Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 16:54
  • Data zakończenia: 17 grudnia 2025 17:13

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 1 MΩ
B. 10 MΩ
C. 3 MΩ
D. 5 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 2

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Weryfikacja stanu ochrony przeciwporażeniowej
C. Przeprowadzenie próbnego rozruchu urządzenia
D. Pomiar napięcia zasilającego
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Sprawdzenie stanu ochrony przeciwporażeniowej
C. Rozruch próbny urządzenia
D. Pomiar napięcia zasilania
W kontekście badań eksploatacyjnych silnika elektrycznego, każda z wymienionych czynności ma swoje znaczenie, ale nie wszystkie są klasyfikowane jako badania samych silników. Pomiar rezystancji uzwojeń stojana jest jednym z najważniejszych badań, które pozwala na ocenę stanu izolacji. Uszkodzenie izolacji może prowadzić do zwarć, co z kolei zagraża nie tylko funkcjonowaniu silnika, ale także bezpieczeństwu użytkowników. Rozruch próbny urządzenia jest kluczowy dla sprawdzenia, czy silnik działa zgodnie z jego specyfikacją i czy nie występują nieprawidłowości w jego pracy. Z kolei sprawdzenie stanu ochrony przeciwporażeniowej jest fundamentalne dla zapewnienia bezpieczeństwa elektrycznego, a jego pominięcie może prowadzić do poważnych wypadków. Wydaje się więc, że pomiar napięcia zasilania powinien być również postrzegany jako istotny, jednak poprzez skoncentrowanie się na nim, można przeoczyć istotne detale związane z samym stanem silnika. W rzeczywistości, badania eksploatacyjne skupiają się głównie na diagnostyce i analizie wewnętrznej stanu silnika, co oznacza, że pomiar napięcia, mimo że ważny w kontekście zasilania, nie dostarcza informacji o zdrowiu silnika. Właściwe podejście do badań eksploatacyjnych wymaga zrozumienia, które czynności mają kluczowe znaczenie dla oceny wewnętrznych komponentów silnika, a które są związane z jego zasilaniem i eksploatacją w kontekście zewnętrznym.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Silnik obcowzbudny prądu stałego, którego schemat układu połączeń zamieszczono na rysunku, pracuje w warunkach znamionowego zasilania i obciążenia. Po zwiększeniu rezystancji regulatora w obwodzie twornika nastąpi

Ilustracja do pytania
A. zmniejszenie prędkości obrotowej i zmniejszenie prądu wzbudzenia.
B. zmniejszenie prędkości obrotowej i zmniejszenie sprawności silnika.
C. zwiększenie prędkości obrotowej i zwiększenie strat w obwodzie twornika.
D. zwiększenie prędkości obrotowej i zwiększenie prądu pobieranego z sieci.
W kontekście silników obcowzbudnych prądu stałego, każdy błąd w rozumieniu wpływu rezystancji w obwodzie twornika może prowadzić do mylnych wniosków. Zwiększenie rezystancji w obwodzie twornika nie prowadzi do zwiększenia prędkości obrotowej silnika ani do zwiększenia strat w obwodzie twornika, jak sugeruje jedna z odpowiedzi. W rzeczywistości, zwiększenie rezystancji skutkuje spadkiem prędkości obrotowej, co jest konsekwencją obniżenia napięcia na tworniku. Ponadto, zmniejszenie prędkości obrotowej nie wiąże się z redukcją prądu wzbudzenia, ponieważ prąd wzbudzenia zależy od układu wzbudzenia, a nie bezpośrednio od rezystancji w obwodzie twornika. Pomieszanie tych pojęć często wynika z braku zrozumienia podstawowych zasad działania silników prądu stałego. W przypadku zwiększenia rezystancji, użytkownicy mogą błędnie zakładać, że więcej energii będzie dostarczane do silnika, co jest niezgodne z rzeczywistością. Dobrze jest rozumieć, że sprawność silnika ogranicza się poprzez wzrost strat energii, co jest kluczowe dla jego optymalizacji w zastosowaniach przemysłowych. Dążenie do efektywności energetycznej wymaga zrozumienia dynamiki obwodów elektrycznych, co jest niezbędne w nowoczesnym inżynierii elektronicznej.

