Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 lutego 2026 23:44
  • Data zakończenia: 9 lutego 2026 23:47

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 2

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Zamiana przewodu neutralnego z fazowym
B. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
C. Zamiana przewodu neutralnego z ochronnym
D. Poluzowany przewód neutralny w głównym złączu budynku
No, to zamiana przewodu neutralnego z fazowym czy ochronnym to już duża sprawa, ale w tym przypadku nie wyjaśnia to, czemu żarówki tak często się przepalają. Jeśli przewody się zamienia, to może być niebezpiecznie, bo napięcie z fazy w miejsce neutralnego potrafi naprawdę zaskoczyć użytkowników. Z kolei zamiana z przewodem ochronnym to już w ogóle łamanie zasad bezpieczeństwa i może przynieść duże problemy. Poluzowany przewód neutralny w złączu głównym też może być przyczyną, ale bardziej prawdopodobne jest, że coś jest nie tak w samej rozdzielnicy. Często instalatorzy zapominają o sprawdzeniu połączeń w rozdzielnicach, a to prowadzi do różnych kłopotów. Ludzie myślą, że instalacja ogólnie robi problemy, zamiast zbadać, co się dzieje lokalnie w rozdzielnicy. Pamiętaj, że każdy element w instalacji ma swoje zadanie i jeśli coś źle zrobisz, to możesz narazić sprzęt i zdrowie ludzi.

Pytanie 3

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ADY 2,5 mm2
C. ALY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 4

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SRN
C. SPZ
D. SZR
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 5

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 1 000 V
C. 250 V
D. 2 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 6

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
C. Najwyższy czas zadziałania
D. Maksymalny prąd zwarciowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 7

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE(RCD)
B. Z L-PE
C. Z L-L
D. Z L-N
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 8

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. DY 2,5 mm2
B. LY 2,5 mm2
C. YLY 7×2,5 mm2
D. YDY 5×2,5 mm2
Odpowiedzi 'DY 2,5 mm2', 'YDY 5×2,5 mm2' oraz 'YLY 7×2,5 mm2' są błędne z różnych powodów. Oznaczenie 'DY' odnosi się do przewodów dwużyłowych z izolacją polwinitową, co nie jest zgodne z treścią pytania, które dotyczy przewodu jednożyłowego. Używanie oznaczeń dwużyłowych w kontekście jednożyłowym prowadzi do nieporozumień, zwłaszcza gdy mowa o zastosowaniach wymagających konkretnego przekroju i liczby żył. Z kolei oznaczenia 'YDY' oraz 'YLY' sugerują przewody wielożyłowe, co jest sprzeczne z wymaganiami zadania. Oznaczenia te wskazują na przewody z wieloma żyłami, co w kontekście jednożyłowego kabla jest niewłaściwe. Typowe błędy myślowe prowadzące do tych odpowiedzi mogą wynikać z nieścisłego zrozumienia klasyfikacji przewodów. Warto pamiętać, że dobór odpowiedniego przewodu elektrycznego powinien zawsze opierać się na specyfikacji technicznej oraz normach branżowych, jak PN-EN 60228. Nieprzestrzeganie tych zasad może prowadzić do poważnych problemów w instalacjach elektrycznych, takich jak przegrzewanie przewodów, co z kolei może prowadzić do pożarów lub awarii sprzętu.

Pytanie 9

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 10

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX4
B. IPX2
C. IPX3
D. IPX5
Wybierając stopień ochrony IPX4, IPX3, lub IPX2, można łatwo wprowadzić się w błąd co do faktycznej odporności urządzenia na działanie wody. IPX4 oznacza, że urządzenie jest odporne na zachlapania wodą z dowolnego kierunku, co jest niewystarczające dla sytuacji, w której woda może być skierowana na urządzenie w postaci strumienia. IPX3 z kolei zapewnia ochronę przed wodą padającą pod kątem do 60 stopni od pionu, co nie gwarantuje bezpieczeństwa, gdy woda jest kierowana bezpośrednio na urządzenie. Z kolei IPX2 oferuje ochronę tylko przed wodą padającą pod kątem do 15 stopni, co jest niewłaściwe dla urządzeń, które mogą być narażone na intensywny deszcz czy inne formy strug wodnych. Typowe błędy w myśleniu prowadzą do wyboru niewłaściwego stopnia ochrony na podstawie niewłaściwych założeń dotyczących warunków eksploatacji. Właściwe zrozumienie norm IP jest kluczowe, aby uniknąć uszkodzeń sprzętu, co może prowadzić do dużych kosztów napraw oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego zawsze należy dokładnie analizować wymagania środowiskowe przed wyborem sprzętu, a klasyfikacje IP powinny być stosowane jako punkt odniesienia dla projektowania i doboru urządzeń odpornych na działanie wody.

