Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 30 grudnia 2025 21:42
  • Data zakończenia: 30 grudnia 2025 22:04

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Określ rodzaj i miejsce usterki zestyku pomocniczego stycznika, jeżeli w przedstawionym układzie podczas pracy silnika zasilanego przez stycznik K1 naciśnięcie przycisku sterującego PZ2 powoduje zadziałanie bezpieczników obwodu głównego.

Ilustracja do pytania
A. Zwarcie zestyku rozwiernego ST1
B. Przerwa w zestyku rozwiernym ST1
C. Przerwa w zestyku rozwiernym ST2
D. Zwarcie zestyku rozwiernego ST2
Zwarcie zestyku rozwiernego ST1 jest poprawną odpowiedzią, ponieważ naciśnięcie przycisku PZ2 powinno normalnie powodować rozłączenie stycznika K1, co skutkowałoby zasileniem silnika. W przypadku, gdy zadziałają bezpieczniki obwodu głównego, wskazuje to na nieprawidłowy stan obwodu, czyli zwarcie. Zestyki styczników są zaprojektowane z myślą o bezpieczeństwie i efektywności, a ich właściwe działanie jest kluczowe w systemach automatyki. W przypadku zwarcia, prąd przepływa bezpośrednio przez zestyki zamiast być przerywany, co prowadzi do przeciążenia i w rezultacie zadziałania zabezpieczeń. W praktyce, takie sytuacje mogą prowadzić do poważnych uszkodzeń urządzeń, dlatego ważne jest regularne sprawdzanie stanu zestyku oraz konserwacja układów sterowania. Zastosowanie standardów bezpieczeństwa, takich jak IEC 60204-1, podkreśla znaczenie prawidłowego funkcjonowania układów sterujących, aby minimalizować ryzyko awarii i zapewnić bezpieczne warunki pracy.

Pytanie 2

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. specyfikacji technicznej instalacji
C. opisu doboru urządzeń zabezpieczających
D. spisu terminów oraz zakresów prób i badań kontrolnych
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 3

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
B. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
C. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
D. przewodów elektrycznych wyłącznie przed skutkami zwarć.
Wkładki topikowe są kluczowymi elementami ochrony elektrycznej, które zapobiegają uszkodzeniom przewodów elektrycznych w wyniku przeciążeń i zwarć. Kiedy prąd przepływający przez obwód przekracza bezpieczny poziom, wkładka topikowa ulega przepaleniu, co przerywa obwód i chroni przed dalszymi szkodami. Jest to istotne w kontekście norm ochrony elektrycznej, takich jak PN-EN 60269, które określają wymagania dotyczące zabezpieczeń przed przeciążeniem i zwarciem. W praktyce wkładki topikowe są powszechnie stosowane w rozdzielniach elektrycznych oraz w instalacjach przemysłowych, gdzie odpowiednia ochrona przewodów jest niezbędna do zapewnienia bezpieczeństwa pracy oraz ochrony urządzeń. Dzięki zastosowaniu wkładek topikowych, użytkownicy mogą mieć pewność, że ich instalacje są zabezpieczone przed niebezpiecznymi sytuacjami, co jest kluczowe dla minimalizacji ryzyka pożaru i awarii sprzętu.

Pytanie 4

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu uzwojeń stojana
B. intensywności pola magnetycznego
C. okresu jego działania
D. oporu rdzenia stojana
Pomiar natężenia pola magnetycznego w silniku indukcyjnym, choć istotny w kontekście analizy działania silników elektrycznych, nie jest uważany za kluczowy element badań eksploatacyjnych. Zamiast tego, takie pomiary są często stosowane w bardziej zaawansowanych analizach, jak ocena efektywności energetycznej lub badania wydajności, a nie w rutynowej diagnostyce. Rezystancja rdzenia stojana, z drugiej strony, odnosi się do strat materiałowych, które są istotne, ale ich pomiar nie jest bezpośrednio związany z codziennym utrzymaniem silników. Czas pracy silnika może być używany jako wskaźnik eksploatacji, ale nie dostarcza bezpośrednich informacji o stanie technicznym silnika. W praktyce, pomiar rezystancji uzwojeń stojana jest bardziej miarodajny, gdyż wskazuje na kondycję uzwojeń i ich zdolność do przewodzenia prądu. Niezrozumienie znaczenia pomiarów rezystancji lub pomylenie ich z innymi parametrami może prowadzić do nieprawidłowych wniosków dotyczących stanu technicznego silnika, a tym samym do nieefektywnej konserwacji i zwiększenia ryzyka wystąpienia awarii.