Pytanie 11

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
B. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
C. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
D. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 12

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 1, 4, 3, 5, 2, 6
B. 3, 4, 2, 1, 5, 6
C. 3, 1, 4, 5, 6, 2
D. 4, 1, 5, 3, 6, 2
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. rok
B. miesiąc
C. 3 lata
D. 5 lat
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 15

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-2 gTr
B. WT/NH DC
C. WT-00 gF
D. WT/NH aM
Wkładka topikowa WT/NH aM jest odpowiednia do zabezpieczania silników indukcyjnych przed skutkami zwarć, ponieważ charakteryzuje się dużą zdolnością do przerwania prądu oraz odpowiednim czasem zadziałania. W porównaniu do innych wkładek, aM (motor) zapewnia lepszą ochronę w przypadku prądów rozruchowych, które mogą być znacznie wyższe od normalnych wartości roboczych. W praktyce, takie wkładki są stosowane w układach zasilających silników elektrycznych, które podczas rozruchu mogą generować prądy nawet 5-7 razy większe od nominalnych. Dzięki właściwościom aM, wkładki te pozwalają na dłuższe tolerowanie tych wysokich prądów, co znacząco zwiększa bezpieczeństwo i nie powoduje niepotrzebnych wyłączeń. Dodatkowo, zgodnie z normą IEC 60269, wkładki aM są przystosowane do ochrony silników przed przeciążeniem, co czyni je idealnym wyborem w aplikacjach przemysłowych. Warto zaznaczyć, że stosowanie wkładek zabezpieczających powinno odbywać się zgodnie z zaleceniami producentów urządzeń oraz normami bezpieczeństwa, co zwiększa ich efektywność i niezawodność.

Pytanie 16

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zmniejszy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zwiększy się dwukrotnie
D. Zwiększy się czterokrotnie
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 17

W instalacji jednofazowej o częstotliwości 50 Hz oraz napięciu znamionowym 230 V, wartość napięcia pomiędzy przewodem fazowym a przewodem neutralnym nie powinna wynosić

A. mniej niż 230 V
B. więcej niż 253 V
C. mniej niż 213 V
D. więcej niż 243 V
Zobaczmy teraz inne odpowiedzi. Niektóre z nich mogą być mylące i ludzie mogą je wybrać przez niezrozumienie tolerancji napięcia w instalacjach jednofazowych. Na przykład, stwierdzenie, że napięcie nie powinno być mniejsze niż 213 V, to błąd, bo jednak dopuszczalne odchylenie w dół to 207 V. Możliwe, że ktoś pomyślał, że napięcie nie może być poniżej nominalnej wartości, a to nie jest zgodne z normami. Inną odpowiedzią jest twierdzenie, że nie może być mniejsze niż 230 V. To też nieprawda, bo normy mówią, że napięcie czasem może spadać poniżej tej wartości, szczególnie przy obciążeniach. Wybór opcji, że nie powinno być większe niż 243 V, też jest błędny, bo norma PN-EN 50160 dopuszcza wartość do 253 V. Te błędy mogą wynikać z niewiedzy o normach dotyczących napięcia, a to ważne, żeby pamiętać o tych standardach, bo zapewniają bezpieczeństwo i efektywność instalacji.