Pytanie 11

Którą klasę ochronności posiadają urządzenia posiadające izolację podstawową oraz izolację dodatkową o konstrukcji uniemożliwiającej powstanie uszkodzenia grożącego porażeniem w warunkach normalnego użytkowania podczas założonego czasu trwałości wyrobu?

A. Klasę III
B. Klasę II
C. Klasę I
D. Klasę 0
Prawidłowo – opis w pytaniu idealnie pasuje do urządzeń klasy II ochronności. Urządzenia tej klasy mają nie tylko izolację podstawową (czyli tę „zwykłą”, która oddziela części czynne od dostępnych metalowych elementów), ale dodatkowo jeszcze izolację dodatkową albo obudowę o podwójnej lub wzmocnionej izolacji. Chodzi o to, że przy normalnym użytkowaniu, przez cały założony czas życia urządzenia, pojedyncze uszkodzenie nie powinno doprowadzić do sytuacji grożącej porażeniem prądem. To jest klucz: bezpieczeństwo zapewnia sama konstrukcja, a nie przewód ochronny. W praktyce sprzęt klasy II nie ma zacisku PE i wtyczki z bolcem ochronnym. Rozpoznasz go po symbolu dwóch kwadratów, jeden w drugim. Typowe przykłady to większość elektronarzędzi ręcznych (wiertarki, szlifierki), wiele zasilaczy, ładowarki, oprawy oświetleniowe do mieszkań, sprzęt RTV. Moim zdaniem warto sobie wyrobić nawyk szukania tego symbolu na tabliczce znamionowej – to bardzo pomaga w ocenie, jak dany sprzęt powinien być podłączany. Normy (np. PN-EN 61140, PN-EN 60335 dla sprzętu gospodarstwa domowego) jasno definiują, że w klasie II nie przewiduje się ochrony przez samoczynne wyłączenie zasilania w oparciu o przewód PE, tylko przez środki konstrukcyjne: podwójną/wzmocnioną izolację, odpowiednie odległości izolacyjne, materiały obudowy o wysokiej wytrzymałości dielektrycznej. Dlatego takich urządzeń nie wolno „uziemiać na siłę”, np. podłączać ich obudowy do przewodu ochronnego, bo to może wręcz pogorszyć bezpieczeństwo. W instalacjach warto pamiętać, że w pomieszczeniach o podwyższonym ryzyku porażenia (łazienki, warsztaty, budowy) urządzenia klasy II są szczególnie cenione – zapewniają dodatkowy poziom bezpieczeństwa, niezależny od stanu instalacji ochronnej w budynku. To jest bardzo dobra praktyka branżowa: tam gdzie użytkownik łatwo może dotknąć obudowy, a warunki są „trudne”, wybiera się właśnie klasę II.

Pytanie 12

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YDY 5x2,5 mm2
B. YDY 5x1,5 mm2
C. YADY 5x4 mm2
D. YADY 5x6 mm2
Wybór przewodów jak YADY 5x6 mm2, YDY 5x1,5 mm2 czy YADY 5x4 mm2 nie jest najlepszym pomysłem dla B20. Przewód YADY 5x6 mm2, choć ma dużą średnicę, jest za gruby na to zabezpieczenie, co prowadzi do nieefektywnego użycia materiałów i wyższych kosztów. YDY 5x1,5 mm2, z obciążalnością tylko 16A, to niewystarczająco, co zwiększa ryzyko przeciążenia i uszkodzeń. A YADY 5x4 mm2, nawet jeśli ma podobną obciążalność, to może nie dać wystarczającego marginesu bezpieczeństwa, zwłaszcza przy większym obciążeniu. Często ludzie popełniają błąd, nie myśląc o realnych obciążeniach, które przewody będą musiały wytrzymać, albo nie znają wymogów i norm. Z mojego doświadczenia, każda instalacja powinna być dostosowana do konkretnych warunków, nie tylko obciążeń, ale i innych czynników jak temperatura czy ułożenie. Wdrażanie norm, takich jak PN-IEC 60364, jest mega istotne, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 13

