Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 15:50
  • Data zakończenia: 19 grudnia 2025 16:01

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Fragment specyfikacji którego urządzenia sieciowego przedstawiono na ilustracji?

L2 Features• MAC Address Table: 8K
• Flow Control
   • 802.3x Flow Control
   • HOL Blocking Prevention
• Jumbo Frame up to 10,000 Bytes
• IGMP Snooping
   • IGMP v1/v2 Snooping
   • IGMP Snooping v3 Awareness
   • Supports 256 IGMP groups
   • Supports at least 64 static multicast addresses
   • IGMP per VLAN
   • Supports IGMP Snooping Querier
• MLD Snooping
   • Supports MLD v1/v2 awareness
   • Supports 256 groups
   • Fast Leave
• Spanning Tree Protocol
   • 802.1D STP
   • 802.1w RSTP
• Loopback Detection
• 802.3ad Link Aggregation
   • Max. 4 groups per device/8 ports per group (DGS-1210-08P)
   • Max. 8 groups per device/8 ports per group (DGS-1210-
     16/24/24P)
   • Max. 16 groups per device/8 ports per group (DGS-1210-48P)
• Port Mirroring
   • One-to-One, Many-to-One
   • Supports Mirroring for Tx/Rx/Both
• Multicast Filtering
   • Forwards all unregistered groups
   • Filters all unregistered groups
• LLDP, LLDP-MED
A. Ruter.
B. Przełącznik.
C. Zapora sieciowa.
D. Koncentrator.
Przełącznik, jako urządzenie sieciowe funkcjonujące na warstwie drugiej modelu OSI, jest kluczowym elementem w zarządzaniu ruchem danych w sieciach lokalnych. Na ilustracji widoczne są istotne funkcje, takie jak MAC Address Table, która pozwala na efektywne kierowanie pakietów danych do odpowiednich odbiorców na podstawie adresów MAC urządzeń. Flow Control zapewnia kontrolę nad przepływem danych, co zapobiega utracie pakietów w przypadku przeciążenia sieci. Jumbo Frame umożliwia przesyłanie większych ram, co zwiększa wydajność w przypadku transferów dużych plików. IGMP Snooping jest używany do zarządzania ruchem multicastowym, co jest istotne w aplikacjach takich jak strumieniowanie wideo. Przełączniki obsługują również protokoły VLAN i STP, co pozwala na tworzenie odseparowanych sieci w ramach jednej infrastruktury oraz zapobieganie pętli w sieci. W praktyce przełączniki są powszechnie wykorzystywane w biurach i centrach danych do łączenia serwerów, komputerów oraz innych urządzeń końcowych, co czyni je fundamentalnym elementem współczesnych sieci komputerowych.

Pytanie 2

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN 55022
B. PN-EN 50174
C. PN-EN 50310
D. PN-EN50173
Norma PN-EN 50174 opisuje zasady projektowania i instalacji okablowania strukturalnego, które są kluczowe dla zapewnienia efektywności i niezawodności systemów telekomunikacyjnych. Ta norma obejmuje zarówno aspekty techniczne, jak i praktyczne wytyczne dotyczące instalacji kabli, ich rozmieszczenia oraz ochrony przed zakłóceniami. W kontekście budynków biurowych, zastosowanie PN-EN 50174 pozwala na zminimalizowanie strat sygnału oraz zwiększenie żywotności instalacji poprzez zastosowanie odpowiednich metod układania kabli. Na przykład, w przypadku instalacji w dużych biurowcach, stosowanie zgodnych z normą metod zarządzania kablami i ich trasowaniem pozwala na łatwiejsze późniejsze modyfikacje oraz serwisowanie. Dodatkowo, norma ta zwraca uwagę na aspekty bezpieczeństwa, co jest kluczowe w kontekście przepisów budowlanych oraz ochrony środowiska. Warto również wspomnieć, że PN-EN 50174 jest często stosowana w połączeniu z innymi normami, takimi jak PN-EN 50173, która dotyczy systemów okablowania strukturalnego w budynkach, co zapewnia kompleksowe podejście do tematu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 80,00 zł
B. 320,00 zł
C. 800,00 zł
D. 160,00 zł
Obliczenia dotyczące kosztów zakupu kabla UTP kategorii 5e dla 5 podwójnych gniazd abonenckich mogą być mylące, gdyż wiele osób błędnie interpretuje dane liczbowe. Przykładowo, bywa, że przyjmuje się zbyt niską lub zbyt wysoką długość kabla, co prowadzi do niewłaściwego określenia całkowitych kosztów. Osoby często mylą ogół długości potrzebnego kabla, co skutkuje rachunkami, które nie odzwierciedlają rzeczywistych kosztów. Niektórzy mogą pomyśleć, że wystarczy pomnożyć liczbę gniazd przez cenę metra kabla bez uwzględnienia konieczności połączenia kabli z urządzeniem końcowym oraz dodatkowymi elementami instalacyjnymi. Innym typowym błędem jest nieprzemyślane oszacowanie długości kabli, które powinny uwzględniać ewentualne zakręty, przejścia przez ściany lub inne przeszkody, co również wpływa na ostateczną długość kabli. Należy także pamiętać o standardach instalacji, które zalecają dodanie zapasu na ewentualne błędy podczas montażu. W wyniku tych nieporozumień, niepoprawne odpowiedzi takie jak 80,00 zł, 320,00 zł czy 800,00 zł nie tylko wskazują na błędne obliczenia, ale również na zagadnienia związane z organizacją i planowaniem instalacji sieci, co jest kluczowe dla funkcjonowania każdej organizacji.

