Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:38
  • Data zakończenia: 7 grudnia 2025 09:54

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 4.
D. Schemat 1.
Często, jak się wybiera zły schemat do sterowania oświetleniem, to wynika to z niezrozumienia podstaw, jak działają przełączniki schodowe i do czego służą. Schematy bez przełączników schodowych nie mogą zapewnić pełnej funkcji, której potrzebujemy, żeby włączać światło z dwóch miejsc. Na przykład te, które mają standardowe przełączniki jednobiegunowe, pozwalają tylko na włączenie lub wyłączenie światła z jednego punktu, co uniemożliwia operowanie z drugiego miejsca. Błąd logiczny często bierze się z mylenia, jak działają przełączniki i jakie mają możliwości. Jeśli zastosujemy złe schematy, to może to prowadzić do złego okablowania, co nie tylko utrudnia korzystanie, ale też może być niebezpieczne. Przy projektowaniu instalacji oświetleniowych warto przestrzegać norm i standardów branżowych, jak PN-EN 60669-1, które mówią o bezpiecznym i efektywnym korzystaniu z układów. Dlatego przed wyborem schematu warto dokładnie przeanalizować jego funkcjonalność i zastosowanie w praktyce.

Pytanie 2

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 3

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Styku ruchomego.
B. Wyzwalacza zwarciowego.
C. Wyzwalacza przeciążeniowego.
D. Komory łukowej.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 4

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
B. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
C. oznaczyć miejsce pracy
D. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 5

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Schemat B jest właściwym wyborem, ponieważ przedstawia instalację elektryczną w sposób, który umożliwia lokalizację ewentualnych braków ciągłości w połączeniach. Elementy takie jak przewody, wyłącznik różnicowoprądowy oraz odbiornik (żarówka) są wyraźnie zaznaczone, co pozwala na łatwe zidentyfikowanie, gdzie może wystąpić przerwa. Praktyczne zastosowanie takiego schematu w diagnostyce instalacji elektrycznych jest nieocenione, szczególnie w kontekście bezpieczeństwa. W przypadku awarii, technik może szybko zlokalizować miejsce przerwy, używając odpowiednich narzędzi, takich jak multimeter lub tester ciągłości. Zgodnie z normami branżowymi, takie schematy są zalecane w dokumentacji instalacyjnej, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości i bezpieczeństwa instalacji elektrycznych. Warto również zauważyć, że dokładna analiza schematu B pozwala na zrozumienie interakcji między różnymi elementami systemu, co jest kluczowe dla skutecznej diagnozy problemów.

Pytanie 6

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 3,83 Ω
C. 1,15 Ω
D. 2,30 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 7

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana dwóch faz miejscami
C. brak podłączenia jednej fazy
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 8

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDY 3×1,5 mm2
C. YDYt 3×1,5 mm2
D. LGu 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 9

Gniazdo trójfazowe pokazane na rysunku może zasilić odbiornik z sieci

Ilustracja do pytania
A. IT i TN-S
B. TN-S i TN-C
C. TT i TN-C
D. TT i TN-S
Odpowiedzi, które nie wskazują na TN-S i TN-C, mogą wynikać z pewnych nieporozumień. Jeśli wybrałeś np. TT, to może być problem, bo w tym systemie przewód neutralny (N) jest uziemiony, a PE oddzielony, co trochę komplikuje sprawę, zwłaszcza przy zasilaniu trójfazowym. Jeśli inżynierowie nie rozumieją, jak te systemy działają, mogą wprowadzać niebezpieczne rozwiązania, które nie spełniają norm. W TN-S separacja przewodów to plus dla stabilności, a TN-C, mimo swoich zalet, może sprawiać kłopoty w awaryjnych sytuacjach. Mylenie tych systemów i nieznajomość ich zastosowań to dość powszechny błąd, który może prowadzić do wyboru niewłaściwych technik. Warto to rozumieć, żeby mieć pewność, że nasze projekty elektroinstalacyjne są zarówno bezpieczne, jak i efektywne.

