Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 08:24
  • Data zakończenia: 18 grudnia 2025 08:46

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych programów jest przeznaczony do tworzenia kodów NC dla obrabiarek numerycznych?

A. hwentor
B. IntelliCAD
C. Edgecam
D. Solid Edge
Edgecam to naprawdę fajne oprogramowanie CAD/CAM, które często wykorzystuje się w przemyśle do tworzenia kodów NC dla maszyn CNC. Dzięki temu modułowi CAM, projektanci i inżynierowie mogą precyzyjnie zaplanować ścieżki narzędziowe. To jest mega ważne, gdyż te ścieżki pozwalają na automatyczne kontrolowanie maszyn. Program obsługuje różne procesy, jak frezowanie czy toczenie, co czyni go bardzo uniwersalnym w obróbce metali. Z tego co wiem, Edgecam ma dość zaawansowane algorytmy, które pomagają w skróceniu czasu obróbki i zmniejszeniu zużycia narzędzi. Przykład? W branży motoryzacyjnej świetnie się sprawdza do projektowania skomplikowanych części, gdzie precyzja i efektywność są kluczowe. A do tego, z tego co pamiętam, Edgecam bez problemu integruje się z ERP i innymi narzędziami inżynieryjnymi, co daje pełną kontrolę nad produkcją. To jest naprawdę zgodne z najlepszymi praktykami w inżynierii produkcji.

Pytanie 2

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Minimum raz do roku
B. Co trzy lata
C. Raz na pięć lat
D. Co dwa lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 3

W jakim silniku uzwojenie stojana jest połączone w sposób równoległy z uzwojeniem wirnika?

A. Asynchronicznym
B. Synchronicznym
C. Obcowzbudnym
D. Bocznikowym
Silnik bocznikowy to rodzaj silnika prądu stałego, w którym uzwojenie stojana jest połączone równolegle z uzwojeniem wirnika. To połączenie umożliwia niezależne sterowanie prądem w uzwojeniu wirnika i stojana, co w praktyce pozwala na łatwe regulowanie prędkości obrotowej oraz momentu obrotowego. W przypadku silników bocznikowych, zmiana wartości prądu w uzwojeniu stojana prowadzi do zmiany prądu w uzwojeniu wirnika, a tym samym do zmiany prędkości obrotowej silnika. Dzięki temu, silniki te znajdują zastosowanie w różnych aplikacjach wymagających precyzyjnego sterowania, takich jak dźwigi, wciągarki czy maszyny CNC. W kontekście standardów branżowych, silniki bocznikowe są często wykorzystywane w instalacjach wymagających dużej elastyczności w regulacji pracy, co zostało potwierdzone w dokumentacji norm IEC dotyczących silników elektrycznych. Dodatkowo, ich konstrukcja pozwala na łatwą konserwację i naprawy, co czyni je popularnym wyborem w przemyśle.

Pytanie 4

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Erase Memory
B. Upload
C. Write
D. Download
W kontekście programowania sterowników PLC, wybór operacji, które nie są związane z przesyłaniem programu z komputera do PLC, może prowadzić do poważnych nieporozumień. Opcja 'Upload' oznacza pobranie programu z PLC do komputera, co jest odwrotnością operacji, która jest wymagana w tym przypadku. Operatorzy często mylą te dwa terminy, co może skutkować utratą danych oraz niezamierzonymi zmianami w programie sterującym. Z kolei wybór 'Write' może być mylący, ponieważ nie precyzuje, że chodzi o przesyłanie kodu do PLC; w praktyce 'Write' może odnosić się do różnych typów operacji zapisu, zarówno w kontekście pamięci, jak i konfigurowania parametrów. Co więcej, operacja 'Erase Memory' to całkowite usunięcie danych z pamięci sterownika PLC i jest zupełnie nieodpowiednia w tym kontekście, ponieważ nie tylko nie przesyła programów, ale może prowadzić do poważnych konsekwencji, takich jak utrata krytycznych danych operacyjnych. Typowym błędem w podejściu do tego zagadnienia jest zrozumienie, że wszystkie te operacje są związane z przesyłaniem danych, podczas gdy każde z nich ma swoje specyficzne zastosowanie i konsekwencje. Zrozumienie różnicy między tymi operacjami jest kluczowe dla skutecznego programowania i zarządzania systemami automatyzacji.

Pytanie 5

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. RET FUN_1
B. LD FUN_1
C. JMP FUN_1
D. CAL FUN_1
Operator CAL jest kluczowym elementem w języku IL (Instruction List) służącym do wywoływania bloków funkcyjnych w programach sterowników PLC. Użycie operatora CAL dla bloku funkcyjnego FUN_1 oznacza, że program sterujący aktywuje kod zapisany w tym bloku, co jest niezbędne do realizacji określonych zadań w systemie automatyki. W praktyce operator CAL umożliwia modularne podejście do programowania, co jest zgodne z najlepszymi praktykami w inżynierii oprogramowania. Dzięki takiej modularności, programy stają się bardziej czytelne i łatwiejsze do utrzymania. Warto zauważyć, że odpowiednie użycie bloków funkcyjnych i ich wywoływanie za pomocą operatorów jest zgodne z normami IEC 61131-3, które regulują programowanie sterowników PLC. Stosując operator CAL, inżynierowie mogą efektywnie dzielić swoje programy na mniejsze, łatwiejsze do zarządzania komponenty, co z kolei sprzyja lepszej organizacji i wydajności systemu.

Pytanie 6

Jaki typ czujnika powinien być wykorzystany do nieprzerwanego pomiaru poziomu cieczy w zbiorniku?