Pytanie 5

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Switch
B. Punkt dostępowy (Access Point)
C. Repeater (regenerator sygnału)
D. Router
<strong>Router</strong> to urządzenie, które działa na warstwie trzeciej modelu OSI, czyli warstwie sieciowej. To właśnie routery odpowiadają za segmentację sieci na poziomie IP – rozdzielają ruch pomiędzy różne podsieci, umożliwiają komunikację między nimi oraz podejmują decyzje o trasowaniu pakietów. Dzięki temu możliwe jest tworzenie złożonych, dobrze zarządzanych i bezpiecznych architektur sieciowych. W praktyce, routery pozwalają np. oddzielić sieć firmową od sieci gościnnej, a także izolować ruch różnych działów w przedsiębiorstwie. Standardowo wykorzystuje się je do łączenia lokalnych sieci LAN z Internetem czy innymi sieciami WAN. Warto pamiętać, że niektóre zaawansowane switche warstwy 3 również mogą pełnić funkcje segmentacji na tym poziomie, ale ich podstawowe zadanie to przełączanie w warstwie drugiej. Routery są jednak dedykowanym rozwiązaniem do segmentacji warstwy trzeciej i trasowania. Moim zdaniem z punktu widzenia praktyka sieciowego, zrozumienie tej roli routera to absolutna podstawa, bo od tego zależy cała logika podziału i bezpieczeństwa sieci w każdej szanującej się organizacji.

Pytanie 6

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Gwiazda.
B. Pierścień.
C. Siatka.
D. Drzewo.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 7

Które urządzenie sieciowe jest widoczne na zdjęciu?

Ilustracja do pytania
A. Karta sieciowa.
B. Modem.
C. Przełącznik.
D. Most.
Karta sieciowa, modem i most to urządzenia, które pełnią różne funkcje w sieciach komputerowych, ale nie są tym, co widzimy na zdjęciu. Karta sieciowa jest interfejsem, który umożliwia komputerowi komunikację z siecią. Zazwyczaj zainstalowana jest wewnętrznie w komputerze lub jako zewnętrzny adapter. Jej zadaniem jest konwersja danych z formatu cyfrowego na analogowy, co jest niezbędne dla komunikacji. Z kolei modem, będący skrótem od 'modulator-demodulator', jest urządzeniem służącym do łączenia sieci lokalnej z Internetem poprzez modulację sygnałów. Modemy są kluczowe w komunikacji szerokopasmowej, ale nie zarządzają ruchem wewnątrz sieci lokalnej. Most, z drugiej strony, jest używany do łączenia dwóch segmentów sieci, które pracują w tej samej warstwie OSI. Ale jego zastosowanie ogranicza się do zarządzania ruchem w ramach jednego rodzaju medium, co również nie pasuje do funkcji przełącznika. Często błędem w rozumieniu tych urządzeń jest mylenie ich ról w sieci; każdy z tych komponentów ma swoje specyficzne zadania, które są niezbędne do prawidłowego funkcjonowania całego systemu komunikacyjnego. Zrozumienie różnic między tymi urządzeniami jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 8

Do których komputerów dotrze ramka rozgłoszeniowa wysyłana ze stacji roboczej PC1?

Ilustracja do pytania
A. PC4 i PC5
B. PC2 i PC4
C. PC2 i PC6
D. PC3 i PC6
Ramka rozgłoszeniowa wysyłana z PC1 dotrze do PC3 i PC6, ponieważ wszystkie te urządzenia znajdują się w tym samym VLANie, czyli VLAN10. W kontekście sieci komputerowych, ramki rozgłoszeniowe są mechanizmem pozwalającym na wysyłanie danych do wszystkich urządzeń w danym VLANie. To oznacza, że wszystkie urządzenia, które są logicznie połączone w tej samej grupie, mogą odbierać taką ramkę. Chociaż ramki rozgłoszeniowe są ograniczone do jednego VLANu, ich zastosowanie jest kluczowe w przypadku komunikacji w lokalnych sieciach. Przykładem mogą być protokoły ARP (Address Resolution Protocol), które wykorzystują ramki rozgłoszeniowe do mapowania adresów IP na adresy MAC. Z tego względu dobrze zrozumieć, jak działają VLANy oraz zasady ich izolacji, aby efektywnie zarządzać ruchem w sieci oraz poprawić jej bezpieczeństwo, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami.

Pytanie 9

Która z poniższych właściwości kabla koncentrycznego RG-58 sprawia, że nie jest on obecnie stosowany w budowie lokalnych sieci komputerowych?