Pytanie 5

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Przekrój żył
B. Typ materiału żyły
C. Długość przewodu
D. Typ materiału izolacji
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 6

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 20A
B. 6A
C. 16A
D. 10A
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 7

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby zredukować prąd rozruchowy
B. Aby poprawić przeciążalność
C. Aby zwiększyć moment rozruchowy
D. Aby obniżyć prędkość obrotową
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 8

Element przedstawiony na ilustracji, zabezpieczający olejowy transformator energetyczny o danych znamionowych 15/0,4 kV, 2 500 kVA, nie chroni przed skutkami

Ilustracja do pytania
A. rozkładu termicznego izolacji stałej.
B. obniżenia poziomu oleju w kadzi.
C. zwarć międzyzwojowych.
D. przerw w uziemieniu.
Zrozumienie funkcji przekaźnika Buchholza jest kluczowe dla prawidłowego zarządzania bezpieczeństwem transformatorów olejowych. Odpowiedzi, które wskazują na obniżenie poziomu oleju w kadzi, zwarcia międzyzwojowe czy rozkład termiczny izolacji stałej, mogą prowadzić do mylnych wniosków dotyczących zabezpieczeń oferowanych przez ten element. Obniżenie poziomu oleju w kadzi rzeczywiście jest problemem, ale Buchholz relay działa jako czujnik, który wykrywa ten stan, a nie jako mechanizm, który go zabezpiecza. W przypadku zwarć międzyzwojowych, przekaźnik ten jest w stanie zidentyfikować gazy wydobywające się z transformatora, co również nie jest funkcją zabezpieczającą, a jedynie sygnalizującą. Co więcej, rozkład termiczny izolacji stałej jest sprawą bardziej związana z zarządzaniem temperaturą i nie jest bezpośrednio monitorowane przez przekaźnik Buchholza. Ponadto, przerwy w uziemieniu nie są wykrywane przez ten element, co może prowadzić do poważnych usterek w systemie zasilania, dlatego ważne jest, aby zrozumieć, że przekaźnik nie jest rozwiązaniem dla wszystkich problemów związanych z bezpieczeństwem transformatora. Właściwe zrozumienie funkcjonalności oraz ograniczeń Buchholz relay jest kluczowe dla skutecznego zarządzania bezpieczeństwem i efektywnością pracy transformatorów energetycznych.

Pytanie 9

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. drgań
B. izolacji łożysk
C. charakterystyki stanu jałowego
D. rezystancji uzwojeń
Pomiar rezystancji uzwojeń trójfazowego silnika indukcyjnego jest kluczowy dla oceny jego stanu technicznego. Rezystancja uzwojeń pozwala na ocenę ich integralności oraz wykrycie potencjalnych uszkodzeń, takich jak zwarcia czy przerwy. W praktyce, pomiar ten jest często realizowany przy użyciu omomierza, a wartości rezystancji powinny być zgodne z danymi producenta. Niekiedy, po dokonaniu pomiaru, porównuje się wyniki z normami zawartymi w dokumentacji technicznej silnika. Dobrą praktyką jest także wykonywanie pomiarów rezystancji w różnych warunkach temperaturowych, ponieważ wpływ temperatury na rezystancję może być znaczący. Warto dodać, że w przypadku silników wykonanych z materiałów o wysokiej przewodności, takich jak miedź, rezystancja powinna być minimalna, co świadczy o ich dobrej kondycji. Regularne pomiary rezystancji uzwojeń mogą również pomóc w planowaniu działań konserwacyjnych oraz przewidywaniu potencjalnych awarii, co jest zgodne z zasadami zarządzania majątkiem technicznym.