Pytanie 10

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
B. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
C. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
D. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 11

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. I
B. II
C. 0
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 12

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Hamowanie prądnicowe.
B. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
C. Regulację obrotów przez zmianę napięcia twornika.
D. Hamowanie dynamiczne.
W kontekście przedstawionego schematu oraz dostępnych odpowiedzi, wiele osób może błędnie zinterpretować sposób regulacji obrotów silnika. Odpowiedzi związane z hamowaniem prądnicowym i dynamicznym dotyczą zupełnie innych mechanizmów, które nie są odpowiednie w kontekście zmiany napięcia twornika. Hamowanie prądnicowe polega na wykorzystaniu energii kinetycznej wirnika do generowania napięcia, co prowadzi do jego spowolnienia, a nie do regulacji prędkości w sposób ciągły. Z kolei hamowanie dynamiczne, które zazwyczaj polega na podłączeniu rezystorów do obwodu silnika, aby rozproszyć energię, jest techniką używaną głównie do zapewnienia szybkiego zatrzymania, co również nie odpowiada za regulację prędkości obrotowej. Kolejna koncepcja, czyli bocznikowanie uzwojenia wzbudzenia, odnosi się do innego aspektu sterowania silnikami prądu stałego, gdzie zmiana wartości prądu wzbudzenia wpływa na siłę elektromotoryczną, ale nie bezpośrednio na napięcie twornika. Użytkownicy mogą zapominać, że każda z tych metod ma swoje zastosowanie w specyficznych warunkach, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że regulacja obrotów przez zmianę napięcia twornika pozostaje najskuteczniejszą metodą w wielu zastosowaniach, gdzie płynność i precyzja są najważniejsze.

Pytanie 13

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
C. Użycie transformatora separacyjnego do zasilania
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 14

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. doboru oraz oznaczenia przewodów
C. wartości natężenia oświetlenia w miejscach pracy
D. układu tablic informacyjnych i ostrzegawczych
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 15

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. ZL-L
B. ZL-N
C. ZL-PE(RCD)
D. ZL-PE
Wybór innej funkcji pomiarowej, takiej jak ZL-N, ZL-PE czy ZL-L, jest nieodpowiedni, ponieważ nie uwzględnia one kluczowego elementu, jakim jest wyłącznik różnicowoprądowy (RCD). W przypadku pomiaru impedancji pętli zwarcia, istotne jest, aby zrozumieć, że prawidłowe pomiary można uzyskać tylko wtedy, gdy wszystkie istotne elementy w obwodzie są brane pod uwagę. ZL-N odnosi się do pomiaru między przewodem neutralnym a innymi żyłami, co nie ma zastosowania w kontekście impedancji pętli zwarcia, gdzie najważniejsze jest połączenie fazy i ochrony. Odpowiedzi ZL-PE i ZL-L również nie uwzględniają wpływu RCD, co może prowadzić do zafałszowania wyników. Użytkownicy często mylą te funkcje, sądząc, że wystarczy zmierzyć impedancję jedynie w odniesieniu do przewodów ochronnych lub fazowych, co jest niewłaściwe. Zrozumienie roli RCD i jego wpływu na działanie całego układu jest kluczowe w kontekście bezpieczeństwa elektrycznego. Zaniedbanie tych aspektów może prowadzić do niezdolności systemu do zapewnienia odpowiedniego poziomu ochrony przed porażeniem prądem, co jest sprzeczne z zasadami skutecznego projektowania instalacji elektrycznych zgodnych z normami i praktykami branżowymi. Dlatego istotne jest, aby do każdego pomiaru podchodzić z odpowiednią starannością i zrozumieniem, co może znacząco wpłynąć na wyniki oraz bezpieczeństwo użytkowników.

Pytanie 16

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 100/100 V
B. 300/300 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów w instalacjach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i trwałość systemu. Odpowiedzi sugerujące użycie przewodów z izolacją 450/750 V, 300/300 V czy 100/100 V nie uwzględniają specyfiki i wymagań dla sieci niskonapięciowych. Przewody 450/750 V są przystosowane do wyższych napięć i zastosowań, które nie są typowe dla instalacji 230/400 V, a użycie ich w tym kontekście może być nieefektywne oraz kosztowne. Z kolei przewody 300/300 V i 100/100 V mają zbyt niskie parametry izolacji, co czyni je niewłaściwymi do pracy w warunkach, gdzie mogą pojawić się napięcia robocze na poziomie 400 V. Użycie takich przewodów w sieci trójfazowej niskiego napięcia wiąże się z ryzykiem wystąpienia przebicia izolacji, co w rezultacie może prowadzić do awarii systemu, a w najgorszym przypadku - do zagrożenia życia ludzi oraz uszkodzenia mienia. Dlatego ważne jest, aby stosować przewody o odpowiedniej klasie izolacji, które są zgodne z normami oraz standardami branżowymi, co pozwoli na zminimalizowanie ryzyka oraz zapewnienie bezpiecznej eksploatacji instalacji elektrycznych.