A. Kontaktronowy
B. Optyczny
C. Ultradźwiękowy
D. Indukcyjny
Ultradźwiękowy czujnik poziomu cieczy to naprawdę dobry wybór do monitorowania poziomu w zbiornikach. Działa to na zasadzie emisji fal dźwiękowych, które odbijają się od powierzchni cieczy. Dzięki temu można na bieżąco określić, jak wysoki jest poziom cieczy. No i to daje bardzo dokładne i powtarzalne wyniki. Takie czujniki są stosowane w różnych branżach – od przemysłu chemicznego po oczyszczalnie ścieków, gdzie ważne jest, żeby wiedzieć, co się dzieje z poziomem cieczy na żywo. Fajnie, że są odporne na zmiany temperatury i ciśnienia, co sprawia, że są niezawodne w różnych warunkach. Użycie ultradźwiękowych czujników to coś, co każdy powinien brać pod uwagę, bo precyzyjne pomiary są przecież kluczowe dla efektywności i bezpieczeństwa w przemyśle.

Pytanie 7

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. CAD
B. CAM
C. SCADA
D. CNC
Odpowiedzi CAM, CAD oraz CNC odnoszą się do różnych aspektów technologii inżynieryjnych, które choć związane z automatyzacją, nie mają zastosowania w kontekście nadzoru procesów, jak ma to miejsce w przypadku SCADA. CAM (Computer-Aided Manufacturing) skupia się na wspomaganiu procesów produkcyjnych, wykorzystując programy komputerowe do planowania, monitorowania i kontrolowania operacji w fabryce. Głównym celem CAM jest optymalizacja produkcji, co nie obejmuje jednak zbierania i archiwizacji danych w czasie rzeczywistym. CAD (Computer-Aided Design) to narzędzie służące do projektowania obiektów w formie cyfrowej, umożliwiające tworzenie precyzyjnych modeli i rysunków technicznych. Choć CAD jest kluczowym narzędziem w inżynierii, nie pełni funkcji nadzorczej nad procesami przemysłowymi. Z kolei CNC (Computer Numerical Control) to technika sterowania maszynami, która pozwala na automatyczne wykonywanie skomplikowanych operacji na materiałach poprzez precyzyjne programowanie. Typowym błędem jest mylenie tych technologii z systemami nadzoru procesów, co prowadzi do błędnych wniosków na temat ich funkcji. Zrozumienie różnic między tymi terminami jest kluczowe dla realizacji efektywnych systemów automatyzacji w przemyśle.

Pytanie 8

Jaką czynność należy wykonać jako pierwszą przed rozpoczęciem instalacji oprogramowania dedykowanego do programowania sterowników PLC?

A. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
B. Usunąć starszą wersję oprogramowania, które ma być zainstalowane
C. Zweryfikować minimalne wymagania, które powinien spełniać komputer, na którym oprogramowanie będzie instalowane
D. Zaktualizować system operacyjny komputera, na którym będzie przeprowadzana instalacja oprogramowania
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia, że wszystkie funkcje oprogramowania będą działać poprawnie. Wymagania te obejmują specyfikacje sprzętowe, takie jak procesor, pamięć RAM, przestrzeń dyskowa oraz inne zasoby systemowe. Znajomość tych wymagań pozwala na uniknięcie problemów, które mogą wystąpić w przypadku zainstalowania oprogramowania na komputerze, który nie spełnia podstawowych norm. Na przykład, jeśli oprogramowanie wymaga co najmniej 8 GB RAM, a komputer ma tylko 4 GB, użytkownik może napotkać opóźnienia, awarie czy problemy z wydajnością. Zgodnie z dobrymi praktykami branżowymi, przed instalacją oprogramowania należy również zaktualizować wszystkie sterowniki oraz zabezpieczyć dane, co może pomóc w płynnej instalacji. Ponadto, w wielu przypadkach dostawcy oprogramowania oferują dokumentację zawierającą szczegółowe wymagania systemowe, co ułatwia wstępne przygotowanie komputera do instalacji.

Pytanie 9

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. Na tabliczce identyfikacyjnej
B. Na dokumencie gwarancyjnym
C. W instrukcji obsługi
D. W kartach danych handlowych
Wytyczne dotyczące konserwacji urządzeń mechatronicznych są niezwykle istotne dla ich prawidłowego funkcjonowania. Karty informacji handlowej, tabliczki znamionowe oraz karty gwarancyjne, mimo że zawierają pewne użyteczne informacje, nie są właściwymi źródłami dotyczących zakresu i częstotliwości prac konserwacyjnych. Karty informacji handlowej zazwyczaj skupiają się na danych technicznych, takich jak parametry wydajności czy specyfikacje. Nie dostarczają one jednak szczegółowych instrukcji dotyczących konserwacji, co może prowadzić do pomijania istotnych aspektów utrzymania urządzenia. Tabliczki znamionowe mają na celu identyfikację urządzenia, podając jego model oraz parametry techniczne, ale również nie zawierają informacji na temat wymagań konserwacyjnych. Karty gwarancyjne natomiast koncentrują się przede wszystkim na warunkach gwarancji i odpowiedzialności producenta w przypadku awarii, co również nie obejmuje szczegółowych wskazówek dotyczących konserwacji. Użytkownicy często popełniają błąd, sądząc, że jakiekolwiek dokumenty związane z urządzeniem mogą być wystarczające do określenia zasad konserwacji. W rzeczywistości, ignorowanie właściwych źródeł informacji, takich jak instrukcje obsługi, może prowadzić do niewłaściwej eksploatacji i zwiększonego ryzyka awarii, co w dłuższej perspektywie zwiększa koszty eksploatacji oraz może powodować przestoje w produkcji. Zrozumienie, gdzie szukać odpowiednich informacji, jest kluczowe dla efektywnego zarządzania urządzeniami mechatronicznymi.