Pytanie 10

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Waromierz
B. Pirometr
C. Megaomomierz
D. Sonometr
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 11

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. lakieru izolacyjnego
B. izolacji żłobkowej
C. pierścienia zwierającego
D. drutu nawojowego
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 12

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Wyniki testów technicznych urządzenia są zadowalające
B. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
C. Urządzenie spełnia kryteria efektywnego zużycia energii
D. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 13

Jakiego rodzaju pracy powinien być przystosowany silnik elektryczny, który ma napędzać wentylator wyciągowy w procesie obróbki drewna?

A. S9 - praca z nieokresowymi zmianami obciążenia i prędkości obrotowej
B. S7 - praca okresowa długotrwała z hamowaniem elektrycznym
C. S3 - praca okresowa przerywana
D. S1 - praca ciągła
Praca okresowa z hamowaniem elektrycznym nie nadaje się do wentylatora wyciągowego w obróbce drewna. Taki tryb pracy oznacza, że urządzenie będzie mocno eksploatowane, a potem hamowane, co nie ma sensu przy wentylacji. Hamowanie elektryczne generuje duże obciążenia dla silnika i może szybko prowadzić do jego uszkodzenia, a wentylator powinien działać bez przerwy. Praca okresowa przerywana też nie jest odpowiednia, bo wtedy silnik działa w cyklach, czyli trochę pracuje, a potem odpoczywa, co może prowadzić do nagromadzenia się pyłów w miejscach, gdzie wentylacja powinna być ciągła. Nie ma sensu też zmieniać obciążenia czy prędkości obrotowej, bo to może wprowadzać chaos i negatywnie wpływać na wentylację. Kluczowe jest, żeby silnik był odpowiednio dostosowany do swojego zadania, zgodny z branżowymi standardami i zaleceniami producentów. Rozumienie, jak działa silnik, jest więc bardzo istotne dla jego trwałości i efektywności.

Pytanie 14

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. przerywanej
B. nieokresowej
C. ciągłej
D. dorywczej
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 15

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H07RR-F 4G2,5
B. H03V2V2H2-F 3X2,5
C. H03V2V2-F 3X2,5
D. H07VV-U 4G2,5
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 16

Jaka jest minimalna wartość natężenia oświetlenia, która powinna być zapewniona w klasie, jeżeli na biurkach uczniów nie są umieszczone monitory ekranowe?

A. 400 lx
B. 300 lx
C. 500 lx
D. 200 lx
Minimalne natężenie światła w klasie, gdzie nie ma monitorów, to 300 lx. Mamy takie przepisy, jak PN-EN 12464-1, które mówią, jakie powinno być oświetlenie w miejscach pracy. W klasach odpowiednie oświetlenie to klucz dla dobrej nauki i komfortu uczniów. 300 lx pomaga skupić się, zmniejsza zmęczenie oczu i sprawia, że łatwiej jest czytać i pisać. W praktyce oznacza to, że w salach powinny być lampy, które równomiernie oświetlają wszystkie miejsca, żeby nie było cieni. Na przykład, można zastosować lampy LED o dobrej mocy. Są one energooszczędne i długotrwałe, a przy tym spełniają normy. Dobre oświetlenie wpływa pozytywnie na przyswajanie wiedzy i ogólne samopoczucie uczniów.

Pytanie 17

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C20
B. S303 C40
C. S303 C32
D. S303 C25
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 18

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. umieszczeniu elementów aktywnych poza zasięgiem ręki
B. wprowadzeniu barier chroniących przed przypadkowym kontaktem
C. zastosowaniu osłon chroniących przed zamierzonym dotykiem
D. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 19