Pytanie 17

Na podstawie przedstawionego planu instalacji określ, które z wymienionych elementów należy wytrasować w pokoju i na tarasie.

Ilustracja do pytania
A. 2 punkty oświetleniowe sufitowe, 3 gniazda wtyczkowe, 2 łączniki.
B. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 1 gniazdo pojedyncze bez uziemienia, 2 gniazda podwójne bez uziemienia, 1 łącznik.
C. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo wtyczkowe bez uziemienia.
D. 2 punkty oświetleniowe sufitowe, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo podwójne bez uziemienia.
Świetnie, że wskazałeś dwa punkty oświetleniowe sufitowe, trzy gniazda wtyczkowe i dwa łączniki. To naprawdę dobrze pasuje do planu instalacji. Te dwa punkty sufitowe to dobra sprawa, bo zapewnią fajne oświetlenie w pomieszczeniu, a różne źródła światła na pewno będą tu przydatne. Według normy PN-EN 12464-1 to wszystko powinno być ok. Co do gniazd, trzy sztuki to minimum, żeby móc podłączyć różne sprzęty, więc pod tym względem jest super. Co do łączników, to świetna sprawa, że są dwa, bo można zarządzać oświetleniem z różnych miejsc, a to naprawdę ułatwia życie. No i pamiętaj, że dobrze zaplanowana instalacja zwiększa bezpieczeństwo, unikając gniazd bez uziemienia, co jest ważne dla zgodności z przepisami.

Pytanie 18

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Praski hydraulicznej.
B. Wkrętaka.
C. Szczypiec uniwersalnych.
D. Lutownicy.
Wybór narzędzi, które nie są przeznaczone do zaciskania złączek tulejowych, prowadzi do nietrwałych połączeń oraz potencjalnych awarii. Wkrętaka nie stosuje się do tego celu, ponieważ jego funkcja ogranicza się do wkręcania i wykręcania śrub, a nie do zaciskania elementów. Użycie lutownicy wydaje się być zrozumiałe, jednak lutowanie nie jest zalecaną metodą w przypadku złączek tulejowych, które zostały zaprojektowane do mechanicznych połączeń, a lutowanie może osłabić przewód i wprowadzać dodatkowe problemy z przewodnictwem elektrycznym. Szczypce uniwersalne również nie są odpowiednie, ponieważ nie oferują wymaganej siły i precyzji, które są niezbędne do prawidłowego zaciskania. Warto również zwrócić uwagę na standardy ochrony elektrycznej, które wymagają, aby wszelkie połączenia były wykonane zgodnie z wytycznymi zapewniającymi ich trwałość i bezpieczeństwo. Użycie niewłaściwego narzędzia może prowadzić do zwarć, uszkodzeń, a nawet pożarów, co jest poważnym zagrożeniem w instalacjach elektrycznych. Dlatego istotne jest, aby dobierać stosowne narzędzia zgodnie z przeznaczeniem oraz przestrzegać dobrych praktyk, które pozwolą osiągnąć bezpieczne i niezawodne połączenia elektryczne.

Pytanie 19

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P304 40-100-AC
B. P302 25-10-AC
C. P304 40-30-AC
D. P202 25-30-AC
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 20

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 10 mA
C. IΔ = 30 mA
D. IΔ = 40 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 21

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed przeciążeniami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed zwarciami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 22

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. G9
B. GU10
C. MR16
D. E14
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 23