Pytanie 10

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. DIV
B. ADD
C. MOVE
D. SUB
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 11

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Transformator
B. Przetwornik A/C
C. Silnik elektryczny
D. Zawór proporcjonalny
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 12

W jaki sposób powinno się zdefiniować dane w programach sterowników PLC, które mają postać sekwencji znaków lub cyfr, przy czym cyfry traktowane są jedynie jako znaki (bez przypisanej wartości)?

A. BYTE
B. STRING
C. USINT
D. WORD
Odpowiedź STRING jest poprawna, ponieważ typ ten jest używany do reprezentowania ciągów znaków, które mogą składać się zarówno z liter, jak i cyfr. W kontekście programowania w środowisku PLC (Programmable Logic Controller), stosowanie typu STRING jest kluczowe, gdyż umożliwia przechowywanie danych jako tekst, co jest istotne w wielu aplikacjach, takich jak generowanie komunikatów, etykietowanie danych czy obsługa interfejsów użytkownika. W standardzie IEC 61131-3, który definiuje normy dotyczące programowania sterowników PLC, STRING jest jednym z podstawowych typów danych, co czyni go uniwersalnym rozwiązaniem w automatyzacji oraz programowaniu maszyn. Przykłady zastosowania obejmują przechowywanie nazw produktów, adresów, a także komunikatów błędów, które wymagają elastyczności w formacie danych. W dodatku, stringi mogą być łatwo manipulowane, co pozwala na ich formatowanie oraz analizę, co przyczynia się do większej wydajności procesów produkcyjnych.

Pytanie 13

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. Proporcjonalny
B. PI
C. Dwustawny
D. PID
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 14

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
B. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
C. linie gięcia przedmiotów ukazanych w rozwinięciu
D. powierzchnie elementów, które są poddawane obróbce powierzchniowej
Wybór odpowiedzi, która wskazuje, że linie dwupunktowe cienkie oznaczają widoczne krawędzie i wyraźne zarysy przedmiotów w widokach i przekrojach, jest błędny, ponieważ te elementy są zazwyczaj reprezentowane przez linie ciągłe grube. Zrozumienie konwencji rysunków technicznych jest kluczowe, ponieważ każda linia pełni określoną funkcję, a ich niewłaściwe stosowanie może prowadzić do poważnych błędów w interpretacji dokumentacji. Co więcej, powierzchnie elementów podlegających obróbce powierzchniowej, które w rysunkach technicznych oznaczane są najczęściej liniami przerywanymi, również nie są reprezentowane przez linie dwupunktowe cienkie. W ten sposób można zauważyć, że błędne rozpoznanie tych elementów może prowadzić do nieporozumień w procesie produkcyjnym. Ponadto, przejścia jednej powierzchni w drugą w miejscach łagodnie zaokrąglonych są zazwyczaj oznaczane innymi rodzajami linii, co również można pomylić, jeśli nie zna się podstawowych zasad rysunku technicznego. W ten sposób, niewłaściwa interpretacja linii i ich znaczenia na rysunkach może prowadzić do poważnych konsekwencji, jak błędne wykonanie elementów, co naraża na straty finansowe oraz czasowe. Dlatego niezwykle istotne jest przyswojenie wiedzy na temat oznaczeń stosowanych w rysunkach technicznych oraz ich znaczenia w praktyce inżynierskiej.

Pytanie 15

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Bezkontaktową termowizyjną
B. Bezkontaktową pirometryczną
C. Kontaktową termoelektryczną
D. Kontaktową rezystancyjną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 16

W jakim trybie operacyjnym sterownik PLC wykonuje wszystkie etapy cyklu pracy?

A. STOP
B. TERM
C. START
D. RUN
Tryb pracy RUN w sterownikach PLC jest kluczowy, ponieważ to właśnie w tym trybie realizowane są wszystkie zaprogramowane fazy cyklu pracy urządzenia. W trybie RUN sterownik interpretuje i wykonuje instrukcje zawarte w programie użytkownika, co oznacza, że w tym czasie mogą być realizowane operacje wejść i wyjść, obliczenia, a także podejmowanie decyzji na podstawie zdefiniowanych warunków. Na przykład, w systemach automatyki przemysłowej, w których PLC steruje procesem produkcyjnym, tryb RUN jest niezbędny do ciągłego monitorowania i kontrolowania parametrów, takich jak temperatura, ciśnienie czy poziom substancji. W praktyce, aby zapewnić niezawodność działania, stosuje się procedury uruchamiania i stopniowego przechodzenia do trybu RUN, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w projektowaniu systemów automatyki. Warto również zwrócić uwagę, że w różnych standardach automatyki, takich jak IEC 61131-3, podkreśla się znaczenie trybu RUN jako głównego trybu operacyjnego, w którym następuje realizacja logiki sterowania.

Pytanie 17

Aby przedstawić na schemacie rezonator kwarcowy należy użyć symbolu graficznego o numerze

Ilustracja do pytania
A. 1.
B. 3.
C. 4.
D. 2.
Symbol rezonatora kwarcowego, który wybrałeś, czyli ten z numerem 1, jest naprawdę popularny w schematach elektronicznych. Dzięki temu inżynierowie łatwiej rozumieją, co dany element robi w układzie. Te dwa równoległe pasy z liniami po boku to coś, co widzi się często, więc nie ma większych szans na błąd w odczycie. Rezonatory kwarcowe mają wiele zastosowań, jak generatory sygnałów czy układy zegarowe. Ich precyzyjność jest bardzo ważna, bo zapewniają stabilne częstotliwości w telekomunikacji, audio i komputerach. Używanie właściwego symbolu nie tylko pomaga zachować porządek, ale i sprawia, że dokumentacja techniczna staje się bardziej czytelna, a to jest kluczowe w projektowaniu elektroniki.

