Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 lutego 2026 13:44
  • Data zakończenia: 21 lutego 2026 14:00

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Bezpiecznik.
B. Rozłącznik.
C. Wyłącznik.
D. Odłącznik.
Wybór odpowiedzi innej niż 'Wyłącznik' wskazuje na pewne nieporozumienia dotyczące funkcji i symboliki poszczególnych urządzeń elektrycznych. Bezpiecznik, będący urządzeniem zabezpieczającym, działa na zasadzie przerywania obwodu w momencie przekroczenia określonego prądu, a jego symbol różni się znacząco od symbolu wyłącznika. Odłącznik z kolei, choć również używany do rozłączania obwodów, jest zazwyczaj stosowany w sytuacjach, gdzie brak konieczności automatycznego działania jest kluczowy; jego symbol na schemacie jest inny, co może prowadzić do błędnej interpretacji. Rozłącznik, natomiast, służy do przerywania obwodu w sposób bardziej złożony, często w kontekście instalacji przemysłowych i zasilania w obiektach wysokiego napięcia, co również odzwierciedla inny symbol. Typowe błędy myślowe związane z tym pytaniem mogą wynikać z nieznajomości różnic pomiędzy tymi urządzeniami. W praktyce, znajomość symboli oraz funkcji wyłączników jest niezbędna dla zapewnienia bezpieczeństwa w pracy z instalacjami elektrycznymi oraz ich prawidłowego funkcjonowania zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 2

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 3

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt duży nacisk szczotek na komutator
C. Zbyt małe wzbudzenie silnika
D. Zbyt mała powierzchnia styku szczotek z komutatorem
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 4

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Sprawdzenie układów rozruchowych i regulacyjnych
C. Pomiar rezystancji izolacji i próbne uruchomienie
D. Sprawdzenie układów sterowania i sygnalizacji
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 5

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. SM 25-40
B. FRCdM-63/4/03
C. Z-MS-16/3
D. Ex9BP-N 4P C10
Oznaczenie Z-MS-16/3 odnosi się do wyłącznika silnikowego, który jest kluczowym elementem w instalacjach elektrycznych zasilających silniki. Wyłączniki silnikowe są zaprojektowane, aby zabezpieczać silniki przed przeciążeniem, zwarciem oraz innymi nieprawidłowościami w pracy. Z-MS-16/3 to przykład wyłącznika, który może być stosowany w instalacjach przemysłowych, gdzie ochrona silników jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. Wyłączniki te działają na zasadzie automatycznego wyłączenia zasilania w przypadku wykrycia nieprawidłowego prądu, co zapobiega uszkodzeniom zarówno silnika, jak i samej instalacji elektrycznej. W praktyce, ich zastosowanie jest szczególnie istotne w aplikacjach takich jak pompy, wentylatory, kompresory czy maszyny robocze. Przykładowo, w przypadku silnika napędzającego dużą maszynę, zastosowanie Z-MS-16/3 pozwala na szybkie odłączenie zasilania, co minimalizuje ryzyko kosztownych awarii i przestojów. Ponadto, wyłączniki te powinny być zgodne z normami IEC 60947-4-1, co zapewnia ich wysoką jakość oraz niezawodność.

Pytanie 6

Jaki rodzaj źródła światła pokazano na zdjęciu?

Ilustracja do pytania
A. Wolframowe.
B. Sodowe.
C. Halogenowe.
D. Luminescencyjne.
Odpowiedzi, które wskazują na źródła światła sodowe, wolframowe lub luminescencyjne, są nieprawidłowe i wynikają z mylnych koncepcji dotyczących charakterystyki różnych rodzajów oświetlenia. Żarówki sodowe, na przykład, emitują światło dzięki reakcji chemicznej w parze sodu, co skutkuje specyficznym, żółtawym odcieniem światła, idealnym do oświetlenia ulicznego, ale nie mają nic wspólnego z halogenami. Podobnie, żarówki wolframowe, które są najstarszym rozwiązaniem, emitują światło w wyniku przepływu prądu przez włókno wolframowe, ale nie korzystają z dodatkowych halogenów, co ogranicza ich efektywność i żywotność. W przypadku żarówek luminescencyjnych, emitują one światło w wyniku zjawiska fluorescencji, co jest zupełnie innym procesem niż w przypadku żarówek halogenowych. Stąd, mylenie tych typów źródeł światła może prowadzić do nieefektywnego doboru oświetlenia, co ma kluczowe znaczenie w kontekście oszczędności energetycznej oraz odpowiedniego doboru oświetlenia do danego zadania. Zrozumienie różnic między tymi technologiami jest niezbędne dla każdego, kto zajmuje się projektowaniem systemów oświetleniowych zgodnie z aktualnymi standardami i praktykami branżowymi.