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. E14
B. G9
C. MR11
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 14

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. D.
B. A.
C. B.
D. C.
Wybór niewłaściwego rodzaju wyłącznika różnicowoprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa elektrycznego. W przypadku zastosowania wyłącznika o niewłaściwej charakterystyce, takiego jak wyłączniki jednofazowe lub o nieodpowiedniej wartości prądowej, istnieje ryzyko, że nie dostosuje się on do wymagań instalacji trójfazowej. Wyłączniki różnicowoprądowe, które nie mają certyfikacji dla obciążeń trójfazowych, mogą nie zadziałać w przypadku wystąpienia awarii, co naraża użytkowników na niebezpieczeństwo porażenia prądem. Często błędem jest także wybór wyłącznika o wyższej wartości różnicowoprądowej, co nie tylko zmniejsza skuteczność ochrony, ale również jest niezgodne z normami, które zalecają zastosowanie 30mA w instalacjach, gdzie ochrona przed porażeniem jest kluczowa. Przy doborze sprzętu elektrycznego ważne jest również zrozumienie, że każda instalacja ma swoje specyficzne wymagania i jest istotne, aby dostosować parametry wyłącznika do warunków użytkowania. Zastosowanie niewłaściwego typu wyłącznika może nawet prowadzić do niewłaściwej pracy pozostałych urządzeń elektrycznych, co naraża je na uszkodzenia. Dlatego kluczowe jest, aby podejmować decyzje oparte na wiedzy o standardach branżowych i dobrych praktykach w zakresie instalacji elektrycznych.

Pytanie 15

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 16

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 17

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Schodowy.
B. Żaluzjowy.
C. Świecznikowy.
D. Dwubiegunowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 18

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa w przewodzie neutralnym.
C. Przerwa na zaciskach odbiornika Z2 lub Z3.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Zwarcia pomiędzy przewodami fazowymi czy na zaciskach odbiorników Z2 lub Z3 są powszechnie mylone z przyczynami nadmiernego wzrostu napięcia na zaciskach Z1. Zwarcie w obwodzie fazowym prowadziłoby do znaczącego wzrostu prądu w danym obwodzie, co skutkowałoby zadziałaniem zabezpieczeń, a tym samym wyłączeniem zasilania, a nie do długotrwałego wzrostu napięcia. Podobnie, zwarcie na zaciskach odbiorników Z2 czy Z3 wpłynęłoby na ich własne parametry pracy, ale nie na napięcia na zaciskach Z1. Przerwa na zaciskach odbiornika Z2 lub Z3 wprowadzałaby natomiast zjawisko wyłączenia jednego z obwodów, co również nie prowadziłoby do wzrostu napięcia na Z1, a raczej do obniżenia jego wartości. Ostatecznie, nieprawidłowe założenie dotyczące braku wpływu przewodu neutralnego na rozkład napięcia jest typowym błędem myślowym. Kluczowym zrozumieniem jest, jak współdziałają ze sobą różne komponenty układu elektrycznego. Normy takie jak PN-IEC 60364 podkreślają znaczenie solidnych połączeń neutralnych dla zachowania stabilności napięcia w całym systemie. Użytkownicy powinni być świadomi potencjalnych konsekwencji niewłaściwego podejścia do analizy układów trójfazowych, co może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa.

Pytanie 19

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i cztery zaciski
B. Dwa klawisze i trzy zaciski
C. Jeden klawisz i cztery zaciski
D. Jeden klawisz i trzy zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 20

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 4 mm2
B. 1,5 mm2
C. 6 mm2
D. 2,5 mm2
Wybór niewłaściwego przekroju żyły może wynikać z kilku błędnych założeń dotyczących obciążalności przewodów. Odpowiedzi takie jak 4 mm², 1,5 mm² lub 6 mm² mogą wydawać się atrakcyjne, ale każda z nich ma swoje mankamenty. W przypadku 4 mm², chociaż teoretycznie jest to wystarczający przekrój, to w praktyce jest to zbyt duża wartość w odniesieniu do obliczonego minimum, co prowadzi do zbędnych kosztów materiałowych. Z kolei przekrój 1,5 mm² jest niewystarczający, ponieważ jego maksymalna obciążalność nie osiąga wymaganego poziomu, co stwarza ryzyko przegrzewania się przewodów oraz potencjalnych awarii w przypadku przeciążenia. Odpowiedź 6 mm² zaś, choć jest zgodna z wytycznymi dotyczącymi bezpieczeństwa, również przekracza wymagania, co powoduje dodatkowe wydatki i nieefektywne wykorzystanie zasobów. Często błędne wnioski wynikają z nieznajomości norm obciążalności przewodów lub ignorowania praktycznych aspektów takich jak długotrwałe obciążenia czy warunki montażu. Ważne jest również, aby pamiętać, że odpowiedni dobór przekroju przewodów nie tylko wpływa na bezpieczeństwo instalacji, ale także na jej efektywność energetyczną oraz koszty eksploatacji. Działania w tej dziedzinie powinny być zawsze wspierane przez aktualne normy oraz praktyki branżowe, aby zapewnić niezawodność i bezpieczeństwo całego systemu zasilania.