Pytanie 18

Jakie urządzenie pomiarowe powinno być użyte do określenia lepkości oleju hydraulicznego w systemie mechatronicznym?

A. Wiskozymetr
B. Pirometr
C. Wakuometr
D. Higrometr
Wybór odpowiedzi innej niż wiskozymetr może wynikać z pewnych nieporozumień dotyczących zakresu zastosowania różnych przyrządów pomiarowych. Przykładowo, wakuometr jest narzędziem przeznaczonym do pomiaru ciśnienia w układach, szczególnie poniżej atmosferycznego, i nie ma zastosowania w kontekście lepkości cieczy. Jego funkcja jest całkowicie odmienna, ponieważ nie dostarcza informacji o właściwościach cieczy, jakimi są lepkość czy gęstość. Z kolei higrometr, który mierzy wilgotność, również nie ma związku z lepkością, ponieważ zajmuje się zupełnie innym parametrem fizycznym. Pirometr, z drugiej strony, jest narzędziem do pomiaru temperatury, co także jest kluczowe w inżynierii, ale nie w kontekście pomiaru lepkości. Wybór niewłaściwego przyrządu do pomiaru lepkości może prowadzić do błędnych analiz i decyzji, co podkreśla znaczenie znajomości charakterystyki różnych przyrządów pomiarowych. W inżynierii ważne jest, aby umieć właściwie dobierać narzędzia w zależności od wymagań pomiarowych i specyfiki badanego materiału. Dlatego znajomość zasad działania i zastosowań wiskozymetrów jest niezbędna dla każdego inżyniera zajmującego się układami hydraulicznymi.

Pytanie 19

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. N
B. Q
C. G
D. F
Wybór litery 'F' jako oznaczenia szybkości posuwu w programowaniu obrabiarek CNC jest poprawny, ponieważ jest to standardowo stosowane oznaczenie w wielu językach programowania tych urządzeń. Szybkość posuwu, czyli prędkość, z jaką narzędzie porusza się w obrabianym materiale, ma kluczowe znaczenie dla jakości oraz efektywności obróbki. Zbyt niska prędkość posuwu może prowadzić do nieefektywnej obróbki, a zbyt wysoka może powodować przegrzewanie materiału oraz zużycie narzędzi. Przykładowo, w kodzie G, zapis 'F3' wskazuje, że narzędzie porusza się z prędkością 3 mm/min, co pozwala na precyzyjne stworzenie detalu zgodnie z wymogami technologicznymi. Warto zaznaczyć, że dobór właściwej szybkości posuwu zależy od rodzaju materiału, geometrii narzędzia oraz parametrów obrabiarki, co podkreśla znaczenie znajomości tych aspektów dla operatora CNC. Używanie litery 'F' do oznaczania tej wartości jest powszechne w branży i należy do najlepszych praktyk. Właściwe ustawienie szybkości posuwu ma również wpływ na żywotność narzędzi oraz jakość powierzchni obrabianego detalu, dlatego tak istotne jest, aby operatorzy CNC byli dobrze zaznajomieni z tymi parametrami.

Pytanie 20

Jakie są cele stosowania systemów do monitorowania parametrów pracy urządzeń mechatronicznych?

A. Skrócenia czasu naprawy urządzenia
B. Poprawy wizerunku firmy
C. Obniżenia kosztów zatrudnienia
D. Zwiększenia częstotliwości przeglądów urządzenia
Stosowanie systemów monitorowania parametrów pracy urządzeń mechatronicznych ma kluczowe znaczenie dla efektywności operacyjnej i utrzymania ruchu. Główne zalety tych systemów polegają na możliwości szybkiej identyfikacji problemów, co bezpośrednio skraca czas naprawy urządzenia. Monitorowanie w czasie rzeczywistym pozwala na wykrywanie anomalii, które mogą wskazywać na potencjalne awarie. Przykładowo, w przypadku robotów przemysłowych, systemy te mogą analizować parametry takie jak temperatura, napięcie czy drgania, co umożliwia zdiagnozowanie problemów zanim dojdzie do poważnej awarii. Dzięki takiemu podejściu można również zminimalizować przestoje produkcyjne oraz zredukować koszty związane z naprawami. W standardach branżowych, takich jak ISO 9001, kładzie się duży nacisk na ciągłe doskonalenie procesów, a monitorowanie parametrów pracy jest jednym z kluczowych elementów wspierających te działania. W praktyce, zastosowanie systemów monitorowania może prowadzić do znacznych oszczędności i poprawy jakości produktów poprzez systematyczne eliminowanie źródeł awarii.

Pytanie 21

Jaką linią powinno się przedstawiać niewidoczne kontury oraz krawędzie obiektów?

A. Grubą ciągłą
B. Cienką ciągłą
C. Grubą przerywaną
D. Cienką przerywaną
Wybór grubych linii, zarówno przerywanych, jak i ciągłych, raczej nie spełnia zasad rysunku technicznego. Gruba linia ciągła jest do oznaczania widocznych krawędzi i konturów obiektów, więc nie powinna być używana do niewidocznych elementów. Jak ktoś pomiesza te dwa typy, to może naprawdę narobić bałaganu w swoich rysunkach. A gruba linia przerywana, choć może wyglądać na coś innego, wcale nie nadaje się do oznaczania niewidocznych zarysów. To wprowadza zamieszanie, bo grubość może sugerować, że te elementy są ważniejsze, a to jest mylące. Cienka linia ciągła, tak jak gruba, też pokazuje widoczne krawędzie, więc to nie jest dobry wybór. W rysunku technicznym kluczowe jest, żeby trzymać się ustalonych zasad, które pomagają w zrozumieniu dokumentacji. Ignorowanie tego prowadzi do błędów, na przykład dezinformacji czy mylenia wizji projektowanej konstrukcji. Dlatego tak istotne jest, żeby korzystać z uznanych standardów rysunkowych, bo to fundament inżynierii i architektury. Dzięki temu komunikacja między wszystkimi jest jasna i precyzyjna.