Pytanie 7

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. \( \sqrt{3}(P_1 + P_2) \)
B. \( P_1 + P_2 \)
C. \( 3 \frac{P_1 + P_2}{2} \)
D. \( P_1 + P_2 + \frac{P_1 + P_2}{2} \)
Układ Arona jest kluczowym narzędziem w pomiarach mocy w trójfazowych układach elektrycznych. Umożliwia dokładne określenie całkowitej mocy odbiornika, zarówno w układach symetrycznych, jak i niesymetrycznych. Poprawna odpowiedź to A: P1 + P2, co odzwierciedla sumaryczną moc wskazywaną przez dwa watomierze zastosowane w tym układzie. W praktyce, wykorzystanie dwóch watomierzy pozwala na eliminację błędów pomiarowych związanych z różnymi wartościami prądów i napięć w poszczególnych fazach. Dodatkowo, metoda ta jest zgodna z zaleceniami standardów takich jak IEC 61000, które podkreślają znaczenie dokładności w pomiarach elektrycznych. W przypadku symetrycznych układów trójfazowych, gdzie prądy i napięcia są sobie równe, suma mocy z dwóch watomierzy daje nam całkowitą moc czynną, co ułatwia analizę i kontrolę procesów energetycznych, co jest niezbędne w wielu zastosowaniach przemysłowych. Warto także pamiętać, że poprawne zastosowanie układu Arona w praktyce wymaga odpowiedniego kalibrowania urządzeń pomiarowych, aby zapewnić ich dokładność i niezawodność.

Pytanie 8

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór gniazda innego niż typ B dla zastosowania w systemie TN-S może prowadzić do poważnych problemów związanych z bezpieczeństwem. W przypadku gniazd typu A, które nie posiadają oddzielnych zacisków dla przewodów PE i N, przewód ochronny może być połączony z przewodem neutralnym, co jest niedopuszczalne w systemie TN-S. Takie połączenie zwiększa ryzyko wystąpienia prądów upływowych, a w konsekwencji może doprowadzić do niebezpiecznych sytuacji, takich jak porażenie elektryczne. Istotnym błędem jest także nieuwzględnienie wymagań normatywnych, takich jak PN-EN 61439, które nakładają obowiązek stosowania odpowiednich środków ochronnych w celu zapewnienia bezpieczeństwa osób i mienia. Ponadto, nieprzestrzeganie zasad oddzielania przewodów ochronnych i neutralnych może prowadzić do niesprawności całego systemu ochrony przed skutkami zwarć, co może skutkować nieodpowiednim funkcjonowaniem urządzeń elektrycznych oraz zwiększoną awaryjnością instalacji. W praktyce, zdarza się, że fachowcy, ignorując te zasady, narażają użytkowników na ryzyko, a także mogą ponosić odpowiedzialność prawną w przypadku wypadków elektrycznych. Dlatego kluczowe jest stosowanie gniazd odpowiednich do specyfiki systemu TN-S, aby zapewnić najwyższy poziom bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 9

Z którego z wymienionych materiałów wykonuje się rezystory drutowe?

A. Z aluminium.
B. Z cynku.
C. Z kanthalu.
D. Z mosiądzu
Rezystory drutowe wykonuje się z kanthalu, ponieważ jest to specjalny stop oporowy o bardzo dużej rezystywności i wysokiej odporności temperaturowej. Kanthal to najczęściej stop żelaza z chromem i aluminium (FeCrAl), zaprojektowany właśnie do pracy jako element grzejny lub rezystancyjny. Z mojego doświadczenia wynika, że w praktyce elektrycznej i elektronicznej, jeśli chcemy mieć rezystor, który może się mocno nagrzewać, znosić duże moce i się nie przepalać od razu, to naturalnym wyborem jest właśnie drut oporowy z kanthalu albo podobnego stopu (np. konstantan, nichrom – ale w pytaniu chodzi konkretnie o kanthal). Kanthal ma tę zaletę, że przy nagrzewaniu nie zmienia zbyt mocno swoich parametrów elektrycznych, ma stosunkowo stabilny współczynnik temperaturowy oporu i tworzy na powierzchni warstwę tlenków, która chroni go przed utlenianiem. Dlatego rezystory drutowe dużej mocy, stosowane np. w obwodach rozruchowych silników, w układach hamowania silników falownikowych, w rezystorach obciążeniowych do testów zasilaczy czy przetwornic, są nawijane właśnie z takiego drutu na ceramiczny karkas. W dobrych praktykach warsztatowych zwraca się uwagę, żeby nie stosować zwykłych metali konstrukcyjnych na elementy oporowe, tylko właśnie specjalne stopy oporowe takie jak kanthal – to wynika i z norm materiałowych, i z doświadczeń eksploatacyjnych: rezystor ma trzymać wartość, nie palić się i nie zmieniać parametrów po kilku nagrzaniach. Kanthal dokładnie to zapewnia i dlatego jest klasycznym materiałem dla rezystorów drutowych i elementów grzejnych.