A. Brak opcji nabycia dodatkowych urządzeń sieciowych
B. Maksymalna prędkość przesyłania danych wynosząca 10 Mb/s
C. Koszt narzędzi potrzebnych do montażu i łączenia kabli
D. Maksymalna odległość między stacjami wynosząca 185 m
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w kontekście współczesnych wymagań sieciowych jest zdecydowanie zbyt niską wartością. W dzisiejszych lokalnych sieciach komputerowych (LAN) standardy, takie jak Ethernet, wymagają znacznie wyższych prędkości – obecnie powszechnie stosowane są technologie pozwalające na przesył danych z prędkościami 100 Mb/s (Fast Ethernet) oraz 1 Gb/s (Gigabit Ethernet), a nawet 10 Gb/s w nowoczesnych rozwiązaniach. Z tego powodu, na etapie projektowania infrastruktury sieciowej, wybór kabla o niskiej prędkości transmisji jak RG-58 jest nieefektywny i przestarzały. Przykładowo, w przypadku dużych sieci korporacyjnych, gdzie przesyłanie dużych plików lub obsługa wielu jednoczesnych użytkowników jest normą, kabel RG-58 nie spełnia wymogów wydajnościowych oraz jakościowych. Dlatego też jego zastosowanie w lokalnych sieciach komputerowych jest obecnie niezalecane, co czyni go nieodpowiednim wyborem.

Pytanie 10

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. przełącznik.
B. media konwerter.
C. ruter z WiFi.
D. most.
Urządzenie przedstawione na zdjęciu to ruter z WiFi, co można rozpoznać po charakterystycznych antenach, które są kluczowym elementem umożliwiającym bezprzewodową transmisję danych. Routery z WiFi są fundamentem współczesnych sieci domowych i biurowych, służąc do udostępniania połączenia internetowego dla różnych urządzeń, takich jak laptopy, smartfony czy tablety. W standardzie 802.11 (WiFi) funkcjonują w różnych pasmach, najczęściej 2.4 GHz i 5 GHz, co pozwala na optymalizację prędkości oraz zasięgu sygnału. Porty LAN oraz WAN/Internet, które również można zauważyć w tym urządzeniu, potwierdzają, że pełni rolę centralnego punktu komunikacji w sieci lokalnej. W praktyce, dobra konfiguracja rutera z WiFi, w tym zabezpieczenia takie jak WPA3, jest niezbędna dla ochrony danych użytkowników oraz zapewnienia stabilności połączenia. Warto również zaznaczyć, że nowoczesne routery często obsługują technologie takie jak MU-MIMO czy beamforming, co znacząco wpływa na jakość i wydajność transmisji.

Pytanie 11

Podczas przetwarzania pakietu przez ruter jego czas życia TTL

A. przyjmuje przypadkową wartość
B. ulega zwiększeniu
C. pozostaje bez zmian
D. ulega zmniejszeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas życia pakietu (TTL - Time To Live) jest kluczowym parametrem w protokole IP, który decyduje o tym, jak długo pakiet może przebywać w sieci, zanim zostanie odrzucony. Każdy ruter, przez który przechodzi pakiet, zmniejsza wartość TTL o 1. Dzieje się tak, ponieważ TTL ma na celu zapobieganie nieskończonemu krążeniu pakietów w sieci, które mogą być spowodowane błędami w routingu. Przykładowo, jeśli pakiet ma początkową wartość TTL równą 64, to po przejściu przez 3 rutery, jego wartość TTL spadnie do 61. W praktyce, administratorzy sieci powinni być świadomi wartości TTL, ponieważ może to wpływać na wydajność sieci oraz na czas, w którym pakiety docierają do celu. Dobrą praktyką jest monitorowanie TTL w celu optymalizacji tras i diagnozowania problemów z łącznością. W standardach protokołu IP, zmniejszanie TTL jest istotne, ponieważ zapewnia, że pakiety nie będą krążyły w sieci bez końca, co może prowadzić do przeciążenia i degradacji jakości usług.

Pytanie 12

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
B. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
C. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
D. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
Odpowiedź wskazująca na prawidłową kolejność przewodów we wtyku RJ-45 zgodnie z normą TIA/EIA-568 dla zakończenia typu T568B jest kluczowa w kontekście budowy i konfiguracji sieci lokalnych. Zgodnie z tym standardem, przewody powinny być ułożone w następującej kolejności: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy oraz brązowy. Ta specyfikacja zapewnia prawidłowe połączenia i minimalizuje interferencje elektromagnetyczne, co jest istotne dla stabilności i wydajności transmisji danych. Przykład zastosowania tej normy można zobaczyć w instalacjach sieciowych w biurach, gdzie formowanie kabli zgodnie z T568B jest standardem, umożliwiającym łatwe podłączanie urządzeń. Dodatkowo, w przypadku stosowania technologii PoE (Power over Ethernet), prawidłowa kolejność przewodów jest kluczowa dla efektywnego zasilania urządzeń sieciowych, takich jak kamery IP czy punkty dostępu. Znajomość tych standardów jest niezbędna dla każdego technika zajmującego się sieciami, aby zapewnić maksymalną wydajność oraz bezpieczeństwo w infrastrukturze sieciowej.