Pytanie 21

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Komutatorową prądu przemiennego.
B. Synchroniczną jawnobiegunową.
C. Indukcyjną klatkową.
D. Synchroniczną z biegunami utajonymi.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 22

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do transformatorów
B. Do wzmacniaczy maszynowych
C. Do prądnic tachometrycznych
D. Do indukcyjnych sprzęgieł dwukierunkowych
Wybór odpowiedzi związanej z wzmacniaczami maszynowymi, prądnicami tachometrycznymi lub indukcyjnymi sprzęgłami dwukierunkowymi jest mylny, ponieważ te urządzenia pełnią zupełnie inne funkcje w systemach elektrycznych. Wzmacniacze maszynowe są wykorzystywane do amplifikacji sygnałów, co oznacza, że zwiększają one moc sygnału elektrycznego, ale nie mają nic wspólnego z pomiarami prądu czy napięcia. Prądnice tachometryczne, z kolei, są zaprojektowane do konwersji prędkości obrotowej na sygnał elektryczny, co jest kluczowe w zastosowaniach związanych z kontrolą ruchu, ale nie dotyczą one transformacji sygnałów do pomiarów. Indukcyjne sprzęgła dwukierunkowe stosowane są w systemach napędowych, gdzie przekazują moment obrotowy między maszynami, jednak nie zajmują się przekształcaniem wartości prądu czy napięcia. Kluczowym błędem w rozumieniu tych urządzeń jest mylenie ich funkcji z funkcją przekładników pomiarowych. Aby uniknąć takich pomyłek, warto dokładnie zapoznać się z definicjami i zastosowaniami różnych grup urządzeń elektrycznych, co pomoże zrozumieć ich rolę w infrastrukturze energetycznej oraz przemysłowej.

Pytanie 23

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. 0
C. III
D. I
Oprawa oświetleniowa oznaczona symbolem klasy ochronności I zapewnia wysoki poziom bezpieczeństwa w użytkowaniu. Klasa ta charakteryzuje się posiadaniem podstawowej izolacji oraz dodatkowym przewodem ochronnym, co pozwala na skuteczne odprowadzenie ewentualnych prądów upływowych do ziemi. Dzięki temu, w przypadku uszkodzenia izolacji, metalowe elementy oprawy nie stają się źródłem zagrożenia dla użytkowników. Przykładem zastosowania tej klasy są oprawy stosowane w miejscach narażonych na wilgoć, takich jak łazienki czy zewnętrzne oświetlenie ogrodowe. Zgodnie z normami PN-EN 60598-1, urządzenia oznaczone klasą I muszą być również regularnie kontrolowane pod kątem stanu przewodu ochronnego oraz integralności izolacji. Takie działania pomagają w utrzymaniu bezpieczeństwa i zgodności z przepisami BHP, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 24

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B20
B. C6
C. B6
D. B16
Wybór nieprawidłowego wyłącznika nadmiarowo-prądowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa instalacji elektrycznej. W przypadku odpowiedzi C6, sugerującej wyłącznik o prądzie znamionowym 6 A, jest to zdecydowanie zbyt mała wartość, biorąc pod uwagę, że obciążalność długotrwała przewodu o przekroju 1,5 mm² w ułożeniu B2 wynosi 16,5 A. Taki wybór może prowadzić do częstych wyłączeń, co staje się uciążliwe dla użytkowników i może być oznaką nieprawidłowego doboru zabezpieczeń. Z kolei wyłącznik B20, mający prąd znamionowy 20 A, przekracza dopuszczalną obciążalność przewodów, co naraża je na ryzyko przegrzania i uszkodzenia. Zastosowanie takiego wyłącznika w obwodzie może w dłuższym okresie prowadzić do poważnych zagrożeń, w tym pożaru. Warto także zauważyć, że wyłącznik B6 również nie jest odpowiedni, gdyż jego nominalny prąd jest zbyt niski, co skutkuje brakiem właściwej ochrony w przypadku obciążeń typowych dla instalacji domowej. Wybór odpowiedniego wyłącznika wymaga zrozumienia obciążenia obwodu oraz zastosowania właściwych norm, takich jak PN-IEC 60898-1, które jasno określają, jak dobierać wyłączniki w zależności od przewodów oraz ich zastosowania. Niezrozumienie tych zasad może prowadzić do poważnych błędów w instalacji, wpływających na bezpieczeństwo użytkowników.

