
C. Ipconfig
D. Netstat
Odpowiedzi takie jak 'Ping', 'Telnet' oraz 'Ipconfig' nie są właściwe w kontekście monitorowania aktywnych połączeń karty sieciowej. 'Ping' służy do sprawdzania dostępności hostów w sieci oraz mierzenia czasu odpowiedzi, ale nie oferuje informacji o aktualnych połączeniach ani ich stanie. Użytkownicy mogą mylnie sądzić, że 'Ping' pomoże w diagnozowaniu problemów z połączeniem, jednak jego funkcjonalność ogranicza się do testowania komunikacji, a nie analizy aktywnych połączeń. 'Telnet' jest protokołem umożliwiającym zdalne logowanie się na serwery, co również nie ma związku z monitoringiem połączeń. W rzeczywistości 'Telnet' może być używany do łączenia się z serwerami, ale nie dostarcza informacji o otwartych portach czy parametrach połączeń. Z kolei 'Ipconfig' jest narzędziem służącym do wyświetlania informacji o konfiguracji interfejsów sieciowych w systemie Windows, takich jak adresy IP, maski podsieci czy bramy domyślnej. Mimo że jest to istotne narzędzie w zarządzaniu siecią, nie dostarcza ono danych o aktywnych połączeniach. Wszelkie te narzędzia pełnią różne funkcje, ale ich zastosowanie nie jest odpowiednie w kontekście monitorowania połączeń, co może prowadzić do nieefektywnej diagnostyki problemów w sieci, jeśli użytkownicy nie będą świadomi ich ograniczeń.

Pytanie 28

Magistrala komunikacyjna PCI ver. 2.2 (Peripheral Component Interconnect) jest standardem magistrali, zgodnie z którym szyna danych ma maksymalną szerokość

A. 128 bitów.
B. 16 bitów.
C. 64 bitów.
D. 32 bitów.
W temacie szerokości szyny danych PCI wersji 2.2 pojawia się sporo nieporozumień, które łatwo mogą wprowadzić w błąd podczas nauki o architekturze komputerowej. Często myli się różne generacje magistrali albo zakłada, że im wyższa liczba bitów, tym nowocześniejszy albo bardziej wydajny standard – choć nie zawsze tak jest. Część osób błędnie wybiera 16 bitów, bo kojarzy to ze starszymi magistralami, jak ISA, które rzeczywiście miały takie parametry, ale PCI od początku była projektowana jako bardziej zaawansowana i 16-bitowe wersje nigdy nie były powszechne. Z kolei opcja 64 bity to już domena rozwiązań specjalnych, typowych dla serwerów czy stacji roboczych klasy enterprise, gdzie faktycznie taki wariant PCI istniał, ale nie był to główny standard przemysłowy – domowe komputery obsługiwały niemal wyłącznie 32-bitowe karty i sloty. Czasem też spotyka się pomysł z 128 bitami, co najpewniej wynika z mylenia PCI z zupełnie innymi, nowszymi standardami (np. PCI Express albo architekturami wewnętrznymi pamięci RAM), gdzie szyny danych są dużo szersze, ale to już inna technologia. Moim zdaniem, taki błąd jest typowy dla osób, które próbują zgadywać, nie znając specyfikacji – warto pamiętać, że PCI 2.2 to klasyczne 32 bity, a wszelkie odstępstwa od tej reguły są raczej wyjątkiem niż regułą. W codziennej praktyce technika komputerowego, rozumienie tych różnic pomaga uniknąć niepotrzebnych pomyłek przy dobieraniu i diagnozowaniu kart rozszerzeń, a także podczas rozmów z klientami, którzy często mają niejasne oczekiwania co do modernizacji starszego sprzętu.