Pytanie 13

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 2.
B. 3.
C. 1.
D. 4.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 14

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–T
B. 10Base2
C. 1000Base–TX
D. 100Base–FX
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 15

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 80 zł
B. 440 zł
C. 260 zł
D. 130 zł
Odpowiedź, która jest poprawna, to 260 zł. Dlaczego tak? Bo żeby połączyć 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym, trzeba policzyć, jak długo kabli potrzebujemy. Mamy punkty abonenckie w różnych odstępach: najbliższy jest 4 m, a najdalszy 22 m. Średnio, wychodzi nam 13 m na jedno gniazdo. Jak to liczymy? (4 m + 22 m) / 2 daje 13 m. Czyli dla 10 gniazd mamy 10 x 13 m, co daje 130 m. Koszt kabla wynosi 1 zł za metr, więc za 130 m to 130 zł. Ale pamiętaj, że nie wszystkie gniazda będą tyle samo od punktu. Niektóre będą bliżej, inne dalej. To znaczy, że w praktyce koszt może się podnieść, stąd ta kwota 260 zł. Fajnie też zwracać uwagę na standardy kablowe, np. TIA/EIA-568, żeby używać kabli, które spełniają wymagania do danego zastosowania. I dobrze jest przed instalacją zmierzyć odległości i zaplanować trasę kabla – to może też pomóc w obniżeniu kosztów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby oddzielić komputery w sieci, które posiadają ten sam adres IPv4 i są połączone z przełącznikiem zarządzalnym, należy przypisać

A. aktywnych interfejsów do różnych VLAN-ów
B. statyczne adresy MAC komputerów do aktywnych interfejsów
C. niewykorzystane interfejsy do różnych VLAN-ów
D. statyczne adresy MAC komputerów do niewykorzystanych interfejsów
Przypisanie używanych interfejsów do różnych VLAN-ów jest kluczowym rozwiązaniem w kontekście separacji komputerów w sieci z tym samym adresem IPv4. VLAN (Virtual Local Area Network) pozwala na logiczne podzielenie jednego fizycznego switcha na wiele segmentów sieciowych, co znacząco zwiększa bezpieczeństwo i organizację ruchu sieciowego. Każdy VLAN działa jak oddzielna sieć, co oznacza, że komputery przypisane do różnych VLAN-ów nie mogą się bezpośrednio komunikować, nawet jeśli są podłączone do tego samego przełącznika. Przykładem mogą być VLAN-y dla różnych działów w firmie, takich jak dział finansowy i dział IT, gdzie odseparowanie ich od siebie pomaga w ochronie wrażliwych danych. W praktyce, aby skonfigurować VLAN-y, administratorzy sieci używają protokołów takich jak IEEE 802.1Q, który dodaje tagi VLAN do ramek Ethernet. Takie podejście jest szeroko stosowane w branży i jest zgodne z najlepszymi praktykami zarządzania siecią, zapewniając zarówno wydajność, jak i bezpieczeństwo.

Pytanie 18

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Punkt dostępowy
B. Przełącznik
C. Modem
D. Media konwerter
Punkt dostępowy, znany również jako access point, jest kluczowym urządzeniem w kontekście bezprzewodowych sieci lokalnych. Jego głównym zadaniem jest umożliwienie urządzeniom bezprzewodowym, takim jak laptopy, smartfony czy tablety, dostępu do kablowej sieci lokalnej. Punkty dostępowe działają na zasadzie połączenia z routerem lub przełącznikiem za pomocą kabla Ethernet, a następnie transmitują sygnał bezprzewodowy w określonym zasięgu, co pozwala użytkownikom na wygodne korzystanie z internetu bez konieczności używania kabli. Standardy takie jak IEEE 802.11, powszechnie znane jako Wi-Fi, definiują parametry pracy punktów dostępowych, w tym szybkości transmisji danych oraz zakresy częstotliwości. Dzięki implementacji punktów dostępowych w biurach, szkołach czy przestrzeniach publicznych, można zapewnić użytkownikom mobilny dostęp do sieci, co jest niezbędne w dobie pracy zdalnej i mobilności. Przykładem zastosowania punktów dostępowych są sieci hot-spot w kawiarniach lub na lotniskach, gdzie użytkownicy mogą łączyć się z internetem w sposób elastyczny i wygodny.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakim skrótem nazywana jest sieć, która korzystając z technologii warstwy 1 i 2 modelu OSI, łączy urządzenia rozmieszczone na dużych terenach geograficznych?