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. charakterystyki technicznej instalacji
B. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
C. opisu doboru urządzeń zabezpieczających
D. spisu terminów oraz zakresów testów i pomiarów kontrolnych
Odpowiedzi, które wskazują na wykaz terminów oraz zakresów prób i pomiarów kontrolnych, zasady bezpieczeństwa przy wykonywaniu prac oraz charakterystykę instalacji, są błędne. Wydaje mi się, że wszystkie te elementy są super ważne w instrukcjach eksploatacji instalacji elektrycznych. Wykaz terminów i prób mówi nam, jakie testy zrobić i jak często – to kluczowe dla bezpieczeństwa instalacji. Zasady bezpieczeństwa przy pracach eksploatacyjnych to coś, co wszyscy powinni znać, żeby unikać wypadków. A charakterystyka techniczna daje szczegóły na temat tego, jak działają używane urządzenia, bez tego trudno zrozumieć, jak instalacja ma działać. Z perspektywy przepisów, każdy z tych elementów jest mega ważny - wpływa to nie tylko na bezpieczeństwo, ale i na to, jak sprawnie działa cała instalacja. Nie doceniając ich znaczenia, ryzykujemy, że będziemy źle zarządzać instalacjami elektrycznymi, a to po prostu mija się z praktykami w branży.

Pytanie 20

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YADY 3x4 mm2
B. YDYżo 5x2,5 mm2
C. YStY 5xl mm2
D. YSLY 3x2,5 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 21

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Odłącznik instalacyjny.
B. Łącznik silnikowy bez zabezpieczeń termicznych.
C. Rozłącznik izolacyjny z widoczną przerwą.
D. Wyłącznik małej mocy.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 22

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. UTP
B. LgY
C. YDY
D. YKY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.

Pytanie 23

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Czarny
B. Żółto-zielony
C. Zielony
D. Jasnoniebieski
Barwa żółto-zielona jest standardowym oznaczeniem przewodów uziemiających oraz przewodów ochronnych w systemach elektroenergetycznych. Zgodnie z normą PN-EN 60446, która reguluje oznaczenia kolorystyczne przewodów elektrycznych, żółto-zielony kolor jednoznacznie wskazuje na przewody uziemiające, co ma na celu zwiększenie bezpieczeństwa użytkowników oraz minimalizację ryzyka błędów związanych z nieprawidłowym podłączeniem przewodów. W przypadku punktu gwiazdowego transformatora SN/nn, zastosowanie przewodu uziemiającego w barwie żółto-zielonej jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem elektrycznym oraz dla prawidłowego funkcjonowania systemów zabezpieczeń. Praktyczne zastosowanie tej wiedzy obejmuje nie tylko instalacje elektryczne w budynkach, ale także w infrastrukturze przemysłowej, gdzie bezpieczeństwo urządzeń i ludzi jest priorytetem. Warto pamiętać, że stosowanie właściwych barw przewodów jest istotnym elementem bezpieczeństwa, a ich niewłaściwe oznaczenie może prowadzić do poważnych konsekwencji.

Pytanie 24

W zamontowanej w domu jednorodzinnym instalacji, której fragment schematu zamieszczono na rysunku, błędnie dobrano typ

Ilustracja do pytania
A. wyłącznika W 3.
B. gniazd wtykowych Gn 2.
C. gniazda wtykowego Gn 1.
D. wyłącznika W 2.
Odpowiedź wyłącznika W 3 jest prawidłowa, ponieważ na schemacie instalacji elektrycznej przedstawione są przekroje przewodów oraz odpowiednie zabezpieczenia nadprądowe. W przypadku wyłącznika W 3, który zabezpiecza obwód z przewodami o przekroju 3 x 2,5 mm², wartość prądu znamionowego 16 A jest niezgodna z obowiązującymi normami. Zgodnie z polskimi normami, dla przewodów o tym przekroju, odpowiednie wartości prądów znamionowych wyłączników powinny wynosić odpowiednio 10 A lub 13 A. Użycie wyłącznika 16 A może prowadzić do nieodpowiedniego zabezpieczenia obwodu, co w dłuższej perspektywie może skutkować przegrzewaniem się przewodów oraz zwiększonym ryzykiem wystąpienia pożaru. Dobór właściwego wyłącznika jest kluczowym elementem projektowania instalacji elektrycznej, a jego zastosowanie w odpowiednich wartościach zapewnia nie tylko bezpieczeństwo, ale również zgodność z dobrymi praktykami branżowymi, co jest podstawą efektywnego działania instalacji.

