Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 20 stycznia 2026 19:21
  • Data zakończenia: 20 stycznia 2026 19:34

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Imbusowym.
C. Płaskim.
D. Nasadowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 2

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę mechanizmu
B. Zatrzymuje łuk elektryczny
C. Identyfikuje przeciążenia
D. Rozpoznaje zwarcia
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 3

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Aluminium
C. Brąz
D. Stal
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 4

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 0,03 A
B. 1000 A
C. 25 A
D. 230 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 5

Aby zmierzyć częstotliwość, należy użyć

A. watomierza
B. częstościomierza
C. fazomierza
D. waromierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 6

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. odłącznika
B. wyłącznika nadprądowego
C. rozłącznika
D. wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 7

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 8

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie C
B. W punkcie D
C. W punkcie B
D. W punkcie A
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 9

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Pomiar rezystancji izolacji przewodów
C. Badanie stanu izolacji podłóg
D. Badanie wyłącznika różnicowoprądowego
Pomiar impedancji pętli zwarciowej, pomiar rezystancji izolacji przewodów oraz badanie stanu izolacji podłóg są istotnymi elementami oceny instalacji elektrycznych, jednak nie są bezpośrednimi metodami oceny skuteczności ochrony uzupełniającej przed porażeniem prądem elektrycznym. Pomiar impedancji pętli zwarciowej informuje o zdolności instalacji do ograniczenia prądu zwarciowego, co jest istotne, ale nie odnosi się bezpośrednio do ochrony przed porażeniem. Z kolei pomiar rezystancji izolacji przewodów ocenia stan izolacji, ale nie wskazuje na skuteczność zabezpieczeń przed prądem upływowym, które są kluczowe w sytuacjach zagrożenia. Badanie stanu izolacji podłóg, mimo że może mieć znaczenie w kontekście bezpieczeństwa, nie ocenia funkcjonalności wyłączników różnicowoprądowych i ich zdolności do natychmiastowego reagowania na pojawiające się zagrożenia. Typowym błędem myślowym jest zakładanie, że wszystkie te pomiary są równoważne w kontekście ochrony przed porażeniem. W rzeczywistości, skuteczna ochrona wymaga skoncentrowania się na elementach, które bezpośrednio przeciwdziałają zagrożeniom elektrycznym, takich jak wyłączniki różnicowoprądowe, które są fundamentalnym elementem systemów bezpieczeństwa elektrycznego, a ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 10

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 1 przy odłączonych przewodach pomiarowych.
B. 1 przy zwartych przewodach pomiarowych.
C. 2 przy odłączonych przewodach pomiarowych.
D. 2 przy zwartych przewodach pomiarowych.
Wybór niewłaściwej odpowiedzi wynika często z niepełnego zrozumienia zasad działania omomierza oraz błędnych założeń dotyczących pomiarów rezystancji. Użycie pokrętła oznaczonego cyfrą 1 przy odłączonych przewodach pomiarowych jest nieprawidłowe, ponieważ w tej sytuacji omomierz nie będzie miał możliwości zredukowania wpływu oporności przewodów na wynik pomiaru. Z tego powodu wskazanie na 0 Ω nie będzie dokładne, co prowadzi do błędnych danych. Z kolei, ustawienie pokrętła na cyfrę 2 przy odłączonych przewodach także nie jest zasadne; miernik nie jest w stanie przeprowadzić zerowania, gdy przewody są odłączone, ponieważ nie ma obwodu, który mógłby zostać zwartym. Posiadanie wiedzy na temat procesu kalibracji omomierza jest kluczowe w kontekście zapewnienia wysokiej jakości pomiarów. W branży elektrycznej, gdzie precyzja jest kluczowa, pominięcie tego kroku może prowadzić do poważnych konsekwencji w analizie układów. Istotne jest także zrozumienie, że każdy pomiar rezystancji powinien być przeprowadzany w odpowiednich warunkach, a nieprawidłowe przygotowanie urządzenia do pomiaru może skutkować zafałszowaniem wyników, co jest nieakceptowalne w praktyce inżynierskiej.