A. WAN
B. VLAN
C. LAN
D. VPN
WAN, czyli Wide Area Network, odnosi się do sieci, która łączy urządzenia rozmieszczone na dużych obszarach geograficznych, wykorzystując technologie warstwy 1 i 2 modelu OSI. W przeciwieństwie do LAN (Local Area Network), która obejmuje mniejsze obszary, takie jak biura czy budynki, WAN może rozciągać się na całe miasta, kraje a nawet kontynenty. Przykładami zastosowania WAN są sieci rozległe wykorzystywane przez przedsiębiorstwa do łączenia oddziałów w różnych lokalizacjach, a także infrastruktura internetowa, która łączy miliony użytkowników na całym świecie. Standardy takie jak MPLS (Multiprotocol Label Switching) czy frame relay są często wykorzystywane w sieciach WAN, co pozwala na efektywne zarządzanie ruchem danych oraz zapewnia odpowiednią jakość usług. Znajomość technologii WAN jest kluczowa dla specjalistów IT, szczególnie w kontekście projektowania i zarządzania infrastrukturą sieciową w dużych organizacjach.

Pytanie 22

Który rysunek przedstawia ułożenie żył przewodu UTP we wtyku 8P8C zgodnie z normą TIA/EIA-568-A, sekwencją T568A?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D jest poprawna, ponieważ przedstawia ułożenie żył w wtyku 8P8C zgodnie z normą TIA/EIA-568-A, sekwencją T568A. Sekwencja ta wymaga, aby żyły były ułożone w następującej kolejności: biało-zielony, zielony, biało-pomarańczowy, niebieski, biało-niebieski, pomarańczowy, biało-brązowy, brązowy. Użycie właściwej sekwencji jest kluczowe dla zapewnienia poprawnej transmisji danych w sieciach lokalnych. W praktyce, stosowanie standardu T568A zmniejsza ryzyko zakłóceń i błędów transmisyjnych, co jest szczególnie istotne w środowiskach, gdzie wiele urządzeń jest podłączonych do tej samej infrastruktury sieciowej. Znajomość tych standardów pozwala na prawidłowe wykonanie kabli sieciowych, co przekłada się na niezawodność i wydajność sieci. W sytuacji, gdy żyły są ułożone niezgodnie z normą, mogą wystąpić problemy z połączeniem, co może prowadzić do znacznych kosztów napraw i przestojów w pracy.

Pytanie 23

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Suma przeników zbliżnych i zdalnych
B. Przenik zdalny
C. Przenik zbliżny
D. Suma przeników zdalnych
Zrozumienie pojęć związanych z przenikami w okablowaniu strukturalnym jest kluczowe dla efektywnej analizy jakości sygnału. Odpowiedzi takie jak przenik zdalny i suma przeników zdalnych nie odpowiadają na postawione pytanie dotyczące wpływu sygnału w sąsiednich parach na tym samym końcu kabla. Przenik zdalny odnosi się do zakłóceń, które mogą być generowane przez sygnały w innej parze przewodów, ale nie bierze pod uwagę bezpośredniego wpływu sąsiednich par. Z kolei suma przeników zdalnych i zbliżnych może sugerować, że oba te parametry są równoważne, co jest mylne, ponieważ każdy z nich mierzy inny aspekt zakłóceń. Typowym błędem myślowym jest mylenie przeników, co prowadzi do nieprawidłowych wniosków dotyczących jakości i wydajności okablowania. Podczas projektowania i instalacji systemów telekomunikacyjnych, kluczowe jest przestrzeganie standardów, które jasno definiują pomiar i wpływ przeników na funkcjonowanie sieci. Dlatego zrozumienie różnicy między przenikiem zdalnym a zbliżnym jest niezbędne dla inżynierów zajmujących się okablowaniem strukturalnym oraz dla uzyskania optymalnych parametrów sieci.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby podłączyć drukarkę, która nie posiada karty sieciowej, do przewodowej sieci komputerowej, konieczne jest zainstalowanie serwera wydruku z odpowiednimi interfejsami

A. Centronics i RJ11
B. USB i RJ45
C. Centronics i USB
D. USB i RS232
Odpowiedź 'USB i RJ45' jest prawidłowa, ponieważ obydwa interfejsy są powszechnie stosowane do podłączenia drukarek do sieci komputerowych. Interfejs USB umożliwia szybkie przesyłanie danych między urządzeniem a komputerem, co jest kluczowe w przypadku drukarek, które wymagają efektywnej komunikacji. Z kolei interfejs RJ45 jest standardem w sieciach Ethernet, co pozwala na podłączenie drukarki do lokalnej sieci komputerowej bez potrzeby posiadania wbudowanej karty sieciowej. W przypadku serwera wydruku, urządzenie takie działa jako mostek pomiędzy drukarką a komputerami w sieci, co umożliwia wielu użytkownikom dostęp do tej samej drukarki. Przykłady zastosowania obejmują podłączenie drukarki biurowej do serwera, co pozwala na zdalne drukowanie dokumentów przez pracowników z różnych stanowisk. Zgodność z tymi standardami w znaczący sposób zwiększa elastyczność i użyteczność urządzeń w środowisku pracy, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 26

Jaka jest kolejność przewodów we wtyku RJ45 zgodnie z sekwencją połączeń T568A?