Pytanie 10

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. maksymalnej wielkości prądu zwarciowego
B. wartości prądu wyłączającego
C. progu zadziałania wyzwalacza przeciążeniowego
D. czasu działania wyzwalacza zwarciowego
Wartość prądu wyłączającego to kluczowy parametr przy ocenie skuteczności nadprądowego wyłącznika instalacyjnego w kontekście samoczynnego wyłączenia zasilania, co jest jednym z podstawowych środków ochrony przeciwporażeniowej w sieciach TN-S. Prąd wyłączający to minimalna wartość prądu, przy której wyłącznik zareaguje i rozłączy obwód, zapewniając w ten sposób bezpieczeństwo użytkowników. W praktyce, aby spełnić wymagania norm, takich jak PN-IEC 60364, należy określić, czy prąd zwarciowy w danym obwodzie przekracza tę wartość, co pozwoli na skuteczne odcięcie zasilania w przypadku wystąpienia awarii. Warto również zwrócić uwagę na dobór wyłącznika, który powinien być dostosowany do specyfiki obwodu oraz przewidywanych warunków pracy. W przypadku braku odpowiedniego doboru wyłącznika, ryzyko porażenia prądem lub uszkodzeń urządzeń znacznie wzrasta. Dlatego również w praktyce często wykonuje się testy impedancji pętli zwarcia, aby upewnić się, że prąd zwarciowy osiągnie wartość wyłączającą, co jest kluczowe dla zapewnienia ochrony.

Pytanie 11

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. hotelowy.
B. schodowy.
C. dwubiegunowy.
D. świecznikowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 12

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 6,8%
B. 3,4%
C. 8,3%
D. 3,0%
Aby obliczyć całkowity względny błąd pomiaru rezystancji izolacji, musimy uwzględnić zarówno błąd procentowy, jak i błąd wyrażony w cyfrach. W naszym przypadku, merkur wskazał wartość 200,0 MΩ, a jego niedokładność wynosi ± (3% w.w. + 8 cyfr). Najpierw obliczamy 3% z 200,0 MΩ, co daje 6,0 MΩ. Następnie dodajemy wartość 8 cyfr, co w tym przypadku oznacza 0,00000008 Ω. W rzeczywistości 8 cyfr nie wpływa znacząco na wynik w skali MΩ, ale dla pełności obliczeń uwzględniamy tę wartość. Tak więc całkowity błąd pomiarowy wynosi 6,0 MΩ. Aby obliczyć względny błąd, dzielimy błąd przez zmierzoną wartość i mnożymy przez 100%. Liczba ta daje nam 3,0%. Jednak aby uzyskać całkowity błąd, należy dodać błędy z różnych źródeł, co prowadzi do ostatecznego wyniku 3,4%. Taki sposób obliczania błędów pomiarowych jest zgodny z zaleceniami standardów ISO oraz dobrymi praktykami w dziedzinie metrologii, którymi powinni kierować się wszyscy inżynierowie pracujący z pomiarami elektrycznymi.

Pytanie 13

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 519 var
B. 173 var
C. 300 var
D. 100 var
Poprawna odpowiedź to 173 var, ponieważ w symetrycznym układzie trójfazowym moc bierna jest związana z mocą czynną. Wartość mocy biernej Q można obliczyć za pomocą wzoru Q = √3 * P, gdzie P to moc czynna. W przypadku, gdy watomierz wskazuje 100 W, możemy zastosować ten wzór, co prowadzi nas do obliczenia Q = √3 * 100 W, co daje około 173 var. W praktyce, moc bierna jest istotna w kontekście projektowania instalacji elektrycznych, gdzie ważne jest zrozumienie relacji między mocą czynną a mocą bierną, by zapewnić optymalne działanie urządzeń elektrycznych. W kontekście norm PN-EN 50160, które dotyczą jakości energii elektrycznej, światłowodów i systemów zasilania, umiejętność obliczania tych mocy jest niezbędna dla inżynierów zajmujących się systemami zasilania i ochroną przed przepięciami. Wiedza ta pozwala również na lepsze zarządzanie zużyciem energii i minimalizację strat, co jest kluczowe w działalności przemysłowej oraz w kontekście zrównoważonego rozwoju.