Pytanie 11

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 2,5 mm2
B. 10 mm2
C. 4 mm2
D. 6 mm2
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 12

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci jednofazowej.
B. rezystancji izolacji przewodu w sieci trójfazowej.
C. rezystancji izolacji przewodu w sieci jednofazowej.
D. impedancji pętli zwarcia w sieci trójfazowej.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia różnicy między pomiarem rezystancji izolacji a pomiarem impedancji pętli zwarcia. Impedancja pętli zwarcia jest mierzona w kontekście analizy bezpieczeństwa systemu zasilania i odnosi się do oporu, który prąd zwarciowy napotyka w trakcie zwarcia. Wartości impedancji pętli zwarcia są zazwyczaj znacznie niższe, ponieważ obejmują wszystkie elementy obwodu, w tym przewody i urządzenia ochronne. Mierzenie impedancji pętli zwarcia w sieci trójfazowej miałoby zupełnie inny kontekst i byłoby wykonywane z użyciem odmiennych technik oraz z wykorzystaniem innych jednostek miary. Ponadto, rezystancja izolacji, która jest mierzona w megaomach, stanowi kluczowy wskaźnik stanu izolacji przewodów, co jest zupełnie innym procesem niż analiza impedancji pętli zwarcia. W praktyce, technicy często mylą te pojęcia, co prowadzi do niewłaściwego stosowania metod pomiarowych i interpretacji wyników. Zrozumienie podstawowych różnic między tymi pomiarami jest kluczowe dla zapewnienia bezpieczeństwa oraz sprawności instalacji elektrycznych.

Pytanie 13

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Najwyższą temperaturę otoczenia podczas eksploatacji
C. Minimalny przekrój przewodów podłączonych do zacisków
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 14

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 26 A
B. 6 A
C. 20 A
D. 16 A
Poprawna odpowiedź to 20 A, co wynika z analizy schematu elektrycznego związanego z obwodem oświetleniowym. W obwodzie tym kluczową rolę odgrywają wyłącznik nadprądowy B20 oraz stycznik SM-320, które mają znamionowy prąd roboczy wynoszący 20 A. W praktyce oznacza to, że przy prawidłowym doborze elementów, obwód może bezpiecznie eksploatować prąd do 20 A bez ryzyka przeciążenia. Należy pamiętać, że dobra praktyka inżynierska wymaga, aby znamionowy prąd urządzeń był dostosowany do obciążenia, jakie będą musiały tolerować. Warto również zwrócić uwagę na automat zmierzchowy, który ma prąd znamionowy 16 A, jednak nie stanowi on ograniczenia w przypadku tego konkretnego obwodu, gdyż stycznik SM-320 wytrzymuje wyższe wartości prądu. W praktyce, w przypadku projektowania obwodów oświetleniowych, kluczowe jest, aby nie przekraczać znamionowych wartości prądów, co zapewnia długotrwałą i bezpieczną eksploatację instalacji elektrycznych.

Pytanie 15

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja kołnierzowa
B. Podkładka dystansowa
C. Podkładka sprężysta
D. Tuleja redukcyjna
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 16

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 17

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YAKY
B. YDY
C. LY
D. OMY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 18

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Wkrętakiem
C. Kluczem płaskim
D. Neonowym wskaźnikiem napięcia
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 19

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Zaciskania końcówek oczkowych.
C. Docinania przewodu.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 20