Kolejność 1Kolejność 2Kolejność 3Kolejność 4
1. Biało-niebieski
2. Niebieski
3. Biało-brązowy
4. Brązowy
5. Biało-zielony
6. Zielony
7. Biało-pomarańczowy
8. Pomarańczowy
1. Biało-pomarańczowy
2. Pomarańczowy
3. Biało-zielony
4. Niebieski
5. Biało-niebieski
6. Zielony
7. Biało-brązowy
8. Brązowy
1. Biało-brązowy
2. Brązowy
3. Biało-pomarańczowy
4. Pomarańczowy
5. Biało-zielony
6. Niebieski
7. Biało-niebieski
8. Zielony
1. Biało-zielony
2. Zielony
3. Biało-pomarańczowy
4. Niebieski
5. Biało-niebieski
6. Pomarańczowy
7. Biało-brązowy
8. Brązowy
Ilustracja do pytania
A. Kolejność 1
B. Kolejność 4
C. Kolejność 3
D. Kolejność 2
Błędne odpowiedzi mogą wynikać z kilku typowych nieporozumień dotyczących normy T568A i ogólnych zasad połączeń sieciowych. Często mylone są kolory przewodów oraz ich kolejność w wtyku RJ45. Na przykład, niektórzy mogą zapominać o znaczeniu kolorów, co prowadzi do zamiany miejscami przewodów zielonych z pomarańczowymi. Tego typu błędy mogą skutkować niesprawnymi połączeniami, a nawet uszkodzeniem sprzętu. Również, wielu użytkowników nie zwraca uwagi na różnice między standardami T568A i T568B, co może prowadzić do chaosu w instalacjach, zwłaszcza w dużych biurach, gdzie wiele osób pracuje nad tym samym systemem. Nieprawidłowe połączenie może także wprowadzić zakłócenia, co jest szczególnie problematyczne w sytuacjach, gdy sieć obsługuje wrażliwe dane lub aplikacje wymagające dużej przepustowości. Podczas konfigurowania sieci ważne jest, aby dokładnie trzymać się specyfikacji i zrozumieć, jak poszczególne kolory przewodów wpływają na działanie całego systemu. Jeśli nie jesteśmy pewni poprawnej kolejności, warto skonsultować się z dokumentacją lub specjalistą, aby uniknąć typowych pułapek, które mogą spowodować problemy w przyszłości.

Pytanie 27

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Dysk twardy
B. Chip procesora
C. Moduł RAM
D. Karta sieciowa
Dysk twardy to naprawdę ważny element w serwerach rackowych. Fajnie, że można go wymienić bez zrzucania całej obudowy, bo to olbrzymia wygoda, szczególnie kiedy trzeba szybko zareagować na jakieś awarie. Wiele nowoczesnych serwerów ma systemy hot-swappable, co znaczy, że te dyski można wymieniać bez wyłączania serwera. Wyobraź sobie, że w momencie awarii, administrator może w mgnieniu oka podmienić dysk i w ten sposób zminimalizować przestoje. To wszystko ma sens, bo SaS i SATA dają taką możliwość, a to zgodne z najlepszymi praktykami w branży. Z mojego doświadczenia, umiejętność szybkiej wymiany dysków naprawdę pomaga w efektywnym zarządzaniu infrastrukturą IT.

Pytanie 28

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Światłowodu jednodomowego
B. Skrętki ekranowanej STP
C. Fal radiowych
D. Kabla współosiowego
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 29

Jakie kanały powinno się wybrać dla trzech sieci WLAN 2,4 GHz, aby zredukować ich wzajemne zakłócenia?

A. 1,6,11
B. 3, 6, 12
C. 1,3,12
D. 2, 5,7
Wybór kanałów 1, 6 i 11 dla trzech sieci WLAN 2,4 GHz jest optymalnym rozwiązaniem, ponieważ te kanały są jedynymi, które są od siebie wystarczająco oddalone, aby zminimalizować zakłócenia. W paśmie 2,4 GHz, które jest ograniczone do 14 kanałów, tylko te trzy kanały nie nachodzą na siebie, co pozwala na skuteczną separację sygnałów. Przykładowo, jeśli używamy kanału 1, to jego widmo interferencyjne kończy się w okolicach 2,412 GHz, co nie koliduje z sygnałami z kanału 6 (2,437 GHz) i 11 (2,462 GHz). W praktyce, zastosowanie tych kanałów w bliskim sąsiedztwie, na przykład w biurze z trzema punktami dostępowymi, zapewnia nieprzerwaną komunikację dla użytkowników i redukcję zakłóceń. Warto również pamiętać, że zgodnie z zaleceniami IEEE 802.11, stosowanie tych trzech kanałów w konfiguracji nie tylko poprawia jakość sygnału, ale także zwiększa przepustowość sieci, co jest szczególnie ważne w środowiskach o dużej gęstości użytkowników.

Pytanie 30

Ramka z danymi jest wysyłana z komputera K1 do komputera K2. Które adresy źródłowe IP oraz MAC będą w ramce wysyłanej z rutera R1 do R2?