Pytanie 25

Która z wymienionych maszyn elektrycznych jest wykorzystywana jako czujnik prędkości obrotowej?

A. Selsyn.
B. Silnik krokowy.
C. Kompensator.
D. Prądnica tachometryczna.
W tym zadaniu bardzo łatwo pomylić różne typy maszyn i urządzeń elektrycznych, bo wszystkie brzmią dość specjalistycznie, ale tylko jedna z nich jest typowym czujnikiem prędkości obrotowej. Klucz jest taki: czujnik prędkości musi dawać sygnał jednoznacznie zależny od prędkości wału, najlepiej w postaci napięcia, częstotliwości albo impulsów, które można łatwo przetworzyć w układzie pomiarowym lub sterującym. Silnik krokowy często budzi skojarzenie z precyzją i pozycjonowaniem, więc wielu osobom wydaje się, że może on „mierzyć” prędkość. W rzeczywistości silnik krokowy jest elementem wykonawczym, a nie pomiarowym. Pozwala bardzo dokładnie ustawić kąt obrotu wału poprzez zliczanie kroków, ale sam z siebie nie generuje sygnału informującego o aktualnej prędkości – wręcz przeciwnie, to układ sterowania narzuca mu częstotliwość kroków. W zastosowaniach, gdzie trzeba znać faktyczną prędkość lub pozycję, dokładamy do niego enkoder lub inny czujnik, bo sam krokowiec nie pełni funkcji tachometru. Kompensator kojarzy się z wyrównywaniem, korygowaniem, „kompensacją” czegoś, i to skojarzenie jest w sumie trafne, ale nie w kontekście pomiaru prędkości. W elektrotechnice kompensatory służą najczęściej do kompensacji mocy biernej, regulacji napięcia czy wyrównywania zaburzeń w sieci. Ich rolą jest poprawa parametrów pracy układu, a nie dostarczanie informacji pomiarowej o prędkości wału. To zupełnie inna bajka, bardziej związana z jakością energii elektrycznej niż z automatyką napędową. Selsyn natomiast to specyficzna maszyna elektryczna używana do zdalnego przekazywania położenia kątowego, np. w starych układach sterowania, na okrętach, w lotnictwie czy w aparaturze wojskowej. Dwa selsyny połączone odpowiednio przewodami tworzą parę nadajnik–odbiornik: kąt obrotu jednego jest odtwarzany przez drugi. Owszem, istnieje związek między położeniem, a pośrednio i prędkością, ale selsyn zasadniczo jest przetwornikiem położenia, nie klasycznym czujnikiem prędkości obrotowej. Typowy błąd myślowy w tym pytaniu polega na tym, że jeśli urządzenie coś „obraca” albo „mierzy kąt”, to od razu traktujemy je jako czujnik prędkości. Tymczasem w praktyce automatyki napędowej do bezpośredniego pomiaru prędkości stosuje się właśnie prądnice tachometryczne albo enkodery, a silniki krokowe, kompensatory i selsyny pełnią zupełnie inne role w układach elektrycznych i sterowania.

Pytanie 26

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Liczba urządzeń zasilanych z tej instalacji
B. Kształt budynku w przestrzeni
C. Metoda montażu instalacji
D. Warunki zewnętrzne, którym instalacja jest poddawana
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 27