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 6,6 Ω
D. 4,0 Ω
Wybór wartości impedancji pętli zwarcia, który jest za wysoki, prowadzi do problemów z zapewnieniem skutecznej ochrony przed porażeniem prądem. W przypadku większych wartości impedancji, takich jak 6,6 Ω, 3,8 Ω czy 4,0 Ω, istnieje ryzyko, że prąd zwarciowy nie osiągnie wystarczającej wartości, aby aktywować wyłącznik nadprądowy B20 w odpowiednim czasie. Przykładowo, zgodnie z normą PN-IEC 60364-4-41, aby zapewnić skuteczne wyłączenie zasilania przy prądzie zwarciowym, impedancja powinna być poniżej 2,3 Ω. Przy wyższych wartościach impedancji, prąd zwarciowy może być zbyt niski, co skutkuje opóźnieniem lub brakiem wyłączenia zasilania, a to z kolei zwiększa ryzyko porażenia prądem użytkowników. Warto zauważyć, że typowym błędem jest mylenie impedancji z innymi parametrami elektrycznymi, co prowadzi do nieprawidłowych wniosków. Analizując te wartości, ważne jest zrozumienie, że każdy system zabezpieczeń w instalacji elektrycznej musi być zaprojektowany z uwzględnieniem minimalnych wartości impedancji, aby zapewnić bezpieczeństwo użytkowników i skuteczność ochrony przeciwporażeniowej.

Pytanie 21

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystancji uziemień metodą kompensacyjną.
B. rezystywności gruntu metodą bezpośrednią.
C. rezystancji uziemień metodą techniczną.
D. rezystywności gruntu metodą pośrednią.
Wybór innych odpowiedzi sugeruje pewne nieporozumienia dotyczące metod pomiaru rezystancji i rezystywności gruntu oraz ich zastosowań. Rezystywność gruntu, na przykład, odnosi się do właściwości materiału, który wpływa na przewodnictwo elektryczne, jednak do jej pomiaru stosuje się metody różniące się od pomiaru rezystancji uziemienia. Odpowiedzi sugerujące pomiar rezystywności metodą bezpośrednią lub pośrednią zakładają, że rysunek dotyczy pomiaru właściwości gruntu zamiast pomiaru samego uziemienia, co jest nieprawidłowe. Pomiar rezystywności gruntu ma swoje zastosowanie w badaniach geotechnicznych i inżynierii lądowej, ale nie jest tożsamy z oceną efektywności systemów uziemiających. Z kolei odpowiedź dotycząca metody kompensacyjnej, która jest wykorzystywana w specyficznych warunkach pomiarowych, również nie odnosi się do przedstawionego rysunku. W praktyce, błędne wybranie metody pomiarowej może prowadzić do poważnych konsekwencji, takich jak niewłaściwe zabezpieczenie instalacji elektrycznych, co może skutkować zagrożeniem dla osób oraz mienia. Zrozumienie różnic między tymi metodami oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego wykonywania pomiarów w inżynierii elektrycznej.

Pytanie 22

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Pomiar rezystancji uziemienia.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Badanie kolejności faz.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 23

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. P301 40A
C. S301 B16
D. P301 25A
Odpowiedź P301 40A jest poprawna, ponieważ dotyczy wyłącznika różnicowoprądowego, który jest kluczowym elementem ochrony instalacji elektrycznych. W przypadku wykrycia prądu różnicowego, który przekracza 30 mA, wyłącznik ten natychmiast odłącza zasilanie, minimalizując ryzyko porażenia prądem elektrycznym. W sytuacji wystąpienia prądu doziemienia o wartości 2,5 A, znacznie przekraczającego wartość progową 30 mA, wyłącznik zadziała, co potwierdza jego skuteczność w ochronie użytkowników. Zastosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, zgodnym z normami PN-EN 61008 oraz PN-EN 60947. Dzięki nim możemy znacznie zwiększyć bezpieczeństwo w obiektach mieszkalnych i przemysłowych, chroniąc przed skutkami niewłaściwego działania urządzeń elektrycznych oraz wad w instalacji. W praktyce, regularne testowanie wyłączników różnicowoprądowych powinno być praktykowane, aby zapewnić ich niezawodność i skuteczność w sytuacjach awaryjnych.