Pytanie 22

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Całkujący
B. Dwustawny
C. Proporcjonalny
D. Różniczkujący
Wybór odpowiedzi inne niż "dwustawny" wskazuje na pewne nieporozumienia dotyczące sposobu działania różnych typów regulatorów. Regulator całkujący jest stosowany w systemach, gdzie istotne jest uwzględnienie długu regulacyjnego, co czyni go nieodpowiednim w przypadku nieciągłej regulacji temperatury. Jego działanie polega na ciągłym dostosowywaniu sygnału wyjściowego na podstawie skumulowanej różnicy między wartością zadaną a rzeczywistą, co nie jest skuteczne przy prostym włączaniu i wyłączaniu. Regulator różniczkujący z kolei reaguje na szybkość zmian, co również nie jest istotne w kontekście systemu, który wymaga jedynie dwóch stanów. Z kolei regulator proporcjonalny, który dostosowuje sygnał wyjściowy w oparciu o bieżące odchylenie wartości, także nie pasuje do opisanej sytuacji, ponieważ nie zapewnia jednoznacznej kontroli temperatury w trybie on/off. Często przyczyną błędnych odpowiedzi jest mylenie charakterystyk różnych typów regulatorów z ich praktycznymi zastosowaniami w systemach automatyki. Kluczowe jest zrozumienie, że regulator dwustawny najlepiej odpowiada wymaganiom nieciągłego sterowania, co odróżnia go od pozostałych typów, które są bardziej odpowiednie w kontekście regulacji ciągłej.

Pytanie 23

W jaki sposób należy ująć w spisie elementów zamieszczonym na schemacie montażowym mechanizmu informację o śrubie z gwintem metrycznym drobnozwojowym o średnicy 10 mm?

A. M10
B. M10x1
C. S20
D. TR10
Odpowiedź M10x1 jest prawidłowa, ponieważ spełnia standardy oznaczania śrub z gwintem metrycznym drobnozwojowym, które są powszechnie stosowane w przemyśle. Oznaczenie 'M10' wskazuje na średnicę zewnętrzną śruby wynoszącą 10 mm, co jest kluczowym parametrem dla zapewnienia odpowiedniego dopasowania w połączeniach mechanicznych. Dodatkowo, liczba '1' w oznaczeniu oznacza liczbę zwojów na milimetr, co jest istotną informacją dla oceny siły połączenia i możliwości użycia w konkretnych aplikacjach. Gwinty drobnozwojowe są szczególnie użyteczne w zastosowaniach wymagających większej precyzji, takich jak w precyzyjnych mechanizmach czy w przemyśle lotniczym i motoryzacyjnym. Warto również pamiętać, że standardy ISO 261 oraz ISO 965 definiują szczegółowe zasady dotyczące oznaczania gwintów metrycznych, co podkreśla znaczenie poprawnego zapisu w dokumentacji technicznej.

Pytanie 24

Jakie kroki należy podjąć w celu stworzenia układu kombinacyjnego asynchronicznego?

A. Przygotować diagram czasowy, na jego podstawie sformułować równanie stanu oraz narysować schemat z użyciem przerzutników JK
B. Przygotować graf sekwencji, stworzyć program lub wykonać schemat układu z użyciem przerzutników
C. Opracować algorytm przy pomocy metody Grafcet, a następnie na jego podstawie stworzyć program dla sterownika PLC
D. Zbudować tabelę Karnaugha, zredukować funkcję, sformułować równanie i w oparciu o nie wykonać schemat logiczny układu
Wybór alternatywnych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnicy między układami kombinacyjnymi a sekwencyjnymi. W przypadku projektowania układów kombinacyjnych asynchronicznych, kluczowe jest zrozumienie, że te układy nie zawierają pamięci ani stanów, co odróżnia je od układów sekwencyjnych, które wykorzystują przerzutniki i mają pamięć o stanie. Odpowiedzi dotyczące sporządzania grafu sekwencji oraz diagramu czasowego sugerują mylną interpretację, gdyż te metody są bardziej odpowiednie dla układów sekwencyjnych, gdzie istotne jest śledzenie stanów i ich przejść. W przypadku układów asynchronicznych, skupiamy się na bezpośrednich relacjach między wejściem a wyjściem, co jest zatem niezbędne do właściwego funkcjonowania układu bez opóźnień związanych z pamięcią. Koncepcja użycia algorytmu Grafcet w kontekście układów kombinacyjnych jest także nieadekwatna, ponieważ Grafcet jest narzędziem stosowanym do modelowania systemów sekwencyjnych, a nie kombinacyjnych. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz ich zastosowania w praktycznych rozwiązaniach inżynieryjnych.