Pytanie 29

Urządzenia wykorzystujące port USB 2.0 są zasilane napięciem, którego wartość znajduje się w przedziale

A. 3,55 V - 4,15 V
B. 4,75 V - 5,35 V
C. 4,15 V - 4,75 V
D. 5,35 V - 5,95 V
Rozważając wartości napięcia zasilania urządzeń USB 2.0, warto zwrócić uwagę na to, że odpowiedzi niezgodne z poprawnym zakresem 4,75 V - 5,35 V mogą wynikać z kilku powszechnych nieporozumień. Napięcie zasilania dla standardu USB 2.0 zostało precyzyjnie zdefiniowane w normach USB, aby zapewnić stabilność i bezpieczeństwo urządzeń. Podawanie wartości niższych, jak 4,15 V - 4,75 V, może prowadzić do twierdzeń, że urządzenia będą funkcjonować w obszarze, który nie spełnia wymogów technicznych, co z kolei może skutkować niestabilnością pracy urządzeń. Przy zasilaniu napięciem poniżej 4,75 V, wiele urządzeń może napotkać na trudności w operacjach wymagających większej mocy, co może prowadzić do ich nieprawidłowego działania. Z kolei wartości powyżej 5,35 V, jak 5,35 V - 5,95 V, mogą prowadzić do ryzyka uszkodzenia podłączonych komponentów z powodu przekroczenia dopuszczalnego napięcia. Należy również pamiętać, że urządzenia USB muszą być projektowane z myślą o pracy w określonym zakresie napięcia, aby zapewnić zgodność z normami. Niewłaściwe napięcia mogą nie tylko wpłynąć na wydajność, ale mogą również prowadzić do uszkodzenia komponentów, co jest istotnym czynnikiem w projektowaniu elektroniki. Dlatego zrozumienie zakresu 4,75 V - 5,35 V jest kluczowe dla zarówno inżynierów projektujących nowe urządzenia, jak i użytkowników, którzy muszą być świadomi potencjalnych zagrożeń związanych z nieodpowiednim zasilaniem.

Pytanie 30

Na którym z domyślnych portów realizowana jest komunikacja protokołu ftp?

A. 23
B. 21
C. 80
D. 53
Odpowiedzi 23, 53 i 80 są niepoprawne, ponieważ każdy z tych portów jest wykorzystywany przez inne protokoły, co prowadzi do mylnych informacji o ich zastosowaniu w kontekście FTP. Port 23 jest zarezerwowany dla protokołu Telnet, który pozwala na zdalne logowanie do systemów operacyjnych, jednak nie jest on przystosowany do przesyłania plików, co jest kluczową funkcją FTP. Port 53 jest używany przez protokół DNS (Domain Name System), który odpowiada za tłumaczenie nazw domen na adresy IP, co również nie ma związku z transferem plików. Natomiast port 80 jest standardowym portem dla protokołu HTTP, używanego w komunikacji sieciowej w przeglądarkach internetowych do wyświetlania stron www. Zrozumienie, jakie porty są przypisane do konkretnych protokołów, jest niezbędne dla właściwego konfigurowania usług sieciowych oraz zabezpieczania systemów przed nieautoryzowanym dostępem. Błędne przypisanie portów może prowadzić do problemów z komunikacją w sieciach oraz do trudności w identyfikowaniu i rozwiązywaniu problemów z transferem danych.

Pytanie 31

Martwy piksel, będący defektem monitorów LCD, to punkt, który trwa niezmiennie w kolorze

A. fioletowym
B. żółtym
C. czarnym
D. szarym
Martwy piksel to problem, który dotyczy wyświetlaczy LCD i oznacza punkt na ekranie, który nie reaguje na sygnały z karty graficznej. W przypadku martwego piksela, najczęściej pozostaje on w jednym, niezmiennym kolorze, a najczęściej jest to kolor czarny. Oznacza to, że piksel nie emituje światła, co sprawia, że jest widoczny jako ciemny punkt na tle jaśniejszego obrazu. Martwe piksele mogą występować z różnych przyczyn, w tym uszkodzeń mechanicznych, błędów w produkcji lub problemów z oprogramowaniem. W branży standardem jest, że producenci monitorów klasyfikują martwe piksele jako defekty, jeżeli ich liczba przekracza określony próg, który zazwyczaj wynosi kilka pikseli na milion. Użytkownicy mogą spotkać się z tym problemem podczas codziennego użytku, np. w grach komputerowych czy podczas pracy z grafiką, gdzie jakość obrazu ma kluczowe znaczenie. Dobrą praktyką jest regularne sprawdzanie monitorów pod kątem martwych pikseli, aby zminimalizować wpływ takich defektów na doświadczenia użytkowników.