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F1:2 i F2:1
B. Neutralny między zaciskami N i F1:N1
C. Neutralny między zaciskami F1:N2 i 2
D. Fazowy między zaciskami F2:2 i 1
Wybór odpowiedzi dotyczącej fazowego przewodu między zaciskami F1:2 i F2:1, czy innych błędnych odpowiedzi, może wynikać z nieporozumienia dotyczącego pomiarów rezystancji oraz interpretacji wyników. W przypadku pomiarów elektrycznych, każdy wynik może wskazywać na różne stany obwodu. Niezrozumienie, że nieskończona rezystancja jednoznacznie wskazuje na przerwę, prowadzi do błędnych wniosków, jakoby inne przewody były uszkodzone. Faza jest przewodem, który dostarcza prąd do urządzenia, a jego przerwa (choć także niebezpieczna) nie jest tym samym, co przerwa w przewodzie neutralnym, który zamyka obwód. Nieprawidłowa interpretacja pomiarów rezystancji w obwodach elektrycznych, jak również pominięcie znaczenia neutralnego przewodu, może prowadzić do ryzykownych sytuacji, gdzie urządzenia nie działają prawidłowo lub generują zagrożenie dla użytkowników. Dobrą praktyką jest zawsze upewnienie się, że rozumie się każdy aspekt pomiarów, w tym zasady dotyczące działania różnych części układu elektrycznego. W przypadku braku wiedzy na temat systemów elektrycznych, warto skonsultować się z doświadczonym elektrykiem lub inżynierem elektrykiem.

Pytanie 24

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Nóż monterski
B. Szczypce boczne
C. Płaskoszczypce
D. Zagniatarka
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 25

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H07V-U
B. NAYY-O
C. H03VV-F
D. NYM-J
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 26

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TN-C
B. TT
C. TN-S
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 27

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Odkształceń przebiegu napięcia.
B. Współczynnika mocy.
C. Częstotliwości.
D. Spadku napięcia.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 28

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NC + 1NO
B. 3NO + 2NO + 1NC
C. 3NC + 2NO + 1NC
D. 3NC + 2NC + 1NO
Wybór odpowiedzi 3NO + 2NO + 1NC jest poprawny, gdyż dokładnie odpowiada wymaganiom wynikającym z analizy schematu elektrycznego. Stycznik Q21, aby prawidłowo realizować swoje funkcje, potrzebuje trzech zestyków normalnie otwartych (3NO), które służą do załączania trzech faz silnika, co jest standardowym rozwiązaniem w instalacjach trójfazowych. Dodatkowo, dwa zestyków normalnie otwartych (2NO) są niezbędne do funkcji sterowania, co jest zgodne z powszechnie stosowanymi normami w automatyce, aby zminimalizować ryzyko awarii oraz zapewnić odpowiednie zarządzanie procesem. Zestyk normalnie zamknięty (1NC) jest kluczowy dla funkcji zabezpieczających lub sygnalizacyjnych, co pozwala na zastosowanie dodatkowych zabezpieczeń, takich jak wyłączniki awaryjne lub sygnalizatory stanu. Taki układ zapewnia nie tylko efektywność działania, ale także bezpieczeństwo w eksploatacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 29

Który element instalacji, montowany w rozdzielnicy, przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik nadprądowy.
C. Lampkę kontrolną.
D. Sygnalizator dzwonkowy.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ jego podstawowym zadaniem jest ochrona instalacji elektrycznej przed nagłymi wzrostami napięcia, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi czy też skokami napięcia w sieci. Ograniczniki przepięć montowane w rozdzielnicach są kluczowym elementem systemów zabezpieczeń, zgodnie z normą PN-EN 61643-11, która określa wymogi dotyczące tych urządzeń. Przykładowo, w budynkach mieszkalnych oraz komercyjnych zastosowanie ograniczników przepięć pozwala na ochronę drogiego sprzętu elektronicznego, takich jak komputery, telewizory czy systemy alarmowe, przed uszkodzeniami wynikającymi z przepięć. Warto zauważyć, że ograniczniki przepięć są projektowane tak, aby działały w sposób automatyczny, minimalizując potrzebę interwencji ze strony użytkowników. W praktyce zaleca się umieszczenie takich urządzeń w każdym nowo projektowanym obiekcie, co wychodzi naprzeciw dobrym praktykom w zakresie ochrony elektrycznej.