Pytanie 25

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
B. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
C. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
D. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
Nieprawidłowe odpowiedzi na to pytanie są wynikiem błędnego zrozumienia zasad dotyczących pomiaru ciągłości obwodu ochronnego. W przypadku urządzeń wykonanych w I klasie ochronności, kluczowym elementem zabezpieczeń jest styk ochronny, który ma bezpośredni związek z metalowymi elementami obudowy. Pomiar między stykiem fazowym a metalowymi elementami obudowy jest niewłaściwy, gdyż nie zapewnia sprawdzenia ciągłości obwodu ochronnego, a jedynie może wykazać obecność napięcia w obwodzie zasilającym, co niewiele mówi o bezpieczeństwie użytkowania urządzenia. Ponadto, wykonywanie pomiaru między stykiem ochronnym a stykiem neutralnym wtyczki jest błędne, ponieważ styk neutralny nie pełni roli bezpieczeństwa dla ochrony przed porażeniem. Możliwe jest także, że w przypadku pomiaru między stykiem ochronnym a stykiem fazowym, można uzyskać mylące wyniki, które nie odzwierciedlają stanu rzeczywistego obwodu ochronnego. Istotne jest, aby w takich sytuacjach opierać się na uznanych standardach oraz dobrą praktykę, która nakazuje wykonywanie pomiarów w odpowiednich punktach, aby zapewnić skuteczność ochrony. Warto zwrócić na to uwagę, aby uniknąć niebezpiecznych sytuacji związanych z niewłaściwym użytkowaniem urządzeń elektrycznych.

Pytanie 26

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. ceramiczny
B. powietrzny
C. foliowy
D. elektrolityczny
Kondensator elektrolityczny to komponent, który wyróżnia się wysoką pojemnością, co czyni go idealnym rozwiązaniem w układach wymagających wartości rzędu kilku tysięcy µF. W odróżnieniu od innych typów kondensatorów, takich jak kondensatory ceramiczne czy foliowe, kondensatory elektrolityczne są zdolne do przechowywania dużych ładunków elektrycznych w stosunkowo niewielkiej objętości. Dzięki temu są szeroko stosowane w zasilaczach impulsowych, filtrach dławikowych oraz w aplikacjach związanych z stabilizacją napięcia. Warto również zwrócić uwagę na ich niską wartość oporu szeregowego, co sprawia, że minimalizują straty energii w układzie, co jest kluczowe przy dużych prądach. Zgodność z normami, takimi jak IEC 60384, gwarantuje, że kondensatory elektrolityczne spełniają odpowiednie wymagania jakościowe i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 27

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Wyłączania
B. Niewzbudzonym
C. Przełączania
D. Wzbudzonym
Przedstawianie styków przekaźników i styczników w stanach innych niż niewzbudzone na schematach ideowych może prowadzić do poważnych nieporozumień i błędów podczas projektowania i eksploatacji układów sterowania. Odpowiedzi wskazujące na stany wzbudzone, wyłączania lub przełączania nie tylko wprowadzają zamieszanie, ale także nie odzwierciedlają rzeczywistego działania tych elementów w normalnych warunkach. Ustalając stan wzbudzony jako główny, można stworzyć fałszywe wrażenie, że elementy są zawsze aktywne, co nie jest zgodne z rzeczywistością. Z kolei przedstawienie styków w stanie wyłączania może sugerować, że system działa w trybie awaryjnym, co również jest mylące. Tego typu błędne koncepcje mogą prowadzić do tego, że technicy, bazując na źle opracowanych schematach, podejmą niewłaściwe decyzje dotyczące serwisowania czy konserwacji urządzeń. Na przykład, jeśli schemat przedstawia styki w stanie wzbudzonym, technik może nie być świadomy, że ich wyłączenie jest kluczowe dla bezpieczeństwa operacji. Zrozumienie, że styki powinny być w stanie niewzbudzonym w dokumentacji schematycznej, jest fundamentalne dla zapewnienia prawidłowego funkcjonowania systemów automatyki oraz ich bezpieczeństwa. Dbałość o poprawność schematów jest zgodna z najlepszymi praktykami w inżynierii, które podkreślają znaczenie jednoznaczności i przejrzystości w dokumentacji technicznej.

Pytanie 28

Który zawór powinien być uwzględniony w systemie sterowania pneumatycznego, aby przyspieszyć prędkość wsuwu tłoczyska siłownika?

A. Z podwójnym sygnałem
B. Szybkiego spustu
C. Obiegu przełączającego
D. Zwrotnego, sterowanego
Zawór szybkiego spustu to naprawdę ważny element w układach pneumatycznych. Dzięki niemu można błyskawicznie obniżyć ciśnienie w siłowniku, co sprawia, że tłoczysko działa szybciej. To ma ogromne znaczenie w sytuacjach, gdzie wymagana jest szybkość działania. W praktyce, kiedy używa się zaworu szybkiego spustu, poprawia to wydajność procesów produkcyjnych, bo skraca czas cyklu. Na przykład w automatyzacji montażu, gdzie szybkość to podstawa, ten zawór pozwala lepiej reagować na zmieniające się warunki. Standardy branżowe, takie jak ISO 4414, mówią o tym, jak ważny jest dobór odpowiednich komponentów w układach pneumatycznych. Używając zaworu szybkiego spustu, możemy poprawić zarówno wydajność, jak i niezawodność całego systemu. I jeszcze jedno – to rozwiązanie zmniejsza ryzyko osadzania oleju w układzie, co jest istotne dla konserwacji i długości życia komponentów.