Pytanie 32

Na schemacie ilustrującym konstrukcję drukarki, w której toner jest nierównomiernie dostarczany do bębna, należy wskazać wałek magnetyczny oznaczony numerem

Ilustracja do pytania
A. 2
B. 1
C. 4
D. 3
Niewłaściwe zidentyfikowanie elementów odpowiedzialnych za podawanie tonera do bębna światłoczułego może prowadzić do błędnych diagnoz i niepotrzebnych napraw. Wałek magnetyczny jest specjalistycznym komponentem którego funkcją jest kontrolowanie przepływu cząsteczek tonera w kierunku bębna. Inne elementy takie jak bęben światłoczuły czy wałek czyszczący pełnią różne role w drukarce laserowej. Bęben światłoczuły jest odpowiedzialny za przenoszenie obrazu na papier a wszelkie zanieczyszczenia na jego powierzchni mogą powodować błędy drukarskie które nie są związane z podawaniem tonera. Wałek czyszczący z kolei usuwa resztki tonera i zanieczyszczenia co zapobiega ich przedostawaniu się na wydruki. Brak zrozumienia tych funkcji prowadzi do mylnych wniosków dotyczących źródła problemów z drukiem. Często spotykanym błędem jest założenie że problemy jakościowe wynikają z uszkodzenia bębna podczas gdy prawdziwą przyczyną może być nierównomierne podawanie tonera przez zużyty lub zanieczyszczony wałek magnetyczny. Dlatego też kluczowe jest dokładne diagnozowanie problemów w oparciu o zrozumienie specyfiki działania różnych komponentów drukarki oraz ich regularna konserwacja i wymiana co jest częścią dobrych praktyk utrzymania urządzeń drukujących.

Pytanie 33

Na ilustracji przedstawiono przekrój kabla

Ilustracja do pytania
A. optycznego
B. U/UTP
C. S/UTP
D. koncentrycznego
Kabel koncentryczny charakteryzuje się specyficzną budową, która obejmuje centralny przewodnik wewnętrzny, otoczony izolacją dielektryczną, a następnie przewodnikiem zewnętrznym, który najczęściej jest wykonany z plecionki miedzianej lub folii aluminiowej. Całość zamknięta jest w zewnętrznej osłonie ochronnej. Ta konstrukcja pozwala na efektywne przesyłanie sygnałów o wysokiej częstotliwości z minimalnym tłumieniem i zakłóceniami zewnętrznymi. Kabel koncentryczny jest szeroko stosowany w systemach telewizji kablowej, instalacjach antenowych oraz w sieciach komputerowych do przesyłania sygnałów radiowych i telewizyjnych. Dzięki swojej budowie kabel ten jest odporny na wpływ zakłóceń elektromagnetycznych, co czyni go idealnym rozwiązaniem w sytuacjach, gdzie konieczne jest utrzymanie wysokiej jakości sygnału na długich dystansach. Dodatkowo kable koncentryczne są zgodne ze standardami takimi jak RG-6 i RG-59, co zapewnia ich szerokie zastosowanie w różnych dziedzinach technologii komunikacyjnej.

Pytanie 34

Jakiej klasy należy adres IP 130.140.0.0?

A. Należy do klasy B
B. Należy do klasy A
C. Należy do klasy D
D. Należy do klasy C
Adres 130.140.0.0 należy do klasy B, ponieważ jego pierwszy oktet (130) mieści się w zakresie od 128 do 191, co jest charakterystyczne dla tej klasy. Klasa B jest zazwyczaj wykorzystywana w większych sieciach, gdzie potrzebna jest możliwość obsługi zarówno dużej liczby adresów hostów, jak i segmentacji sieci. W przypadku klasy B, 16 bitów jest przeznaczonych na identyfikację sieci, a pozostałe 16 bitów na identyfikację hostów, co pozwala na stworzenie 16,384 różnych sieci, z maksymalnie 65,534 hostami w każdej z nich. Przykładem zastosowania adresów z klasy B mogą być instytucje edukacyjne lub średniej wielkości przedsiębiorstwa, które potrzebują więcej adresów IP niż te, które są dostępne w klasie C, ale nie tak wiele jak te, które oferuje klasa A. W praktyce klasę B często wykorzystuje się w większych organizacjach, gdzie liczba urządzeń w sieci przekracza możliwości klas niższych. Zrozumienie klasyfikacji adresów IP jest kluczowe dla projektowania skutecznych i skalowalnych sieci, a znajomość ich zakresów umożliwia efektywne zarządzanie infrastrukturą sieciową.