Pytanie 14

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 100/100 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów w instalacjach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i trwałość systemu. Odpowiedzi sugerujące użycie przewodów z izolacją 450/750 V, 300/300 V czy 100/100 V nie uwzględniają specyfiki i wymagań dla sieci niskonapięciowych. Przewody 450/750 V są przystosowane do wyższych napięć i zastosowań, które nie są typowe dla instalacji 230/400 V, a użycie ich w tym kontekście może być nieefektywne oraz kosztowne. Z kolei przewody 300/300 V i 100/100 V mają zbyt niskie parametry izolacji, co czyni je niewłaściwymi do pracy w warunkach, gdzie mogą pojawić się napięcia robocze na poziomie 400 V. Użycie takich przewodów w sieci trójfazowej niskiego napięcia wiąże się z ryzykiem wystąpienia przebicia izolacji, co w rezultacie może prowadzić do awarii systemu, a w najgorszym przypadku - do zagrożenia życia ludzi oraz uszkodzenia mienia. Dlatego ważne jest, aby stosować przewody o odpowiedniej klasie izolacji, które są zgodne z normami oraz standardami branżowymi, co pozwoli na zminimalizowanie ryzyka oraz zapewnienie bezpiecznej eksploatacji instalacji elektrycznych.

Pytanie 15

Jaka część strumienia świetlnego wysyłana jest w dół w oprawie oświetleniowej V klasy?

A. (0 ÷ 10) %
B. (60 ÷ 90) %
C. (40 ÷ 60) %
D. (90 ÷ 100) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 16

Którego z mierników pokazanych na rysunku należy użyć do pomiaru impedancji pętli zwarcia obwodu elektrycznego?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi B jest trafiony, bo mierniki pętli zwarcia to te specjalne narzędzia, które dokładnie mierzą impedancję w obwodach elektrycznych. Używając takiego miernika, możemy sprawdzić rezystancję pętli zwarcia, co jest super ważne, gdy chodzi o bezpieczeństwo instalacji. Dzięki tym pomiarom możemy upewnić się, że wszystko jest w normie, tzn. nie przekraczamy wartości określonych w normach, jak PN-IEC 60364 – to coś, co każdy elektryk powinien znać. Ba, te mierniki potrafią też sprawdzić czas wyłączenia zabezpieczeń, co daje nam lepszy obraz tego, jak działa cała instalacja. Fajnym przykładem użycia takiego miernika jest testowanie nowej instalacji przed jej oddaniem do użytku – wtedy mamy pewność, że jest wszystko w porządku i bezpieczne dla użytkowników.

Pytanie 17

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NO stycznika Q1
B. NO stycznika Q2
C. NC stycznika Q2
D. NC stycznika Q1
Odpowiedź "NC stycznika Q1" jest poprawna ponieważ w analizowanym układzie stycznik Q2 jest sterowany zarówno poprzez przycisk S4, jak i przez styk NO stycznika Q1. Aby styk NO stycznika Q1 mógł się zamknąć, musi być on w pozycji normalnie otwartej, co oznacza, że wcześniej musiał być aktywowany przez inny element obwodu. Jeśli stycznik Q1 jest uszkodzony, a jego styk NC (normalnie zamknięty) nie przełącza się na NO, to obwód zasilający stycznik Q2 nie zostanie zamknięty. W praktyce w takich układach automatyki przemysłowej, często zdarza się, że awarie styków w układach sterowania prowadzą do niemożności uruchomienia dalszych procesów, dlatego istotne jest systematyczne monitorowanie stanu tych elementów. Zgodnie z dobrymi praktykami, należy przeprowadzać regularne przeglądy i testy funkcjonalne takich obwodów, aby zapobiegać nieprzewidzianym zatrzymaniom. Zrozumienie działania styków oraz ich wpływu na całość układu jest kluczowe dla efektywnej diagnostyki i utrzymania ruchu w systemach automatyki.

Pytanie 18

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.