Pytanie 18

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 10A
B. 20A
C. 16A
D. 6A
Wybór niewłaściwego prądu znamionowego dla wyłącznika nadprądowego często wynika z błędów w obliczeniach lub niepełnego zrozumienia zasad działania wyłączników. Na przykład, wybór wartości 6A nie uwzględnia rzeczywistego obciążenia grzejnika, które w obliczeniach wyniosło około 10,43 A. Tak niska wartość prądu znamionowego skutkowałaby ciągłym wyłączaniem się wyłącznika w trakcie normalnej pracy grzejnika, co prowadziłoby do uciążliwości dla użytkowników i mogłoby wpłynąć na bezpieczeństwo instalacji. Podobnie, wybór 10A nie jest wystarczający, aby zapewnić odpowiednią tolerancję dla prądów rozruchowych, które mogą wystąpić w momencie uruchomienia urządzenia. Z kolei 20A, mimo że teoretycznie zabezpieczy urządzenie przed przeciążeniem, nie jest zgodna z zasadami doboru wyłączników, ponieważ wprowadza możliwość nadmiernego obciążenia obwodu, co może być niebezpieczne. Dobre praktyki branżowe wymagają, aby wyłącznik był dobrany w taki sposób, aby jego wartość prądu znamionowego była nie tylko wyższa od prądu roboczego, ale również odpowiednia do charakterystyki obciążenia. W przypadku grzejników, które mają charakter rezystancyjny, stosuje się wyłączniki o charakterystyce B, co oznacza, że powinny one zareagować na prądy zwarciowe, ale pozwolić na chwilowe przetężenia związane z normalnym użytkowaniem. Dlatego kluczowe jest zrozumienie zasad doboru i stosowanie ich w praktyce, aby zapewnić zarówno bezpieczeństwo, jak i funkcjonalność instalacji elektrycznej.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Zamiana gniazdek.
B. Wymiana wkładek bezpiecznikowych.
C. Dokręcanie przewodów w złączach.
D. Wykonywanie pomiaru rezystancji izolacji instalacji.
Wymiana gniazd wtyczkowych oraz dokręcanie przewodów w zaciskach są czynnościami, które w przypadku instalacji niewyłączonych spod napięcia stanowią poważne ryzyko. Gniazda wtyczkowe są częścią obwodu, który jest pod napięciem, a ich wymiana może prowadzić do niekontrolowanego dostępu do elementów pod napięciem, co z kolei zwiększa ryzyko porażenia prądem. Normy PN-IEC 60364 jasno określają, że wszelkie prace wymagające dostępu do takich elementów powinny być przeprowadzane po wyłączeniu zasilania, aby zapewnić bezpieczeństwo pracowników. Dokręcanie przewodów w zaciskach, zwłaszcza w układzie TN, również stwarza potencjalne zagrożenie, gdyż może prowadzić do niezamierzonego zwarcia lub uszkodzenia izolacji przewodów, co w efekcie może spowodować pożar lub inne poważne incydenty elektryczne. Pomiar rezystancji izolacji instalacji to kolejna czynność, która nie powinna być przeprowadzana w warunkach, gdy instalacja jest pod napięciem, ponieważ nie tylko zagraża to bezpieczeństwu osoby wykonującej pomiar, ale także może prowadzić do uszkodzenia sprzętu pomiarowego. Wszelkie prace elektryczne powinny być prowadzone zgodnie z zasadami bezpieczeństwa i normami branżowymi, co wymaga dezaktywacji zasilania przed przystąpieniem do jakiejkolwiek interwencji w instalacji elektrycznej.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Przekaźnik nadprądowy
B. Termistor
C. Bezpiecznik
D. Wyłącznik silnikowy
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zwiększyć napięcie zasilające
B. Zwiększyć długość przewodów zasilających
C. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
D. Zastosować dodatkowy filtr harmonicznych
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. uszkodzenie w przewodzie fazowym
B. zwarcie między przewodem fazowym a neutralnym
C. zwarcie przewodu ochronnego z obudową
D. uszkodzenie w grzałce
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. znamionowe zużycie prądu
B. nadmierne wibracje
C. spadek napięcia zasilania poniżej 3 %
D. spadek rezystancji izolacji uzwojeń do 5 MΩ
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaka powinna być wartość prądu znamionowego bezpiecznika chroniącego uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeżeli przewidziano go do pracy z maksymalnym obciążeniem rezystancyjnym 200 W?

A. 1,0 A
B. 0,4 A
C. 0,8 A
D. 0,5 A
W przypadku błędnych odpowiedzi, pojawiają się typowe nieporozumienia związane z obliczeniami oraz zasadami doboru bezpieczników. Niektórzy mogą błędnie zakładać, że wartość prądu znamionowego powinna być równa lub niższa od wartości obliczonej, co jest błędne w kontekście zabezpieczeń elektrycznych. Kluczowym błędem jest pominięcie faktu, że bezpiecznik powinien zawsze mieć wartość wyższą od przewidywanego obciążenia, aby mogło zachować się w normalnych warunkach pracy. Zastosowanie bezpiecznika o zbyt niskiej wartości może prowadzić do częstych wyłączeń w sytuacjach, gdy urządzenie działa w swoim normalnym zakresie mocy, co jest nieefektywne i frustrujące. Inna często spotykana pomyłka to brak uwzględnienia wpływu charakterystyki obciążenia na dobór bezpiecznika. W przypadku transformatora, jego obciążenie rezystancyjne nie tylko wymaga odpowiedniej wartości, ale również specyficznego rodzaju bezpiecznika. Dlatego ważne jest, aby przy doborze zabezpieczeń brać pod uwagę zarówno parametry obciążenia, jak i standardy branżowe, co zapewnia nie tylko bezpieczeństwo, ale również efektywność energetyczną całego systemu. Zrozumienie tych zasad jest kluczowe dla prawidłowego stosowania technologii elektrycznej w praktyce.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B16
B. B25
C. B10
D. B20
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Minimalne napięcie zasilania
B. Maksymalne napięcie zasilania
C. Minimalną temperaturę pracy uzwojeń
D. Maksymalną temperaturę pracy uzwojeń
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.