Pytanie 24

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybierając inne odpowiedzi, można zauważyć szereg nieporozumień dotyczących konstrukcji adapterów. Adaptery, które nie posiadają gwintu E27 po jednej stronie, nie będą mogły być wykorzystane w standardowych oprawach, co ogranicza ich funkcjonalność. Wiele osób myli również rodzaje gniazd, nie zdając sobie sprawy, że gniazdo GU10 wymaga dwóch bolców, a nie gwintu, co jest kluczowe w zastosowaniach oświetleniowych. Gniazdo E27, będące tak powszechnym standardem, jest zaprojektowane do współpracy z tradycyjnymi żarówkami, co czyni go nieodpowiednim do innych typów gniazd. W przypadku, gdy użytkownik wybiera adapter, który nie ma tej kombinacji, może napotkać problemy z montażem i działaniem. Warto również zwrócić uwagę na bezpieczeństwo; zastosowanie adapterów, które nie są zgodne z normami, może prowadzić do uszkodzenia żarówki lub oprawy, a nawet stwarzać zagrożenie pożarowe. Dlatego tak ważne jest zrozumienie, jakie gniazda i adaptery są odpowiednie do danego zastosowania, aby uniknąć nieprzyjemnych niespodzianek oraz zapewnić efektywność energetyczną i właściwe funkcjonowanie systemu oświetleniowego.

Pytanie 25

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję uziemienia.
D. Impedancję pętli zwarcia.
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 26

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 20 A
B. 6 A
C. 16 A
D. 32 A
Poprawna odpowiedź to 20 A, ponieważ stycznik SM-320, który jest kluczowym elementem obwodu oświetleniowego, ma prąd znamionowy wynoszący 20 A. W praktyce oznacza to, że stycznik ten jest przystosowany do długotrwałego obciążenia prądowego o takiej wartości, co jest istotne w kontekście zapewnienia bezpieczeństwa i niezawodności systemu oświetleniowego. Włączenie obwodu oświetleniowego z prądem przekraczającym 20 A mogłoby prowadzić do przeciążenia stycznika, co w konsekwencji może doprowadzić do jego uszkodzenia oraz zwiększonego ryzyka pożaru. Ponadto, w standardach branżowych, takich jak normy IEC, podkreśla się, że elementy obwodów elektrycznych należy dobierać zgodnie z ich maksymalnymi parametrami znamionowymi, aby uniknąć potencjalnych awarii. W tym kontekście, znajomość i respektowanie wartości nominalnych elementów obwodów jest fundamentalne dla projektowania bezpiecznych instalacji elektrycznych. Przykładem zastosowania tej wiedzy jest dobór odpowiednich zabezpieczeń dla oświetlenia w budynkach użyteczności publicznej, gdzie nadmiarowy prąd mógłby prowadzić do niebezpiecznych sytuacji.

Pytanie 27

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są przerwane.
B. L1 i L2 są zwarte.
C. N i L3 są zwarte oraz PE jest przerwana.
D. N i PE są zwarte oraz L3 jest przerwana.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 28

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Mostka rezystancyjnego
B. Miernika rezystancji uziemienia
C. Multimetru
D. Miernika rezystancji izolacji
Niestety, wybór złego miernika do pomiaru rezystancji uziomu to dość powszechny błąd, który może prowadzić do nieprecyzyjnych wyników i problemów z bezpieczeństwem. Mostek rezystancyjny, mimo że jest ok w ogólnych pomiarach, raczej nie sprawdzi się w przypadku uziemienia, bo nie bierze pod uwagę warunków, które panują w terenie. Z kolei miernik rezystancji izolacji, który służy do oceny izolacji elektrycznej, niestety nie powie nam nic o rezystancji uziemienia, a to bardzo ważny aspekt dla systemów odgromowych. Multimetr jest super wszechstronny, ale znowu nie nadaje się do takich pomiarów, bo bardzo łatwo o błędy. Często ludzie zakładają, że narzędzia ogólnego przeznaczenia mogą być używane w specjalistycznych pomiarach, ale to prowadzi do błędnych wniosków i ryzykownych sytuacji. Żeby wszystko było dokładne i bezpieczne, najlepiej korzystać z narzędzi, które są przeznaczone do konkretnych pomiarów, a także robić to pod okiem specjalistów, którzy wiedzą, jak to dobrze zrobić.