Pytanie 19

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. dwie mufy kablowe i odcinek kabla
B. odcinek kabla oraz zgrzewarka
C. odcinek kabla zakończony głowicami
D. mufa rozgałęźna oraz odcinek kabla
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 20

Szczotki stosowane w silnikach elektrycznych wykonane są z materiałów

A. półprzewodnikowych.
B. przewodzących.
C. izolacyjnych. 
D. magnetycznych. 
Prawidłowo – szczotki w silnikach elektrycznych muszą być wykonane z materiałów przewodzących, bo ich podstawowym zadaniem jest przekazywanie prądu elektrycznego pomiędzy częścią nieruchomą (szczotkotrzymacz, zaciski) a wirnikiem, najczęściej przez komutator lub pierścienie ślizgowe. Gdyby materiał nie przewodził prądu, silnik po prostu by nie zadziałał. W praktyce stosuje się głównie szczotki węglowe, grafitowe albo węglowo-miedziane. Mają one stosunkowo dobrą przewodność elektryczną, a jednocześnie odpowiednie właściwości mechaniczne: są dość miękkie, dobrze dopasowują się do komutatora, nie rysują go nadmiernie i zużywają się w kontrolowany sposób. To jest ważne, bo szczotka ma się zużywać, a nie komutator. Z mojego doświadczenia w warsztatach naprawczych widać, że dobra jakość szczotek bardzo mocno wpływa na żywotność silnika – szczególnie w elektronarzędziach i małych silnikach komutatorowych. Dobre praktyki mówią, żeby zawsze stosować szczotki o parametrach zalecanych przez producenta maszyny: odpowiedni skład (np. więcej grafitu lub więcej miedzi), twardość, dopuszczalny prąd i kształt. W normach dotyczących maszyn wirujących znajdziesz wymagania dotyczące trwałości i iskrzenia na komutatorze – właściwy materiał szczotek ogranicza iskrzenie, nagrzewanie oraz zakłócenia elektromagnetyczne. W praktyce serwisowej przy wymianie szczotek zwraca się uwagę, żeby były dobrze dotarte do komutatora, bo tylko wtedy przewodzenie prądu jest równomierne na całej powierzchni styku. Dlatego właśnie odpowiedź o materiałach przewodzących jest jedyna logiczna i technicznie poprawna.

Pytanie 21

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. uzwojenia fazowego.
C. izolacji pomiędzy zaciskami uzwojeń silnika.
D. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 22

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je lakierem elektroizolacyjnym
B. pokryć je olejem elektroizolacyjnym
C. wyłożyć je izolacją żłobkową
D. wstawić w nie kliny ochronne
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 23

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
B. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
C. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
D. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 24

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Półprzewodnikowe.
B. Wyładowcze wysokoprężne.
C. Żarowe.
D. Wyładowcze niskoprężne.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 25

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H03VV-F
B. H07V2-U
C. H07V-K
D. H03VVH2-F
Wybór niewłaściwych typów przewodów, takich jak H07V-K, H03VVH2-F czy H07V2-U, może prowadzić do poważnych błędów w projektowaniu instalacji elektrycznych. H07V-K jest przewodem sztywnym, przeznaczonym do instalacji stacjonarnych, co czyni go nieodpowiednim do zastosowań wymagających elastyczności. Z kolei H03VVH2-F jest przewodem elastycznym, jednak jego parametry techniczne i zastosowanie są inne niż w przypadku H03VV-F. H03VVH2-F posiada dodatkową izolację, co czyni go bardziej odpornym na uszkodzenia, ale nie jest typowym rozwiązaniem dla niskonapięciowych urządzeń przenośnych. H07V2-U to kolejny przewód sztywny, co ogranicza jego zastosowanie. Wybierając niewłaściwy typ przewodu, można narazić urządzenia na uszkodzenie, a także stwarzać zagrożenie pożarowe lub porażenia prądem. Zrozumienie różnic pomiędzy tymi typami przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby zwracać uwagę na konkretne parametry przewodów oraz ich zastosowanie zgodnie z aktualnymi normami branżowymi.

Pytanie 26

Co oznacza symbol literowy YKY?

A. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
B. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
D. kabel z żyłami miedzianymi w izolacji z PVC
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 27

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Przymiar kreskowy, ołówek traserski, rysik
B. Sznurek traserski, młotek, punktak
C. Rysik, kątownik, punktak, młotek
D. Przymiar taśmowy, poziomnica, ołówek traserski
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 28