IPMAC
K1192.168.1.10/241AAAAA
K2172.16.1.10/242BBBBB
R1 - interfejs F0192.168.1.1/24BBBBBB
R1 - interfejs F110.0.0.1/30CCCCCC
R2- interfejs F010.0.0.2/30DDDDDD
R2- interfejs F1172.16.1.1/24EEEEEE
Ilustracja do pytania
A. IP – 10.0.0.1; MAC – CCCCCC
B. IP – 10.0.0.1; MAC – 1AAAAA
C. IP – 192.168.1.10; MAC – 1AAAAA
D. IP – 192.168.1.10; MAC – CCCCCC
Wybór odpowiedzi IP – 10.0.0.1; MAC – CCCCCC jest niepoprawny, bo wprowadza trochę zamieszania dotyczącego tego, jak działają protokoły sieciowe. Po pierwsze, adres IP źródłowy nie powinien się zmieniać podczas przesyłania ramki przez ruter; zawsze powinien pokazywać oryginalnego nadawcę, czyli w tym przypadku komputer K1 z adresem 192.168.1.10. Wybierając 10.0.0.1 jako adres źródłowy IP, twierdzisz, że ramka pochodzi z innej sieci, co nie ma sensu w kontekście zarządzania siecią, gdyż adresy muszą być zgodne z subnetem. Co więcej, jeśli chodzi o MAC – CCCCCC, to zakładamy, że jest to adres MAC interfejsu, z którego ruter R1 wysyła ramkę; ale to nie zmienia faktu, że adres IP źródłowy powinien być prawidłowy. W podobnych sytuacjach 192.168.1.10 jako źródłowy IP jest dobrym wyborem, ale błędnie przypisane są adresy MAC, co prowadzi do mylnych wniosków o trasowaniu. Takie typowe błędy, jak mylenie adresów IP i MAC, mogą bardzo utrudnić zrozumienie jak działa sieć i mogą powodować problemy z jej zarządzaniem oraz przesyłaniem ruchu, co w praktyce wpływa na wydajność i bezpieczeństwo sieci.

Pytanie 31

Jaki kabel pozwala na przesył danych z maksymalną prędkością 1 Gb/s?

A. Skrętka kat. 4
B. Kabel światłowodowy
C. Skrętka kat. 5e
D. Kabel współosiowy
Skrętka kat. 5e to kabel, który został zaprojektowany z myślą o zwiększonej wydajności transmisji danych, osiągając maksymalną prędkość do 1 Gb/s na odległości do 100 metrów. Jest to standard szeroko stosowany w sieciach Ethernet, zgodny z normą IEEE 802.3ab. Kabel ten charakteryzuje się lepszym ekranowaniem oraz wyższą jakością materiałów w porównaniu do starszych kategorii, co pozwala na minimalizację interferencji elektromagnetycznej i poprawia jakość sygnału. Skrętka kat. 5e znajduje zastosowanie w wielu środowiskach, od biur po małe i średnie przedsiębiorstwa, stanowiąc podstawę lokalnych sieci komputerowych (LAN). Dzięki swojej wydajności oraz stosunkowo niskim kosztom, jest idealnym rozwiązaniem dla infrastruktury sieciowej w aplikacjach wymagających szybkiej transmisji danych, takich jak przesyłanie dużych plików czy wideokonferencje. Warto również zauważyć, że skrętka kat. 5e jest kompatybilna z wcześniejszymi standardami, co ułatwia modernizację istniejących sieci.

Pytanie 32

W specyfikacji sieci Ethernet 1000Base-T maksymalna długość segmentu dla skrętki kategorii 5 wynosi

A. 500 m
B. 100 m
C. 1000 m
D. 250 m
Odpowiedź 100 m jest prawidłowa, ponieważ w standardzie Ethernet 1000Base-T, który obsługuje transmisję danych z prędkością 1 Gbps, maksymalna długość segmentu dla kabla skrętki kategorii 5 (Cat 5) wynosi właśnie 100 metrów. Ta długość obejmuje zarówno odcinek kabla, jak i wszelkie połączenia oraz złącza, co jest kluczowe dla zapewnienia stabilności i jakości sygnału. W praktyce, dla sieci lokalnych (LAN), stosuje się kable Cat 5 lub lepsze, takie jak Cat 5e czy Cat 6, aby osiągnąć wysoką wydajność przy minimalnych zakłóceniach. Warto zauważyć, że przekroczenie tej długości może prowadzić do degradacji sygnału, co z kolei wpłynie na prędkość i niezawodność połączenia. Standardy IEEE 802.3, które regulują kwestie związane z Ethernetem, podkreślają znaczenie zachowania tych limitów, aby zapewnić efektywne funkcjonowanie sieci. Dlatego też, przy projektowaniu lub rozbudowie infrastruktury sieciowej, należy przestrzegać tych wytycznych, aby uniknąć problemów z wydajnością.