Pytanie 29

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Maksymalnym ciśnieniu, które występuje w trakcie pracy
B. Ciśnieniu testowemu 6 bar
C. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
D. Większym o 10% od ciśnienia roboczego
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 30

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Czasowy TOF (o opóźnionym wyłączaniu)
B. Dzielnik częstotliwości
C. Szybki licznika (HSC)
D. Czasowy TON (o opóźnionym załączaniu)
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 31

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
B. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
C. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
D. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
Błędne odpowiedzi często wynikają z niedostatecznego zrozumienia hierarchii działania elementów w układzie hydraulicznym. W wielu przypadkach mylone są funkcje zaworów sterujących i reagujących na sygnały obiektowe, co prowadzi do chaosu w logice działania systemu. Zawory reagujące na sygnały obiektowe są kluczowe, ponieważ to one odbierają informacje o stanie systemu, a ich umiejscowienie na początku procesu jest niezbędne do prawidłowego przetwarzania sygnałów. Jeśli ich kolejność zostanie zmieniona, może to prowadzić do niewłaściwego działania całego układu, co z kolei skutkuje zwiększonym ryzykiem awarii. Ponadto, zrozumienie kolejności pracy zaworów roboczych i wykonawczych jest istotne, ponieważ każdy element musi być aktywowany w odpowiednim momencie, aby zapewnić płynność pracy maszyny. W praktyce, błędna sekwencja może skutkować nieefektywnym wykorzystaniem energii hydraulicznej, co przekłada się na straty finansowe i czasowe w procesie produkcyjnym. Warto również zwrócić uwagę na standardy branżowe, które precyzują, jak powinny być projektowane i instalowane układy hydrauliczne, aby zapewnić ich optymalną wydajność i bezpieczeństwo. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji w późniejszym etapie eksploatacji systemu.

Pytanie 32

Która z poniższych zasad dotyczących rysowania schematów elektrycznych jest fałszywa?

A. Symbole łączników rysuje się w momencie ich działania
B. Cewka oraz styki przekaźnika posiadają identyczne oznaczenia
C. Schematy tworzy się w stanie podstawowym (bezprądowym)
D. Symbole zabezpieczeń przedstawia się w stanie spoczynku (podstawowym)
Odpowiedź jest poprawna, ponieważ zasady rysowania schematów elektrycznych określają, że symbole łączników, takich jak wyłączniki czy przyciski, powinny być przedstawiane w stanie spoczynku, a nie w stanie pracy. Rysowanie tych symboli w stanie pracy może prowadzić do nieporozumień, gdyż nie oddaje rzeczywistego stanu, w jakim urządzenia będą funkcjonować w normalnych warunkach. W praktyce, na przykład podczas tworzenia schematu dla instalacji elektrycznej, istotne jest, aby zapewnić jasność i przejrzystość, co ułatwia późniejsze analizowanie i wykonywanie prac serwisowych. Zgodnie z normami, takimi jak PN-EN 60617, symbole powinny być przedstawione zgodnie z ustalonymi standardami, co zwiększa bezpieczeństwo i efektywność w komunikacji technicznej. Rysowanie symboli w stanie spoczynku pozwala na jednoznaczne zrozumienie, jakie urządzenia są włączone lub wyłączone, co jest istotne dla prawidłowego funkcjonowania całego systemu elektrycznego.

Pytanie 33

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z dziewięciu par
B. Z trzech par
C. Z sześciu par
D. Z jednej pary
Zrozumienie konstrukcji wirnika silnika indukcyjnego trójfazowego jest kluczowe dla prawidłowego projektowania i zastosowania tych urządzeń. Odpowiedzi sugerujące, że wirnik składa się z trzech, sześciu lub dziewięciu par przewodów opierają się na błędnym założeniu, że więcej par przewodów przekłada się na lepsze właściwości silnika. W rzeczywistości, wirniki silników indukcyjnych trójfazowych najczęściej wykorzystują jedną parę przewodów w konstrukcji klatkowej. To podejście umożliwia stabilne wytwarzanie pola magnetycznego, co jest kluczowe dla działania silnika. W przypadku większej liczby par, takie jak sześć czy dziewięć, mogłoby to prowadzić do nieefektywności w generowaniu momentu obrotowego oraz zwiększenia strat energii. Typowym błędem myślowym jest mylenie liczby faz z liczbą par przewodów w wirniku. Silnik trójfazowy posiada trzy fazy zasilania, natomiast wirnik jako komponent ma jedną parę przewodów, co skutkuje powstawaniem obrotowego pola magnetycznego. Zgodnie ze standardami branżowymi, stosowanie wirników klatkowych z jedną parą przewodów zapewnia wysoką efektywność energetyczną oraz prostotę konstrukcji, co jest istotne w zastosowaniach przemysłowych. W ten sposób, opierając się na dobrych praktykach projektowych oraz normach, można zoptymalizować parametry pracy silnika, dostosowując go do konkretnych wymagań aplikacji.

Pytanie 34

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 11 bitowy
B. 12 bitowy
C. 16 bitowy
D. 10 bitowy
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 35

Aby ocenić jakość aktualnych połączeń elektrycznych w systemie mechatronicznym, należy najpierw przeprowadzić pomiar

A. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
B. mocy pobieranej przez urządzenie
C. spadku napięcia na komponentach
D. ciągłości połączeń
Pomiar ciągłości połączeń jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniu mechatronicznym. Gwarantuje on, że prąd może swobodnie przepływać przez wszystkie połączenia, co jest niezbędne do prawidłowego działania urządzenia. W praktyce, pomiar ten wykonuje się za pomocą multimetru, który wskazuje, czy obwód jest zamknięty, co bezpośrednio przekłada się na niezawodność systemów elektrycznych. W przypadku wykrycia przerwy, można zidentyfikować i naprawić problem, co jest zgodne z dobrą praktyką inżynieryjną. W branży mechatronicznej, gdzie urządzenia są często narażone na wibracje i zmiany temperatury, regularne sprawdzanie ciągłości połączeń jest kluczowe dla utrzymania wysokiej jakości i bezpieczeństwa systemów. Warto także zauważyć, że zgodnie z normami IEC 60364, ocena ciągłości połączeń jest integralną częścią kontroli jakości instalacji elektrycznych, co potwierdza jej znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 36