Pytanie 35

Jakie zakresy zostaną przydzielone przez administratora do adresów prywatnych w klasie C, przy użyciu maski 24 bitowej dla komputerów w lokalnej sieci?

A. 192.168.0.1 - 192.168.10.254
B. 172.168.0.1 - 172.168.255.254
C. 192.168.0.1 - 192.168.0.254
D. 172.16.0.1 - 172.16.255.254
Adresy prywatne w klasie C są zdefiniowane w standardzie RFC 1918, który określa zakresy adresów dostępnych do użycia w sieciach lokalnych, niezależnych od publicznego routingu w Internecie. Zakres 192.168.0.0/24, z maską 255.255.255.0, umożliwia przypisanie adresów od 192.168.0.1 do 192.168.0.254 dla urządzeń w lokalnej sieci. Użycie adresów prywatnych to standardowa praktyka w zarządzaniu sieciami, ponieważ pozwala na redukcję kosztów związanych z zakupem adresów publicznych, a także zwiększa bezpieczeństwo sieci lokalnej, ograniczając dostęp do niej z zewnątrz. Przykład zastosowania to konfiguracja domowego routera, który często przypisuje adresy z tej puli do różnych urządzeń, takich jak komputery, drukarki czy smartfony, co umożliwia utworzenie lokalnej sieci bez potrzeby pozyskiwania publicznych adresów IP. Dodatkowo, stosowanie NAT (Network Address Translation) pozwala na maskowanie wewnętrznych adresów prywatnych w stosunku do zewnętrznych, co dalej wzmacnia bezpieczeństwo. Takie podejście jest zgodne z zaleceniami wielu organizacji zajmujących się bezpieczeństwem sieciowym.

Pytanie 36

Jakie będą wydatki na zakup kabla UTP kat.5e potrzebnego do stworzenia sieci komputerowej składającej się z 6 stanowisk, przy średniej odległości każdego stanowiska od przełącznika równiej 9m? Należy doliczyć m zapasu dla każdej linii kablowej, a cena za metr kabla wynosi 1,50 zł?

A. 120,00 zł
B. 60,00 zł
C. 90,00 zł
D. 150,00 zł
Poprawna odpowiedź na to pytanie to 90,00 zł, co jest wynikiem obliczeń związanych z kosztami zakupu kabla UTP kat.5e. Aby zbudować sieć komputerową z 6 stanowiskami, każde z nich wymaga kabla o długości 9 m. Całkowita długość kabla potrzebnego na 6 stanowisk wynosi więc 6 * 9 m, co daje 54 m. Dodatkowo, zgodnie z dobrymi praktykami w branży, powinno się dodać zapas kabla, który zazwyczaj wynosi 10% całkowitej długości. W naszym przypadku zapas to 54 m * 0,1 = 5,4 m, co łącznie daje 54 m + 5,4 m = 59,4 m. Przy zaokrągleniu do pełnych metrów, kupujemy 60 m kabla. Cena metra kabla wynosi 1,50 zł, więc całkowity koszt zakupu wyniesie 60 m * 1,50 zł = 90,00 zł. Takie podejście nie tylko zaspokaja potrzeby sieciowe, ale również jest zgodne z normami instalacyjnymi, które zalecają uwzględnienie zapasu kabli, aby unikać niedoborów podczas instalacji.

Pytanie 37

Na rysunku przedstawiono konfigurację urządzenia WiFi. Wskaż, które z poniższych stwierdzeń dotyczących tej konfiguracji jest poprawne?