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Wirnik silnika pierścieniowego.
B. Stojan silnika komutatorowego.
C. Wirnik silnika komutatorowego.
D. Stojan silnika pierścieniowego.
Poprawna odpowiedź to wirnik silnika pierścieniowego, co wynika z analizy przedstawionych ilustracji oraz schematów. Wirnik ten charakteryzuje się pierścieniami ślizgowymi, które są kluczowym elementem jego konstrukcji, umożliwiającym efektywne przechodzenie prądu do uzwojeń wirnika. W silnikach pierścieniowych prąd jest dostarczany do wirnika przez szczotki stykające się z pierścieniami, co pozwala na regulację obrotów silnika, a także na jego rozruch. W praktyce, wirniki silników pierścieniowych są szeroko stosowane w aplikacjach wymagających dużej mocy i momentu obrotowego, takich jak wciągniki, przemysłowe maszyny oraz w pojazdach elektrycznych. Zrozumienie tego elementu jest istotne, ponieważ jego właściwe działanie ma kluczowy wpływ na ogólną wydajność silnika. W branży istnieją standardy dotyczące projektowania i testowania wirników, które zapewniają ich niezawodność i skuteczność w długotrwałej eksploatacji.

Pytanie 28

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Włączenie odbiornika drugiej klasy ochronności.
B. Zwarcie przewodu ochronnego z przewodem neutralnym.
C. Przerwa w przewodzie uziemiającym instalację.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 29

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie na gorąco przewodu kabelkowego.
B. Zaciskanie końcówki tulejkowej.
C. Zaciskanie opaski kablowej.
D. Ściąganie izolacji z przewodu.
Wybór odpowiedzi, który nie odnosi się do zaciskania opaski kablowej, może wynikać z nieporozumienia dotyczącego funkcji narzędzi i ich zastosowania w pracy z przewodami. Ściąganie izolacji z przewodu jest procesem całkowicie innym, który polega na usunięciu zewnętrznej warstwy izolacyjnej kabla, co ma na celu odsłonięcie żył przewodzących. Przeprowadzając tę czynność, zawsze należy stosować odpowiednie narzędzia, aby uniknąć uszkodzenia samego przewodu. Zaciskanie końcówki tulejkowej odnosi się do innego procesu, który ma na celu połączenie przewodu z innym elementem za pomocą tulejek, co również nie ma związku z tematyką opasek kablowych. Klejenie na gorąco przewodu kabelkowego to technika, która nie jest stosowana w kontekście organizacji i zabezpieczania przewodów. Metoda ta jest raczej używana do łączenia różnych materiałów, co nie odnosi się do zagadnienia związanego z opaskami kablowymi. Typowe błędy myślowe, które mogą prowadzić do takich wyborów, obejmują pomylenie narzędzi i ich funkcji oraz niezrozumienie kontekstu, w jakim opaski kablowe są używane. Ważne jest, aby w kontekście technicznym zrozumieć różnice między tymi procesami i ich odpowiednie zastosowania w praktyce, aby unikać nieporozumień w przyszłości.

Pytanie 30

Na zdjęciu przedstawiono

Ilustracja do pytania
A. wyłącznik.
B. rozłącznik.
C. bezpiecznik.
D. odłącznik.
Często ludzie mylą rozłącznik z innymi urządzeniami elektrycznymi, co prowadzi do zamieszania. Wyłącznik działa trochę inaczej, bo przerywa obwód automatycznie przy przeciążeniu czy zwarciu, a jego funkcja jest inna niż rozłącznika, który nie wyłącza automatycznie. Odłącznik też się myli, bo chociaż służy do rozłączania, to ma swoje ograniczenia i nie nadaje się do pracy pod obciążeniem. Wiele osób nie zdaje sobie sprawy, że odłącznik nie jest dobrym wyborem w sytuacjach, kiedy jest ryzyko rozłączania pod napięciem. Bezpiecznik to inna sprawa, działa na zasadzie przepalania się, gdy jest przeciążenie, czyli też jest zupełnie czym innym niż rozłącznik. Wiele osób myśli, że te trzy urządzenia są takie same, a to może powodować problemy przy doborze sprzętu w instalacjach elektrycznych. Dlatego zrozumienie różnic między nimi to podstawa dla każdego technika czy inżyniera, żeby wszystko działało jak należy i było bezpieczne.