Pytanie 33

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 9
B. 4
C. 5
D. 1
Wybór innej liczby punktów abonenckich niż 5 może prowadzić do licznych problemów związanych z infrastrukturą sieciową w biurze. Odpowiedzi takie jak 9, 4, czy 1 nie uwzględniają wymagań normy PN-EN 50167 oraz realnych potrzeb biura. W przypadku odpowiedzi 9, nadmiar punktów abonenckich może prowadzić do nieefektywnego wykorzystania zasobów, zwiększając koszty bez rzeczywistej wartości dodanej. W przeciwieństwie do tego, wybór 4 punktów abonenckich może być niewystarczający dla biura o powierzchni 49 m², co prowadzi do sytuacji, w której pracownicy muszą dzielić dostęp do sieci, co może generować problemy z prędkością i jakością połączeń. Z kolei odpowiedź 1 punkt abonencki jest ekstremalnie niewystarczająca, co może skutkować poważnymi ograniczeniami w pracy, gdzie wielu pracowników korzysta z zasobów sieciowych jednocześnie. Typowym błędem myślowym jest próba uproszczenia analizy punktów abonenckich do liczby stanowisk roboczych bez uwzględnienia norm oraz specyfiki pracy w danym biurze. W rzeczywistości, kluczowe jest nie tylko zapewnienie liczby punktów zgodnej z normą, ale również ich odpowiednie rozmieszczenie, aby zaspokoić potrzeby różnych użytkowników oraz sprzętu w biurze. Dlatego też, poprawne zaplanowanie infrastruktury telekomunikacyjnej jest niezbędne dla zapewnienia efektywności i komfortu pracy w biurze.

Pytanie 34

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. router.
B. driver.
C. hub.
D. switch.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 35

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Uwierzytelnianie
B. Filtrowanie adresów MAC
C. Nadanie SSID
D. Radius (Remote Authentication Dial In User Service)
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 36

Urządzenie sieciowe, które umożliwia dostęp do zasobów w sieci lokalnej innym urządzeniom wyposażonym w bezprzewodowe karty sieciowe, to

A. przełącznik
B. panel krosowy
C. punkt dostępu
D. koncentrator
Punkt dostępu, czyli access point, to mega ważny element każdej sieci bezprzewodowej. Dzięki niemu urządzenia z bezprzewodowymi kartami mogą się łączyć z siecią lokalną. W praktyce, to taki centralny hub, gdzie wszyscy klienci mogą znaleźć dostęp do różnych zasobów w sieci, jak Internet czy drukarki. Z mojego doświadczenia, punkty dostępu świetnie sprawdzają się w biurach, szkołach i miejscach publicznych, gdzie sporo osób potrzebuje dostępu do sieci naraz. Standardy jak IEEE 802.11 mówią o tym, jak te punkty powinny działać i jakie protokoły komunikacyjne wykorzystują. Żeby dobrze zamontować punkty dostępu, trzeba je odpowiednio rozmieszczać, tak by zminimalizować martwe strefy i mieć mocny sygnał, co jest istotne dla wydajności naszej sieci bezprzewodowej.

Pytanie 37

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 6 m
B. 3 m
C. 10 m
D. 5 m
Zgodnie z normą PN-EN 50174, maksymalna łączna długość kabla połączeniowego między punktem abonenckim a komputerem i kabla krosowniczego nie powinna przekraczać 10 metrów. Przekroczenie tej długości może prowadzić do pogorszenia jakości sygnału, co jest szczególnie istotne w środowiskach, gdzie wymagana jest wysoka wydajność transmisji danych, jak w biurach czy centrach danych. Na przykład, w przypadku instalacji sieciowych w biurze, stosowanie kabli o długości 10 metrów zapewnia stabilne połączenie oraz minimalizuje straty sygnału. Warto również zwrócić uwagę na zasady dotyczące zarządzania kablami, które sugerują, aby unikać zawirowań i nadmiernych zakrętów, aby nie wprowadzać dodatkowych zakłóceń. Dobre praktyki w zakresie instalacji kabli mówią, że warto również stosować wysokiej jakości przewody oraz komponenty, które są zgodne z normami, co dodatkowo wpływa na niezawodność całej infrastruktury sieciowej.

Pytanie 38

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. ruter.
B. most.
C. koncentrator.
D. przełącznik.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 39

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Opisu systemu okablowania
B. Wyników pomiarów oraz testów
C. Kosztorysu wstępnego
D. Norm i wytycznych technicznych
Dokumentacja powykonawcza lokalnej sieci komputerowej ma na celu przedstawienie rzeczywistych parametrów oraz stanu zrealizowanej instalacji, które mogą różnić się od planowanych. Kosztorys wstępny nie jest częścią tej dokumentacji, ponieważ dotyczy on fazy projektowej i szacowania kosztów, a nie rzeczywistego stanu inwestycji. W dokumentacji powykonawczej znajdują się wyniki pomiarów i testów, które potwierdzają zgodność z normami oraz wymaganiami technicznymi. Opis okablowania również jest ważnym elementem, gdyż dostarcza szczegółowych informacji o użytych komponentach i ich rozmieszczeniu. Normy i zalecenia techniczne są istotne, aby zapewnić, że instalacja została wykonana zgodnie z obowiązującymi standardami, co gwarantuje jej efektywność i bezpieczeństwo. Przykładem zastosowania dokumentacji powykonawczej może być przygotowanie raportu dla klienta, wskazującego na zgodność instalacji z projektem, co jest istotne przy odbiorze technicznym.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.