Pytanie 29

Które stwierdzenie dotyczące normalizacji jest prawdziwe?

A. Stosowanie się do wymagań norm jest dobrowolne, a stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
B. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
C. Stosowanie się do wymagań norm jest obowiązkowe, a stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
D. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
W tym pytaniu łatwo się pomylić, bo w praktyce normy i przepisy często „idą w pakiecie” i wiele osób ma wrażenie, że wszystko jest po prostu obowiązkowe. Trzeba jednak rozdzielić dwie rzeczy: akty prawne (ustawy, rozporządzenia, wdrożone dyrektywy UE) oraz normy techniczne. Dyrektywy Unii Europejskiej po wdrożeniu do prawa krajowego stają się podstawą obowiązków prawnych. Przykładowo dyrektywa niskonapięciowa, dyrektywa EMC czy dyrektywa maszynowa wymagają, żeby urządzenia i instalacje były bezpieczne, nie stwarzały zagrożenia porażeniem, pożarem, zakłóceniami itp. Tego nie można sobie odpuścić – niespełnienie wymagań dyrektyw to naruszenie prawa, z wszystkimi konsekwencjami: od kar administracyjnych po odpowiedzialność karną, jeśli dojdzie do wypadku. Inaczej wygląda sytuacja z normami. Normy, takie jak PN-EN 60364 dla instalacji elektrycznych czy zestaw norm dotyczących ochrony przeciwporażeniowej, same w sobie nie są aktem prawnym. To są „uznane zasady techniczne”. Państwo bardzo często odwołuje się do nich w rozporządzeniach, ale zwykle w taki sposób, że ich stosowanie jest domyślną ścieżką wykazania zgodności z wymaganiami prawa. Błędne myślenie polega na założeniu, że albo normy są z natury obowiązkowe (co sugeruje, że każde odejście od zapisów normy jest nielegalne), albo że dyrektywy można traktować jak luźne wytyczne, a ważniejsze są normy. To odwraca role. W rzeczywistości rdzeniem są wymagania prawne z dyrektyw, a normy są narzędziem, żeby je spełnić w sposób uporządkowany i powtarzalny. Spotyka się też przekonanie, że skoro normy są dobrowolne, to można „robić po swojemu” bez głębszej refleksji. To też jest pułapka. Jeżeli ktoś świadomie odchodzi od normy, musi mieć mocne, technicznie uzasadnione argumenty, że wybrany sposób nadal zapewnia poziom bezpieczeństwa co najmniej taki, jak rozwiązanie normowe. W praktyce w branży elektrycznej przyjmuje się, że normy są standardem zawodowym i podstawą oceny przez nadzór techniczny, ubezpieczycieli czy biegłych sądowych. Dlatego warto dobrze rozumieć tę różnicę: obowiązkowe są wymagania prawa i dyrektyw UE, a normy są formalnie dobrowolne, ale w praktyce stanowią najlepszą drogę do spełnienia tych wymagań i ochrony własnej odpowiedzialności.

Pytanie 30

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/500 V
B. 450/750 V
C. 100/100 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 31

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P202 25-30-AC
B. P304 40-30-AC
C. P304 40-100-AC
D. P302 25-10-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 32

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,5% + 3 cyfry
B. ±2,0% + 2 cyfry
C. ±2,5% + 1 cyfra
D. ±1,0% + 4 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 33