Pytanie 30

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. bezpiecznik instalacyjny
C. ochronnik przeciwprzepięciowy
D. wyłącznik różnicowoprądowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 31

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie części czynnych
B. połączenia wyrównawcze
C. izolowanie miejsca pracy
D. urządzenia II klasy ochronności
Zastosowanie połączeń wyrównawczych, izolowanie miejsca pracy czy używanie urządzeń II klasy ochronności nie jest najlepszym rozwiązaniem, jeśli chodzi o ochronę przed dotykiem bezpośrednim w domowych instalacjach elektrycznych. Połączenia wyrównawcze są fajne, bo zmniejszają różnice potencjałów, ale nie chronią przed kontaktem z częściami czynnymi. Izolowanie stanowiska to raczej coś dla pracy przy urządzeniach elektrycznych w fabrykach niż w domach. A urządzenia II klasy ochronności, chociaż są ważne, to działają w zupełnie innych warunkach. W domach trzeba przede wszystkim dobrze izolować wszystkie elementy, które mogą być na wyciągnięcie ręki. Dlatego tak istotne jest, żeby projektować instalacje według najlepszych praktyk i norm, jak PN-IEC 61140, które podkreślają, jak ważne jest, by skutecznie chronić się przed kontaktem z elektrycznością.

Pytanie 32

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 600/1000 V
B. 300/300 V
C. 450/750 V
D. 300/500 V
Wybór napięcia znamionowego izolacji przewodów w instalacjach trójfazowych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemu. Przewody o napięciach 300/500 V oraz 300/300 V są niewystarczające dla instalacji 230/400 V, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia izolacji, zwarcia, a nawet pożary. Napięcie 300/500 V jest stosowane w mniej wymagających instalacjach, gdzie nie występują znaczące różnice potencjałów ani długotrwałe obciążenia, co jest nieadekwatne w kontekście instalacji trójfazowych. Napięcie 300/300 V jest jeszcze bardziej niewłaściwe, ponieważ nie zapewnia wystarczającej ochrony w przypadku awarii, co może skutkować niebezpiecznymi sytuacjami. Przewody o napięciu 450/750 V są projektowane tak, aby wytrzymały znacznie większe obciążenia oraz stresy mechaniczne, co czyni je bardziej odpornymi na uszkodzenia i wydłuża ich żywotność. Wybór niewłaściwej wartości napięcia izolacji często wynika z niepełnego zrozumienia norm oraz wymagań dotyczących bezpieczeństwa w instalacjach elektrycznych. Projektanci i wykonawcy muszą być świadomi, że niedostosowanie przewodów do standardów może prowadzić do tragicznych w skutkach wypadków oraz poważnych strat materialnych.

Pytanie 33

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. IT
B. TT
C. TN-C
D. TN-S
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 34

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (2)
B. SH-s (1)
C. SP-d (1)
D. SP-d (2)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 35

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. MR11
B. GU10
C. E14
D. G9
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 36

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. gniazda wtyczkowego.
B. łącznika.
C. puszki zasilającej.
D. żyrandola.
Poprawna odpowiedź wskazuje na konieczność zweryfikowania połączeń w żyrandolu, co jest kluczowe dla prawidłowego działania instalacji elektrycznej. W sytuacji opisanej w pytaniu, kiedy żarówki się tylko żarzą, to może sugerować, że obwód nie jest w pełni zamknięty, co prowadzi do nieprawidłowego przepływu prądu. Połączenie przewodów w żyrandolu powinno być zgodne z ustalonymi standardami, takimi jak PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W przypadku braku odpowiednich połączeń lub niewłaściwej konfiguracji, nie tylko może dojść do awarii, ale także do wystąpienia zagrożeń związanych z porażeniem prądem elektrycznym. Warto również zwrócić uwagę na prawidłowe podłączenie przewodów ochronnych, które mają na celu zapewnienie bezpieczeństwa użytkowników. Przykładem zastosowania tej wiedzy w praktyce jest regularne przeprowadzanie przeglądów instalacji oraz stosowanie się do zasad prawidłowego montażu urządzeń elektrycznych, co znacząco minimalizuje ryzyko awarii.