Pytanie 31

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 5 obwodów.
B. 14 obwodów.
C. 12 obwodów.
D. 7 obwodów.
Wybór innej liczby obwodów gniazd wtyczkowych odzwierciedla typowe nieporozumienia, które mogą występować w procesie analizy schematów instalacyjnych. Często można spotkać się z nadinterpretacją liczby dostępnych gniazd, co prowadzi do błędnych wniosków. Na przykład, odpowiedzi takie jak "7 obwodów" czy "14 obwodów" mogą wynikać z założenia, że każde gniazdo zużywa oddzielny obwód, co nie jest zgodne z praktycznymi standardami instalacji elektrycznej. W rzeczywistości, projektując instalację, należy uwzględnić fakt, że kilka gniazd może być zasilanych z jednego obwodu, jednak to zawsze musi być zgodne z maksymalnymi obciążeniami, jakie przewidziano dla danego obwodu. Warto również wspomnieć, że nieprawidłowe wyrażenia liczby obwodów mogą prowadzić do zagrożeń związanych z przeciążeniem, co jest niezgodne z normami bezpieczeństwa elektrycznego. Podstawą obliczeń powinna być liczba wyłączników nadprądowych przypisanych do gniazd, co w tym przypadku jasno wskazuje na 5 obwodów. Dobrą praktyką w projektowaniu instalacji elektrycznych jest przestrzeganie zasad wynikających z norm, co zapewnia nie tylko bezpieczeństwo, ale również efektywność działania całego systemu. Dlatego ważne jest, aby nie opierać się na domysłach, ale na konkretnej analizie schematów instalacyjnych.

Pytanie 32

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Przewód ochronny powinien być odłączony.
B. Zabezpieczenie główne powinno być zamknięte.
C. Wyłącznik główny powinien być zamknięty.
D. Zabezpieczenie silnika powinno być otwarte.
Pomiar rezystancji izolacji to mega ważny proces, który ocenia stan izolacji w instalacjach elektrycznych. Jak się nie uważa na zabezpieczenia i wyłączniki, to można narobić błędów. Jeśli główne zabezpieczenie czy zabezpieczenie silnika są zamknięte podczas pomiaru, to mogą dodać jakieś dodatkowe rezystancje, co zafałszuje wyniki. Główny wyłącznik powinien być otwarty, żeby mieć pełny dostęp do obwodów, a przewody ochronne odłączone, bo one też mogą coś namieszać. Ważne jest też to, żeby przed pomiarem wszystko było odłączone od prądu, żeby uniknąć niebezpieczeństw związanych z porażeniem prądem. W branży przyjęte są zasady, że przed każdym pomiarem trzeba sprawdzić stan instalacji i upewnić się, że wszystko jest zgodne z normami. Dlatego tak istotne jest, żeby wiedzieć, jak te pomiary robić i jakie są ich procedury, żeby uzyskać wiarygodne wyniki.

Pytanie 33

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
D. niskonapięciowych liniach elektroenergetycznych.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 34

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Prostownik dwupołówkowy.
B. Wyłącznik zmierzchowy.
C. Ogranicznik przepięć.
D. Przekaźnik bistabilny.
Wybór odpowiedzi innej niż ogranicznik przepięć może wynikać z kilku błędów w analizie charakterystyki przedstawionego urządzenia. Na przykład, wyłącznik zmierzchowy jest urządzeniem, które reaguje na zmiany natężenia światła, co nie ma zastosowania w kontekście przedstawionym na rysunku. Przekaźnik bistabilny, z kolei, służy do utrzymania stanu obwodu elektrycznego w jednym z dwóch stanów, co również nie odpowiada funkcji ogranicznika przepięć. Ograniczniki przepięć i prostowniki dwupołówkowe różnią się znacznie w budowie i zastosowaniu – prostowniki są używane do konwersji prądu zmiennego na stały, co jest zupełnie inną funkcjonalnością. Typowe myślenie prowadzące do błędnych wyborów opiera się na nieznajomości zastosowania poszczególnych urządzeń w praktyce. W kontekście ochrony przed przepięciami, jednym z kluczowych aspektów jest dobra znajomość oznaczeń i specyfikacji technicznych, które wskazują na przeznaczenie urządzenia. Niezrozumienie podstawowych różnic pomiędzy tymi urządzeniami oraz ich właściwego zastosowania w systemach elektrycznych może prowadzić do nieodpowiednich decyzji, co w konsekwencji zwiększa ryzyko uszkodzeń sprzętu oraz naruszenia norm bezpieczeństwa. Warto zainwestować czas w zapoznanie się z dokumentacją techniczną i normami branżowymi, aby uniknąć takich sytuacji w przyszłości.