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innej opcji niż A może wynikać z kilku nieporozumień dotyczących interpretacji symboli graficznych w schematach instalacji elektrycznych. Symbol graficzny łącznika jest wyraźnie zdefiniowany w normach branżowych, co oznacza, że każda niepoprawna odpowiedź może być rezultatem błędnej analizy rysunku lub niewłaściwego skojarzenia z innymi symbolami. Wiele osób mylnie może interpretować inne symbole, takie jak te używane do reprezentacji innych elementów elektrycznych, na przykład wyłączników, co prowadzi do zamieszania. Ponadto, w przypadku schematów wieloliniowych, istotne jest zrozumienie, że każdy element powinien być przedstawiony w sposób umożliwiający łatwe zrozumienie jego roli w instalacji. Błędem jest również brak znajomości standardów, co prowadzi do mylnych wniosków o funkcji poszczególnych symboli. Często zdarza się, że osoby analizujące rysunki schematów nie zwracają uwagi na szczegóły, takie jak kierunki linii czy sposób łączenia symboli, co jest kluczowe dla prawidłowego odczytu i interpretacji. Aby poprawić swoje umiejętności w tej dziedzinie, warto zapoznać się z dokumentacją techniczną oraz normami, które dokładnie opisują każdy element i jego graficzną reprezentację.

Pytanie 34

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy D
C. Klasy B
D. Klasy C
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 35

Której z lamp dotyczy przedstawiony na schemacie układ zasilania?

Ilustracja do pytania
A. Żarowej.
B. Sodowej.
C. Diodowej.
D. Indukcyjnej.
Poprawna odpowiedź to lampa sodowa, bo dokładnie taki układ zasilania pokazuje schemat: dławik (statecznik ST) włączony szeregowo z lampą wyładowczą, zapłonnik (oznaczony jako UZ z wyprowadzeniami N i H) oraz kondensator C do kompensacji mocy biernej. To jest klasyczny układ zasilania wysokoprężnych lamp sodowych HPS (SON) stosowanych w oświetleniu ulicznym, przemysłowym czy parkingów. Lampa sodowa jest lampą wyładowczą, która wymaga dwóch podstawowych elementów: statecznika ograniczającego prąd po zapłonie oraz układu zapłonowego generującego krótkotrwałe impulsy wysokiego napięcia rzędu kilku kV. Na schemacie widać właśnie ten komplet: dławik ST w torze L, zapłonnik podłączony równolegle do lampy oraz kondensator między L i N. Kondensator pełni głównie funkcję kompensacji mocy biernej indukcyjnej, zgodnie z wymaganiami norm dotyczącymi współczynnika mocy instalacji oświetleniowych (np. PN-EN 60598, PN-EN 61000 – wymagania dotyczące kompatybilności elektromagnetycznej i współczynnika mocy). W praktyce taki układ można spotkać w klasycznych oprawach ulicznych z lampą sodową 70 W, 100 W, 150 W czy 250 W, gdzie w puszce osprzętowej oprawy masz właśnie dławik, zapłonnik i kondensator. Moim zdaniem warto kojarzyć, że sama obecność zapłonnika plus statecznika oznacza lampę wyładowczą, a jeśli jest to prosty układ szeregowy z jednym dławikiem i typowym zapłonnikiem superpozycyjnym lub równoległym, to bardzo często będzie to właśnie lampa sodowa lub rtęciowa. W nowoczesnych instalacjach coraz częściej zastępuje się te układy zasilaczami elektronicznymi lub oprawami LED, ale w eksploatacji wciąż jest mnóstwo klasycznych lamp sodowych z takim schematem zasilania. Dobra praktyka branżowa mówi też, żeby zawsze sprawdzać poprawność podłączenia zapłonnika i kondensatora według schematu producenta oprawy, bo pomyłki przy montażu kończą się najczęściej uszkodzeniem lampy lub brakiem zapłonu.