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. I
B. III
C. II
D. 0
Wybór odpowiedzi, która wskazuje na inną klasę ochronności, może wynikać z nieporozumień dotyczących podstawowych zasad ochrony przed porażeniem elektrycznym. Klasa II, która często jest mylona z klasą I, nie wymaga przewodu ochronnego, ponieważ urządzenia tej klasy charakteryzują się podwójną izolacją, co nie zapewnia tak samo skutecznej ochrony w przypadku awarii. Z kolei klasa 0 dotyczy sprzętu bez izolacji i przewodu ochronnego, co czyni te urządzenia niebezpiecznymi i niezgodnymi z normami bezpieczeństwa. Wybór klasy III, z kolei, odnosi się do sprzętu zasilanego niskim napięciem, co również nie odnosi się do opraw oświetleniowych w standardowych instalacjach. Wiele osób myli te klasy, co może prowadzić do sytuacji narażających życie użytkowników. Przykładem takiego błędnego myślenia jest założenie, że niektóre urządzenia wystarczająco chronią przed porażeniem tylko dzięki zastosowaniu podstawowej izolacji. W rzeczywistości, prawidłowe podłączenie do przewodu ochronnego jest kluczowe dla bezpieczeństwa, co jednoznacznie potwierdzają normy i dobre praktyki w branży elektrycznej. Dlatego tak ważne jest zrozumienie różnic między tymi klasami i ich zastosowaniem w praktyce.

Pytanie 29

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Zmniejsza siłę docisku zwory.
B. Likwiduje magnetyzm szczątkowy.
C. Likwiduje drgania zwory.
D. Zmniejsza napięcie podtrzymania cewki.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 30

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. B.
B. D.
C. A.
D. C.
Wybór innego zestawu przyrządów niż amperomierz i woltomierz prowadzi do niepoprawnych wniosków dotyczących pomiaru mocy czynnej silnika. Na przykład, zastosowanie jedynie amperomierza lub woltomierza jest niewystarczające, ponieważ nie dostarcza pełnych informacji niezbędnych do obliczenia mocy czynnej. Amperomierz samodzielnie mierzy tylko natężenie prądu, co nie pozwala na określenie wartości napięcia, a tym samym na obliczenie mocy. Z kolei woltomierz bez amperomierza dostarcza jedynie informacji o napięciu, co również uniemożliwia obliczenie mocy czynnej. Często popełnianym błędem jest ignorowanie współczynnika mocy, który ma kluczowe znaczenie dla obliczeń w obwodach prądu zmiennego. W przypadku zasilania jednofazowego, brak pomiarów obu parametrów oznacza, że nie mamy pełnego obrazu działania urządzenia. Również niektóre odpowiedzi mogą sugerować użycie przyrządów, które mierzą inne parametry, takie jak rezystancja lub pojemność, które nie mają zastosowania w obliczaniu mocy czynnej w kontekście silników elektrycznych. W praktyce, aby uzyskać dokładny pomiar mocy czynnej, konieczne jest stosowanie standardowych metod pomiarowych z użyciem odpowiednich przyrządów, co jest zgodne z normami branżowymi i zapewnia bezpieczeństwo oraz dokładność analiz.

Pytanie 31

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do rozruchu silnika pierścieniowego.
B. Do pracy równoległej dwóch styczników.
C. Do pracy zależnej dwóch styczników.
D. Do załączenia silnika z opóźnieniem.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 32

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W l i 3.
B. W 1 i 2.
C. Tylko w 2.
D. Tylko w 3.
Instalowanie gniazd z kołkiem ochronnym w strefach 1 lub 2 może wydawać się wygodne, ale wiąże się z poważnym ryzykiem porażenia prądem. Strefa 1, która obejmuje przestrzeń nad brodzikiem, wanny lub natryski, jest obszarem o największym ryzyku kontaktu z wodą. To właśnie w tej strefie nie można umieszczać żadnych gniazd elektrycznych, ponieważ nawet najmniejsza ilość wody może prowadzić do niebezpiecznej sytuacji. Z kolei strefa 2, rozciągająca się na 0,6 metra wokół strefy 1, również nie jest odpowiednia dla gniazd elektrycznych, z uwagi na możliwość ich narażenia na wilgoć. W wielu przypadkach, osoby nieświadome przepisów mogą sądzić, że niewielka odległość od źródła wody nie stanowi zagrożenia, co jest błędnym założeniem. Takie myślenie może prowadzić do tragicznych w skutkach wypadków. Zgodnie z przepisami, instalacje elektryczne w łazienkach powinny być szczególnie starannie projektowane, aby zapewnić maksymalne bezpieczeństwo. W praktyce oznacza to również stosowanie odpowiednich materiałów oraz technologii, takich jak wyłączniki różnicowoprądowe, które dodatkowo zwiększają bezpieczeństwo użytkowników. Dlatego kluczowe jest, aby stosować się do wskazówek norm i przepisów dotyczących instalacji elektrycznych w pomieszczeniach narażonych na wilgoć.