Pytanie 35

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
C. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
D. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka wszystkie oznaczenia wyglądają podobnie, a diabeł siedzi w szczegółach. Kluczowe są tu trzy rzeczy: rodzaj przewodu (materiał, izolacja), liczba żył i ich przeznaczenie oraz przekrój znamionowy dobrany do obwodu gniazd w instalacji wtynkowej w sieci TN-S. Wiele osób odruchowo sięga po przewód dwużyłowy, na przykład 2 × 2,5 mm² albo 2 × 1,5 mm², bo kojarzy, że „jednofazowe gniazdo to faza i neutralny”. I tu pojawia się typowy błąd: w układzie TN-S przewód ochronny PE musi być osobną żyłą, a gniazda wtyczkowe ogólnego przeznaczenia wymagają podłączenia przewodu ochronnego. Dlatego przewód dwużyłowy w ogóle odpada – brakuje trzeciej żyły ochronnej, co jest niezgodne z zasadami ochrony przeciwporażeniowej i warunkami technicznymi. Innym częstym potknięciem jest sięganie po przekrój 1,5 mm² do gniazd. Ten przekrój używa się raczej do obwodów oświetleniowych, gdzie prądy są mniejsze. Dla obwodów gniazd przy zabezpieczeniu 16 A i typowych długościach obwodów przyjmuje się 2,5 mm², aby zapewnić odpowiednią obciążalność prądową, ograniczyć spadek napięcia i zyskać rozsądny zapas bezpieczeństwa eksploatacyjnego. Kolejna sprawa to rodzaj powłoki i przeznaczenie przewodu. W instalacji wtynkowej stosuje się przewody przystosowane do układania pod tynkiem, najczęściej typu YDYt. Przewody płaskie lub o innym przeznaczeniu, jak na przykład YLY stosowane raczej jako przewody elastyczne, nie są typowym wyborem do stałej instalacji w ścianie. Dochodzi jeszcze oznaczenie „żo”, które informuje, że jedna z żył jest żółto-zielona, czyli przeznaczona jako PE. Brak tego oznaczenia w przewodzie wielożyłowym sygnalizuje, że w środku nie ma żyły ochronnej w standardowym kolorze, co znowu kłóci się z wymaganiami dla sieci TN-S. Podsumowując, błędne odpowiedzi wynikają zwykle z pomylenia obwodów gniazd z obwodami oświetleniowymi, nieuwzględnienia osobnej żyły PE albo zignorowania faktu, że przewód ma być typowo instalacyjny pod tynk, a nie jakikolwiek przewód o zbliżonym przekroju.

Pytanie 36

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. żarowa.
B. halogenowa.
C. rtęciowa.
D. sodowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 37

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,20 V)
B. 230 V (±1,50 V)
C. 230 V (±1,30 V)
D. 230 V (±1,40 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 38

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 30 A i 0,03 A
B. 0,03 A i 30 A
C. 0,003 A i 30 A
D. 3 A i 0,03 A
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących podstawowych pojęć związanych z wyłącznikami różnicowoprądowymi. Odpowiedzi, które sugerują wartości prądu różnicowego większe od 0,03 A, mogą prowadzić do fałszywego przekonania, że wyłączniki o wyższych prądach różnicowych zapewniają lepszą ochronę, co jest błędne. Prąd różnicowy 0,03 A jest standardem dla ochrony ludzi, a jego wyższe wartości, takie jak 3 A czy 30 A, są stosowane w innych kontekstach, na przykład w obwodach zabezpieczających przed pożarami, nie zaś w kontekście ochrony ludzi przed porażeniem. Wartości prądu znamionowego również mogą być mylące; na przykład sugerowanie, że 30 A to prąd różnicowy, może prowadzić do nieprawidłowego zrozumienia zasady działania wyłącznika. Wyłącznik różnicowoprądowy ma za zadanie przede wszystkim detekcję upływu prądu, a nie regulację jego wartości w obwodzie. Dodatkowo, mylenie prądów różnicowych i znamionowych może prowadzić do niewłaściwego doboru wyłącznika w instalacjach, co z kolei może stwarzać zagrożenie dla użytkowników. Kluczowe jest zrozumienie, że poprawny dobór parametrów wyłącznika różnicowoprądowego ma fundamentalne znaczenie dla bezpieczeństwa elektrycznego w budynkach.

Pytanie 39

Zdjęcie przedstawia

Ilustracja do pytania
A. łącznik wielofunkcyjny.
B. łącznik żaluzjowy.
C. wyłącznik krzyżowy.
D. wyłącznik schodowy.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 40

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 9 A i 4 bieguny
C. 3 A i 4 bieguny
D. 4 A i 3 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.