Pytanie 25

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A
Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 26

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 400 mA
B. 100 mA
C. 500 mA
D. 200 mA
Wiesz, że minimalna wartość prądu do pomiaru ciągłości przewodów ochronnych wynosi 200 mA? To jak najbardziej zgodne z normami, m.in. IEC 60364 i wytycznymi Polskiego Komitetu Normalizacyjnego. Dzięki takiemu prądowi możesz skutecznie sprawdzić, czy nie ma żadnych przerw albo uszkodzeń w przewodach ochronnych. To mega ważne, bo takie usterki mogą prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych. Jak masz odpowiednie mierniki, jak multitesty, to łatwo możesz to wszystko sprawdzić. Na przykład w zakładach przemysłowych, gdzie przewody mogą być narażone na różne uszkodzenia, to 200 mA jest wręcz niezbędne, żeby zapewnić bezpieczeństwo. Pomiary te są kluczowe dla niezawodności instalacji i zapobiegają zagrożeniom związanym z prądem.

Pytanie 27

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Pogorszenie się stanu mechanicznego złącz i połączeń
C. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
D. Pogorszenie się stanu izolacji
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.

Pytanie 28

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6700
B. 6001
C. 6301
D. 6200
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 29

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ szeregowy
B. Układ trójkąt-gwiazda
C. Układ gwiazda-trójkąt
D. Układ równoległy
Układ gwiazda-trójkąt jest jednym z popularnych sposobów łączenia uzwojeń w transformatorach trójfazowych. W tym rozwiązaniu uzwojenie pierwotne transformatora połączone jest w układzie gwiazdy, a wtórne w układzie trójkąta. Taki sposób połączenia pozwala na efektywne zasilanie wszystkich trzech faz jednocześnie, co jest kluczowe w zastosowaniach przemysłowych. Gwiazda-trójkąt jest często stosowany, gdy potrzebujemy obniżyć napięcie z sieci przesyłowej na poziom użytkowy w zakładach produkcyjnych. Moim zdaniem, jedną z głównych zalet tego układu jest jego zdolność do redukcji prądów w fazach transformatora, co przyczynia się do zwiększenia efektywności energetycznej i zmniejszenia strat cieplnych. W praktyce, transformator z układem gwiazda-trójkąt może być częścią infrastruktury zasilającej różnorodne maszyny, które wymagają stabilnego i wydajnego dostarczania energii. Zastosowanie tego układu jest zgodne z dobrymi praktykami w branży elektroenergetycznej, co jest szczególnie ważne przy projektowaniu systemów zasilania w dużych obiektach przemysłowych.

Pytanie 30

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Grzałki oraz spirale grzejne
B. Termostaty i czujniki temperatury
C. Szczotkotrzymacze oraz szczotki węglowe
D. Przekładnie i skrzynki przekładniowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 31

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
B. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
C. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
D. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 32

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Związane z ochroną urządzeń przed zniszczeniem
B. Związane z ochroną zdrowia i życia ludzi
C. Codzienne, wskazane w instrukcji eksploatacji
D. Okresowe, określone w planie przeglądów
Odpowiedź wskazująca na konieczność wydania polecenia przy okresowych przeglądach instalacji elektrycznych do 1 kV jest zgodna z obowiązującymi standardami oraz regulacjami prawnymi w zakresie bezpieczeństwa eksploatacji urządzeń elektrycznych. Okresowe przeglądy, wpisane w planie przeglądów, mają na celu weryfikację stanu technicznego instalacji oraz wykrywanie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Wydanie polecenia w tym kontekście jest niezbędne, aby formalnie zlecić te działania odpowiedniemu personelowi, który ma kompetencje oraz uprawnienia do ich przeprowadzenia. Przykładem zastosowania może być sytuacja, w której po przeprowadzeniu przeglądu instalacji wykryto nieprawidłowości, co wymaga szybkiego podjęcia działań naprawczych w celu uniknięcia awarii. Warto również podkreślić, że systematyczne przeglądy są rekomendowane przez Polskie Normy oraz przepisy prawa budowlanego, co potwierdza ich istotność w kontekście bezpieczeństwa elektrycznego.