Ilustracja do pytania
A. W tej chwili w sieci WiFi pracuje 7 urządzeń
B. Dostęp do sieci bezprzewodowej jest możliwy tylko dla siedmiu urządzeń
C. Urządzenia w sieci mają adresy klasy A
D. Filtrowanie adresów MAC jest wyłączone
Filtrowanie adresów MAC jest mechanizmem bezpieczeństwa stosowanym w sieciach bezprzewodowych w celu ograniczenia dostępu do sieci na podstawie unikalnych adresów MAC urządzeń. W konfiguracji przedstawionej na rysunku opcja filtrowania adresów MAC jest wyłączona co oznacza że każde urządzenie które zna dane sieci takie jak nazwa sieci SSID i hasło może się do niej podłączyć bez dodatkowej autoryzacji. Wyłączenie filtrowania może być celowe w środowiskach gdzie wiele urządzeń musi mieć szybki i nieskrępowany dostęp do sieci co jest często spotykane w miejscach publicznych czy dużych biurach. Praktyka ta jest jednak uważana za mniej bezpieczną gdyż każdy kto zna dane dostępowe może połączyć się z siecią. Z tego powodu w środowiskach wymagających wysokiego poziomu bezpieczeństwa zaleca się włączenie filtrowania adresów MAC jako dodatkowy środek kontroli dostępu obok innych metod takich jak WPA3 czy uwierzytelnianie użytkowników przez serwery RADIUS. Filtrowanie adresów MAC można łatwo skonfigurować w panelu administracyjnym routera co pozwala na precyzyjne kontrolowanie które urządzenia mogą łączyć się z siecią.

Pytanie 38

Jakie narzędzie służy do usuwania izolacji z włókna światłowodowego?

A. stripper
B. cleaver
C. zaciskarka
D. nóż
Wybór złych narzędzi do ściągania izolacji z włókna światłowodowego może naprawdę narobić problemów z jakością połączeń. Nóż może się wydawać przydatny, ale brakuje mu precyzji, więc łatwo można uszkodzić włókno. A takie uszkodzenia mogą prowadzić do strat w sygnale, a w najgorszym wypadku nawet do zniszczenia włókna. Cleaver, chociaż używa się go do cięcia włókien, nie nadaje się do zdejmowania izolacji. On bardziej wygładza końcówkę włókna przed spawaniem. Zaciskarka jest z kolei do łączenia włókien, więc jej użycie w tym kontekście nie ma sensu. Używanie niewłaściwego narzędzia nie tylko wydłuża czas pracy, ale i zwiększa ryzyko błędów, co w przypadku instalacji światłowodowych jest po prostu nieakceptowalne. Dlatego w profesjonalnych instalacjach ważne jest korzystanie z odpowiednich narzędzi, jak stripper, które spełniają normy branżowe i gwarantują dobrą jakość wykonania.

Pytanie 39

Jaki protokół aplikacyjny w modelu TCP/IP pozwala klientowi na nawiązanie bezpiecznego połączenia z firmowym serwerem przez Internet, aby zyskać dostęp do zasobów przedsiębiorstwa?

A. FYP
B. VPN
C. VLAN
D. NAT
VPN, czyli Virtual Private Network, to protokół warstwy aplikacji, który umożliwia bezpieczne połączenie zdalnych klientów z zasobami firmowymi przez Internet. Działa poprzez stworzenie prywatnego tunelu, który szyfruje wszystkie dane przesyłane między klientem a serwerem, co jest kluczowe w kontekście ochrony informacji przed nieautoryzowanym dostępem. VPN często wykorzystuje protokoły takie jak IPsec oraz SSL/TLS, co zwiększa bezpieczeństwo połączenia. Przykład zastosowania to sytuacja, gdy pracownicy firmy łączą się z siecią biurową zdalnie, np. z domu lub podczas podróży. Dzięki VPN mogą bezpiecznie uzyskiwać dostęp do zasobów firmowych, takich jak pliki, aplikacje czy systemy. Stosowanie VPN jest zgodne z dobrą praktyką w zakresie bezpieczeństwa IT i ochrony danych, ponieważ nie tylko zabezpiecza komunikację, ale również pozwala na ukrycie adresu IP użytkownika, co dodatkowo zwiększa prywatność.

Pytanie 40

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. wybraniem pliku z obrazem dysku.
B. konfigurowaniem adresu karty sieciowej.
C. dodaniem drugiego dysku twardego.
D. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.