Pytanie 37

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. aR
C. gL
D. aM
Wybór wkładek topikowych aM, gL, czy aR w kontekście zabezpieczeń nadprądowych obwodów jednofazowych gniazd ogólnego przeznaczenia jest niewłaściwy, ponieważ każdy z tych typów jest zaprojektowany do innego rodzaju zastosowań i nie spełnia wymagań stawianych wkładkom gG. Wkładki aM służą głównie do zabezpieczania silników, a ich charakterystyka prądowa nie jest dostosowana do ochrony obwodów z gniazdami. W przypadku wkładek gL, ich zastosowanie jest ograniczone do obwodów, w których nie występują duże prądy rozruchowe, co czyni je mniej efektywnymi w obwodach ogólnych. Z kolei wkładki aR są przeznaczone do ochrony układów elektronicznych, a ich charakterystyka może być niewystarczająca dla obwodów z gniazdami, gdzie mogą wystąpić skoki prądu. Zrozumienie różnicy pomiędzy tymi typami wkładek jest kluczowe dla prawidłowego doboru zabezpieczeń. Błędem jest również założenie, że wszystkie typy wkładek działają w podobny sposób; każde z nich ma swoją specyfikę, która musi być brana pod uwagę w procesie projektowania instalacji elektrycznych. Dlatego tak ważne jest, aby przed wyborem wkładki topikowej poznać wymagania konkretnego obwodu oraz zastosowane urządzenia, co pozwoli na odpowiednie zabezpieczenie i zapewnienie bezpieczeństwa użytkowników.

Pytanie 38

Narzędzie pokazane na rysunku służy do

Ilustracja do pytania
A. cięcia przewodów.
B. zdejmowania izolacji.
C. zaciskania końcówek tulejkowych.
D. zaginania końcówek.
Odpowiedź "cięcia przewodów" jest poprawna, ponieważ narzędzie pokazane na zdjęciu to szczypce boczne, które są specjalnie zaprojektowane do precyzyjnego cięcia różnorodnych przewodów elektrycznych. Szczypce te charakteryzują się ostrymi, wąskimi krawędziami, które umożliwiają dotarcie do trudno dostępnych miejsc, co jest istotne w pracach instalacyjnych oraz naprawczych. W praktyce, użycie szczypiec bocznych pozwala na dokładne cięcie przewodów bez ryzyka uszkodzenia ich izolacji, co jest kluczowe dla zachowania bezpieczeństwa w instalacjach elektrycznych. To narzędzie jest niezbędne w branży elektrycznej oraz w wielu projektach DIY, gdzie precyzyjne cięcie przewodów jest wymagane, aby uniknąć zwarć oraz zapewnić estetykę i funkcjonalność instalacji. Zgodnie z normami bezpieczeństwa, właściwe użycie szczypiec bocznych powinno obejmować również stosowanie odzieży ochronnej, aby zminimalizować ryzyko kontuzji podczas pracy.

Pytanie 39

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór odpowiedzi C, A, D lub jakiejkolwiek innej opcji niż B może wynikać z nieporozumień dotyczących klasyfikacji przewodów instalacyjnych. Warto zauważyć, że błędne odpowiedzi mogą wynikać z pomylenia typu przewodu z innymi, które mają różne zastosowania i właściwości. Przewody YDYt, w przeciwieństwie do innych typów, takich jak YDY, charakteryzują się jednolitą budową oraz możliwością przybijania do ścian, co jest kluczowe dla ich funkcji. W przypadku opcji A, można by pomyśleć, że jest to przewód odporny na uszkodzenia, jednak jego konstrukcja nie odpowiada wymaganiom dla YDYt, ponieważ nie ma odpowiedniej izolacji ani układu żył. Argumenty za innymi odpowiedziami często wynikają z niepełnego rozumienia cech i zastosowania przewodów. Na przykład, przewody wielodrutowe mogą wprowadzać w błąd z punktu widzenia ich zastosowania w instalacjach wtynkowych. Warto zwrócić uwagę, że błędne odpowiedzi mogą sugerować, że przewody te są stosunkowo łatwe do zainstalowania wszędzie, co w rzeczywistości może prowadzić do problemów z bezpieczeństwem elektrycznym oraz estetyką wykończenia. Dlatego tak ważne jest dokładne zrozumienie właściwości przewodów i ich przeznaczenia w kontekście norm oraz najlepszych praktyk w branży elektrycznej.

Pytanie 40

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. występuje zwarcie między zwojami.
B. izolacja jest uszkodzona.
C. działa prawidłowo.
D. jest uszkodzone.
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.