Pytanie 33

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 6 A
B. 1 A
C. 10 A
D. 16 A
Poprawna odpowiedź wynosi 1 A, co jest zgodne z wartością prądu znamionowego, jaką powinien mieć bezpiecznik aparaturowy zainstalowany w obwodzie uzwojenia pierwotnego transformatora jednofazowego. Wartość prądu znamionowego bezpiecznika określa maksymalny prąd, jaki może płynąć przez obwód przed wystąpieniem uszkodzenia lub awarii. W przypadku transformatora, który pracuje w charakterze ładowarki do akumulatorów, kluczowe jest, aby dobrać odpowiednią wartość prądu zabezpieczenia. W analizowanej sytuacji, przy napięciu 230 V na uzwojeniu pierwotnym i przewidywanym prądzie obciążenia 15 A na uzwojeniu wtórnym, istotne jest uwzględnienie współczynnika wydajności oraz strat mocy. Zgodnie z normami, przyjmuje się, aby wartość prądu znamionowego bezpiecznika była co najmniej 20-25% wyższa od prądu obciążenia. W praktyce często stosuje się bezpieczniki o wartości 1 A dla obwodów, w których prąd nie przekracza 15 A. Takie podejście ma na celu zapewnienie dodatkowego marginesu bezpieczeństwa oraz ochrony urządzenia. Wartości te są zgodne z normami IEC 60269 oraz IEC 60947, które zalecają dobór odpowiednich zabezpieczeń w zależności od charakterystyki obciążenia.

Pytanie 34

Który z wymienionych przyrządów pomiarowych służy do oceny ciągłości uzwojenia elementu przedstawionego na rysunku?

Ilustracja do pytania
A. Oscyloskop elektroniczny.
B. Mostek automatyczny RLC.
C. Woltomierz cyfrowy.
D. Miernik rezystancji izolacji.
Woltomierz cyfrowy, oscyloskop elektroniczny oraz miernik rezystancji izolacji to przyrządy, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do oceny ciągłości uzwojenia elementu przedstawionego na rysunku. Woltomierz cyfrowy mierzy napięcie w obwodzie, co w przypadku oceny ciągłości uzwojenia nie dostarcza istotnych informacji o rezystancji czy indukcyjności danego elementu. Dlatego, stosowanie go do tego celu może wprowadzać w błąd, prowadząc do błędnych wniosków o stanie uzwojenia. Oscyloskop elektroniczny, z kolei, jest doskonałym narzędziem do analizy sygnałów czasowych, ale nie jest w stanie bezpośrednio ocenić stanu uzwojenia, które wymaga pomiarów parametru rezystancji. Miernik rezystancji izolacji jest zaprojektowany do oceny izolacji między przewodami, a nie do oceny ciągłości samego uzwojenia. Użycie tych urządzeń w kontekście oceny ciągłości uzwojenia może prowadzić do typowych błędów myślowych, takich jak mylenie pomiaru rezystancji z pomiarem napięcia czy sygnałów, co może skutkować nieprawidłowymi decyzjami podczas diagnozy. W kontekście diagnostyki urządzeń elektronicznych, kluczowe jest zrozumienie, jakie narzędzia są odpowiednie do konkretnego typu pomiarów, ponieważ stosowanie niewłaściwych przyrządów nie tylko zwiększa ryzyko błędnych wyników, ale również może prowadzić do uszkodzenia badanych elementów.