Pytanie 33

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. TE
B. CC
C. FPE
D. E
Odpowiedź CC jest prawidłowa, ponieważ w dokumentacji technicznej instalacji elektrycznych przewód wyrównawczy rzeczywiście oznaczany jest symbolem literowym CC, co pochodzi od angielskiego terminu "Combined Conductor". Przewód wyrównawczy ma na celu zapewnienie ochrony przed porażeniem prądem elektrycznym poprzez wyrównanie potencjałów elektrycznych w instalacji. W praktyce oznacza to, że w przypadku wystąpienia uszkodzenia, prąd może być odprowadzany do ziemi, co minimalizuje ryzyko porażenia użytkowników sprzętu. Przewody te są szczególnie istotne w instalacjach przemysłowych oraz w obiektach użyteczności publicznej, gdzie istnieje duże ryzyko kontaktu z wodą lub innymi czynnikami mogącymi prowadzić do porażenia. Zgodnie z normami IEC 60364, każdy system elektryczny powinien być odpowiednio zabezpieczony, a przewody wyrównawcze odgrywają kluczową rolę w tych zabezpieczeniach, na przykład poprzez zastosowanie w instalacjach zasilających, gdzie wymagane jest zachowanie wysokiego poziomu bezpieczeństwa.

Pytanie 34

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YDYo
B. YLYp
C. YDYp
D. YnDYo
Wybór odpowiedzi niepoprawnej, takiej jak YLYp, YDYo czy YnDYo, wskazuje na nieporozumienie w zakresie oznaczeń przewodów elektrycznych oraz ich właściwości. Odpowiedź YLYp sugeruje, że przewód ten ma izolację z polichlorku winylu, co jest prawidłowe, jednak litera 'L' odnosi się do innego typu żył, które nie są jednodrutowe. Dla wielu użytkowników może być mylące, że użycie 'L' w oznaczeniu przewodu może sugerować, iż są to żyły wielodrutowe, co w tym przypadku jest niepoprawne. Z kolei odpowiedź YDYo, w której 'o' oznacza żyły okrągłe, również jest błędna, ponieważ na zdjęciu widoczne są żyły płaskie, a ich konstrukcja nie odpowiada oznaczeniu 'o'. Warto również zauważyć, że odpowiedź YnDYo, gdzie 'n' sugeruje obecność ekranu, jest myląca, ponieważ przewód YDYp nie ma ekranu ani dodatkowego zabezpieczenia, co czyni go mniej odpowiednim do zastosowań w środowiskach narażonych na zakłócenia elektromagnetyczne. Wybór niewłaściwych oznaczeń może prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych, dlatego kluczowe jest zrozumienie odpowiednich symboli oraz ich zastosowań zgodnie z normą PN-EN 50525. Zrozumienie tych różnic oraz umiejętność prawidłowego odczytywania oznaczeń przewodów jest niezbędne dla zapewnienia bezpieczeństwa oraz efektywności w pracy z instalacjami elektrycznymi.

Pytanie 35

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 25 A
B. 20 A
C. 35 A
D. 16 A
Odpowiedzi 20 A, 25 A i 16 A nie są odpowiednie, ponieważ nie spełniają kryteriów selektywności w kontekście podanego wyłącznika CLS6. Wybierając niższy prąd znamionowy, taki jak 20 A czy 16 A, ryzykuje się, że w przypadku zwarcia zadziała wkładka bezpiecznikowa zamiast wyłącznika, co może prowadzić do wyłączenia całego obwodu zamiast jedynie usunięcia awarii. Taka sytuacja jest niepożądana, zwłaszcza w instalacjach, w których ciągłość zasilania jest kluczowa. Z kolei wybór 25 A również jest niewłaściwy, ponieważ jest to wartość zbyt bliska prądu znamionowego wyłącznika, co skutkowałoby problemami z selektywnością. W praktyce, warto stosować wkładki bezpiecznikowe o znacznie wyższym prądzie znamionowym niż prąd znamionowy wyłącznika, aby zapewnić, że w przypadku zwarcia najpierw reaguje wyłącznik, co jest zgodne z zasadą selektywności przyjętą w standardach branżowych. Wybór niewłaściwego prądu znamionowego może również prowadzić do zwiększonego ryzyka uszkodzenia urządzeń, co w dłuższej perspektywie pociąga za sobą straty finansowe związane z naprawami oraz przestojami produkcyjnymi.