Pytanie 36

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,0 V
B. 12,0 V
C. 12,4 V
D. 11,3 V
Wybór napięcia 11,0 V, 11,3 V lub 12,4 V jako odpowiedzi na postawione pytanie może wynikać z nieporozumień związanych z dynamiką rozładowania akumulatorów oraz ich charakterystyką. Napięcie akumulatora w trakcie rozładowania zmienia się, a jego wartość końcowa jest zależna od wielu czynników, w tym od wartości prądu i czasu rozładowania. Odpowiedzi 11,0 V oraz 11,3 V są zbyt niskie, co może sugerować, że nie uwzględniono rzeczywistego zachowania akumulatora w opisanym czasie i przy danym obciążeniu. Natomiast odpowiedź 12,4 V może wydawać się kusząca, lecz w rzeczywistości jest zbyt wysoka, co wskazuje na brak uwzględnienia prawidłowego spadku napięcia, typowego dla akumulatorów poddanych dużym obciążeniom. Ponadto, niektóre osoby mogą błędnie interpretować wykresy lub nie dostrzegać, że napięcie nie tylko zależy od pojemności, ale również od charakterystyki chemicznej użytego akumulatora oraz warunków jego pracy. Kluczowym błędem jest także pomijanie faktu, że w trakcie rozładowania przy dużym prądzie akumulator nie jest w stanie utrzymać nominalnego napięcia, co prowadzi do zaniżenia prognozowanej wartości. Dlatego niezwykle ważne jest, aby przy takich analizach zawsze odnosić się do danych wykresów oraz zrozumieć, jak różne czynniki wpływają na wydajność i żywotność akumulatorów.

Pytanie 37

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 38

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Komutatorowego prądu stałego.
B. Jednofazowego z kondensatorem pracy.
C. Indukcyjnego klatkowego.
D. Indukcyjnego pierścieniowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 39

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji kabli z izolacją połwinnitową
R₂₀ = K₂₀·Rₜ
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K₂₀0,110,190,250,330,631,001,852,383,13
A. 32,4 MΩ
B. 2,0 MΩ
C. 4,1 MΩ
D. 16,2 MΩ
Odpowiedzi 4,1 MΩ, 32,4 MΩ i 16,2 MΩ są błędne z kilku powodów. Wartość 4,1 MΩ nie bierze pod uwagę, że rezystancja izolacji spada, kiedy temperatura rośnie, a to kluczowe. W przypadku 32,4 MΩ można pomyśleć, że rezystancja rośnie z temperaturą, co jest całkowicie mylne. Takie myślenie jest sprzeczne z tym, co mówią normy w elektrotechnice, bo wyższe temperatury skutkują niższymi wartościami rezystancji. I jeszcze 16,2 MΩ nie ma sensu, bo nie korzysta z dobrej formuły do obliczeń i nie odnosi się do standardów pomiarowych. Zawsze musisz pamiętać, jak materiały izolacyjne reagują na zmiany temperatury, bo to ma ogromne znaczenie przy ocenie stanu technicznego instalacji elektrycznych.

Pytanie 40

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybierając inną odpowiedź, można było wpaść w pułapkę typowych nieporozumień dotyczących symboliki w projektowaniu instalacji elektrycznych. Wiele osób myli symbole graficzne związane z instalacjami elektrycznymi, co często prowadzi do nieprawidłowej interpretacji dokumentów projektowych. Niezrozumienie różnicy między różnymi symbolami może spowodować, że nieprawidłowo zaprojektowane lub wykonane instalacje nie będą spełniały norm bezpieczeństwa i funkcjonalności. Należy pamiętać, że każdy symbol na schemacie ma swoje konkretne znaczenie. Na przykład, niektóre symbole mogą wskazywać na przewody prowadzone pod tynkiem lub w innych rodzajach osłon, co ma bezpośredni wpływ na bezpieczeństwo instalacji. Używanie niewłaściwych symboli może prowadzić do błędów w wykonaniu instalacji, a w konsekwencji do kosztownych poprawek. Właściwe rozumienie symboliki jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych, a także dla zapewnienia, że projekty spełniają wymagania norm europejskich i krajowych. Dlatego ważne jest, aby dokładnie zapoznawać się z dokumentacją techniczną oraz stosować się do uznawanych standardów, takich jak PN-IEC 60617, aby uniknąć nieporozumień i błędów w projektach. To zarówno kwestia praktyki, jak i odpowiedzialności zawodowej.