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Przewagą sygnałów Set i Reset
B. Czasem reakcji
C. Ilością stanów pośrednich
D. Odwróceniem sygnałów Set i Reset
Wybór odpowiedzi związanej z liczbą stanów pośrednich pokazuje, że możesz mieć niepełne zrozumienie tego, jak działają przerzutniki. Wydaje się, że myślisz, że RS i SR różnią się tylko ilością stanów, a to nie do końca tak jest. Oba działają na podstawie dwóch stanów: 0 i 1. Warto też zauważyć, że szybkość działania nie jest główną różnicą między nimi, chociaż faktycznie różne realizacje mogą reagować w różnym czasie. Kluczowe jest to, że przerzutnik SR może zmieniać stan, gdy oba sygnały są aktywne, a w RS musi być aktywny Set, żeby Reset nie miał wpływu. Pamiętaj, że negacja sygnałów Set i Reset dotyczy bardziej logiki w niektórych schematach, a niekoniecznie samej różnicy w działaniu tych przerzutników. Często spotykane błędy to pomijanie podstawowych zasad działania tych bloków funkcyjnych oraz brak zrozumienia ich w praktycznych zastosowaniach. Żeby skutecznie projektować systemy automatyki, warto naprawdę dobrze poznać te funkcjonalne różnice.

Pytanie 37

Pomiar natężenia prądu zasilającego silnik przeprowadza się w celu ustalenia

A. poślizgu silnika
B. prędkości obrotowej silnika
C. obciążenia silnika
D. temperatury pracy silnika
Wybór odpowiedzi, która sugeruje, że pomiar natężenia prądu zasilania silnika jest używany do określenia poślizgu, prędkości lub temperatury pracy, wskazuje na pewne nieporozumienia dotyczące podstawowych zasad funkcjonowania silników elektrycznych. Poślizg silnika odnosi się do różnicy między prędkością obrotową wirnika a prędkością obrotową pola magnetycznego w silniku. Ten parametr jest obliczany na podstawie prędkości i nie bezpośrednio mierzony przez natężenie prądu. Z kolei prędkość obrotowa silnika jest kontrolowana przez napięcie i częstotliwość zasilania, a nie przez sam pomiar prądu, co może prowadzić do błędnych wniosków. Z kolei temperatura pracy silnika jest monitorowana za pomocą czujników temperatury, a nie natężenia prądu, chociaż niektórzy mogą pomylnie zakładać, że wyższe natężenie może korelować z wyższą temperaturą. Tego rodzaju myślenie może prowadzić do błędnych decyzji operacyjnych, które mogą spowodować niewłaściwą konserwację lub eksploatację silnika. W związku z tym, aby prawidłowo ocenić stan silnika, kluczowe jest właściwe zrozumienie zastosowania pomiarów prądowych i ich związku z obciążeniem, a nie innymi parametrami, które wymagają innych metod pomiarowych.

Pytanie 38

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CAD
B. CAM
C. CNC
D. CAE
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 39

Który z elektrycznych silników ma następujące parametry znamionowe: ∆/Y 230/400 V; 2/1,15 A; 0,37 kW; cosφ 0,71; 1350 min-1?

A. Silnik skokowy z wirnikiem czynnym
B. Silnik synchroniczny prądu przemiennego
C. Silnik klatkowy prądu przemiennego
D. Silnik szeregowy prądu stałego
Silnik klatkowy prądu przemiennego to naprawdę popularny wybór w przemyśle. Jest prosty w obsłudze, niezawodny i nie kosztuje wiele w eksploatacji. Z tego, co widzę, podane dane, czyli napięcie 230/400 V, prąd 2/1,15 A, moc 0,37 kW oraz prędkość obrotowa 1350 min⁻¹, świetnie pasują do standardowych parametrów tego typu silników. Zazwyczaj zasilane są z sieci trójfazowej, co pozwala im działać wydajnie, mimo że nie są duże. Widziałem je w akcji w różnych sprzętach, jak pompy, wentylatory czy kompresory, które potrzebują stałej prędkości. Dlatego ważne jest, aby znać te parametry i umieć je interpretować, bo to pomaga dobrać odpowiedni silnik do konkretnego zadania. To z kolei wpływa na efektywność i oszczędność energii. Pamiętaj też o cos φ, współczynniku mocy, który powinien wynosić przynajmniej 0,7, żeby wykorzystanie energii elektrycznej było efektywne.

Pytanie 40

Jakiego czujnika powinno się użyć w systemie pomiarowym do określenia naprężeń mechanicznych?

A. Wiskozymetr
B. Tensometr
C. Rotametr
D. Pirometr
Tensometr jest kluczowym elementem w układzie pomiarowym służącym do monitorowania naprężeń mechanicznych. Jego działanie opiera się na efekcie piezorezystywnym, który polega na zmianie rezystancji elektrycznej w odpowiedzi na odkształcenie materiału. Dzięki temu, tensometry są szeroko stosowane w inżynierii mechanicznej, budownictwie oraz w badaniach materiałowych. Na przykład, w konstrukcjach mostów czy budynków, tensometry mogą być umieszczane w strategicznych miejscach, aby na bieżąco monitorować naprężenia i zapobiegać ewentualnym uszkodzeniom. Zastosowanie tensometrów w praktyce wymaga przemyślanej kalibracji oraz umiejętności interpretacji danych pomiarowych. Warto również zauważyć, że zgodnie z normami PN-EN ISO 7500-1 i PN-EN 10002-1, właściwe pomiary naprężeń są niezbędne do oceny jakości materiałów oraz bezpieczeństwa konstrukcji.