Pytanie 35

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 1 000 V
B. 2 500 V
C. 500 V
D. 250 V
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 36

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie obciążalności prądowej instalacji
B. Obniżenie napięcia roboczego
C. Zwiększenie rezystancji pętli zwarcia
D. Osłabienie wytrzymałości mechanicznej przewodów
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 37

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. wyłącznika
B. stycznika
C. odłącznika
D. przekaźnika
Odłącznik to urządzenie wykorzystywane do zapewnienia widocznej przerwy w obwodzie elektrycznym, co jest kluczowe z punktu widzenia bezpieczeństwa. Jego głównym zadaniem jest umożliwienie całkowitego odłączenia obwodu od źródła zasilania, co pozwala na bezpieczne przeprowadzanie prac konserwacyjnych lub naprawczych. W odróżnieniu od innych urządzeń, takich jak wyłącznik czy stycznik, odłącznik oferuje mechaniczną przerwę w obwodzie, która jest wizualnie dostępna, co pozwala operatorowi na jednoznaczne stwierdzenie, że dany układ jest odłączony od zasilania. Stosowanie odłączników jest zgodne z normami, takimi jak IEC 60947, które określają wymagania dotyczące urządzeń rozdzielczych. Przykładowe zastosowania odłączników to instalacje przemysłowe oraz systemy energetyczne, gdzie nieodzowne jest zapewnienie bezpieczeństwa pracowników podczas interwencji w obwodach elektrycznych.

Pytanie 38

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 39

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Napięcia krokowego
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Rezystancji uziomu
Wybór innych odpowiedzi na to pytanie może prowadzić do pewnych nieporozumień dotyczących bezpieczeństwa instalacji elektrycznych. Mierzenie rezystancji uziomu jest istotnym działaniem, jednak jego celem jest przede wszystkim ocena skuteczności systemu uziemiającego, a nie bezpośrednio ochrony podstawowej. Uziemienie zapewnia odprowadzenie prądów zwarciowych do ziemi, co jest ważne, ale nie eliminuje ryzyka porażenia prądem w przypadku wystąpienia uszkodzenia izolacji. Napięcie krokowe z kolei odnosi się do różnicy potencjałów, jaka może wystąpić na powierzchni ziemi podczas zwarcia, co nie jest miarą skuteczności samej izolacji. Pomiar impedancji zwarciowej jest również ważny, ale najczęściej używa się go do oceny zdolności instalacji do wytrzymania prądów zwarciowych, a nie do weryfikacji stanu izolacji. Właściwe zrozumienie tych koncepcji jest kluczowe, aby uniknąć błędnych wniosków. Zamiast polegać na pomiarach, które nie są bezpośrednio związane z izolacją, należy skupić się na testach, które dostarczą informacji na temat integralności systemu ochrony podstawowej, co jest kluczowe dla bezpieczeństwa użytkowników i trwałości instalacji.

Pytanie 40

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Wzrost obciążalności prądowej instalacji
B. Wzrost rezystancji pętli zwarcia
C. Obniżenie wytrzymałości mechanicznej przewodów
D. Obniżenie napięcia roboczego
Wymiana przewodów ADG na przewody DY w instalacji elektrycznej przynosi szereg korzyści, w tym zwiększenie obciążalności prądowej. Przewody DY, zgodne z normą PN-IEC 60227, charakteryzują się lepszymi właściwościami przewodzenia prądu elektrycznego, co jest kluczowe w kontekście bezpieczeństwa i efektywności energetycznej. Ich konstrukcja wykonana z materiałów o lepszej przewodności, takich jak miedź, pozwala na większe prądy robocze bez ryzyka przegrzania. Dla przykładu, w instalacjach o dużym zapotrzebowaniu na energię elektryczną, jak kuchnie elektryczne czy systemy grzewcze, wyższa obciążalność prądowa jest niezbędna do zapewnienia stabilności działania urządzeń. W praktyce oznacza to, że instalacje z przewodami DY mogą skuteczniej obsługiwać większe obciążenia, co jest zgodne z zasadą projektowania instalacji elektrycznych, by nie przekraczać maksymalnych obciążeń przewodów. Wybór odpowiednich przewodów jest kluczowy również dla zapewnienia długotrwałej i bezawaryjnej pracy całego systemu elektrycznego, co jest zgodne z dobrymi praktykami inżynieryjnymi.