Pytanie 36

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Schodowy.
B. Grupowy.
C. Świecznikowy.
D. Krzyżowy.
Wybór łącznika grupowego, schodowego lub świecznikowego jako odpowiedzi na pytanie jest nieprawidłowy, ponieważ każdy z tych typów łączników ma swoje specyficzne zastosowania, które nie są zgodne z rolą łącznika oznaczonego literą P w układzie z trzema punktami sterowania. Łącznik grupowy służy do włączania lub wyłączania kilku punktów świetlnych jednocześnie z jednego miejsca, co nie odpowiada funkcji łącznika krzyżowego. Z kolei łączniki schodowe są używane na początku i końcu obwodu, umożliwiając jedynie sterowanie z dwóch miejsc. Nie można ich zastosować w układzie wymagającym przełączania z trzech lokalizacji. Łącznik świecznikowy, przeznaczony do sterowania oświetleniem z jednego miejsca, również nie jest odpowiedni w kontekście tego pytania. Osoby myślące, że wszystkie te łączniki mogą zastąpić krzyżowy, mogą nie dostrzegać różnic w ich funkcjonalności i zastosowaniach, co prowadzi do merytorycznych błędów w projektowaniu instalacji elektrycznych. W praktyce, nieznajomość typów łączników i ich funkcji może skutkować nieefektywnym rozwiązaniem, które nie spełnia wymagań użytkownika w zakresie wygody i funkcjonalności.

Pytanie 37

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem A2 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem 22 stycznika K1
Wybór odpowiedzi związanej z zaciskiem 22 stycznika K1, zaciskiem A2 stycznika K1, czy też zaciskiem 3 listwy zaciskowej X1, oparty jest na niepoprawnej interpretacji schematu montażowego. Na przykład, połączenie zacisku A2 stycznika K1 z zaciskiem 14 stycznika K1 jest koncepcją, która nie znajduje odzwierciedlenia w analizowanym schemacie, ponieważ odpowiednie połączenia są wyraźnie pokazane, co wskazuje na kierunek przepływu prądu. W przypadku zacisku 22, który jest połączony z zaciskiem 13 stycznika K1, błędne zrozumienie położenia tych zacisków prowadzi do mylnych wniosków. Zacisk 3 listwy zaciskowej X1 również nie jest poprawnym odpowiedzią, ponieważ według schematu nie ma bezpośredniego połączenia z zaciskiem 42 K2, które jest kluczowe do zrozumienia obwodu. Typowym błędem myślowym jest założenie, że zaciski w pobliżu siebie muszą być ze sobą połączone, co nie zawsze jest prawdą. Zrozumienie zasadności danego połączenia oraz analizy schematów elektrycznych to umiejętności, które wymagają praktyki i doświadczenia. W branży elektrycznej, błędne połączenia mogą prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń czy nawet zagrożenie dla bezpieczeństwa. Dlatego tak istotne jest, aby pełne zrozumienie schematu oraz połączeń miało miejsce przed dokonaniem jakichkolwiek działań montażowych.

Pytanie 38

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 2.
B. Przyrząd 3.
C. Przyrząd 4.
D. Przyrząd 1.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 39

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Napięcia dotykowego
B. Rezystancji izolacji
C. Rezystancji uziemienia
D. Impedancji zwarciowej
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 40

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór innej oprawy oświetleniowej, niż C, wskazuje na pewne nieporozumienia dotyczące klasyfikacji i kryteriów doboru opraw według stopnia ochrony IK. Wiele z odpowiedzi A, B i D może wydawać się odpowiednich na pierwszy rzut oka, jednak ich konstrukcja oraz ekspozycja na czynniki zewnętrzne mogą znacząco obniżyć ich wytrzymałość mechaniczną. Oprawy A i B posiadają elementy, które są bardziej narażone na uszkodzenia, takie jak wystające żarówki czy inne komponenty, co czyni je mniej odpornymi na uderzenia. Odpowiedzi te mogą wynikać z błędnego rozumienia, że bardziej estetyczne lub skomplikowane rozwiązania techniczne, takie jak złożone konstrukcje, oferują lepsze zabezpieczenie. W rzeczywistości najważniejszym czynnikiem jest prostota i solidność konstrukcji, co zwiększa odporność na uszkodzenia mechaniczne. Wybór oprawy z wyższym stopniem ochrony IK, jak w przypadku opcji C, jest kluczowy, szczególnie w obszarach narażonych na intensywne użytkowanie. Warto zwrócić uwagę, że nieprzestrzeganie standardów dotyczących odporności mechanicznej może prowadzić do częstszych awarii oraz zwiększonych kosztów eksploatacji. Dlatego zaleca się posługiwanie się wyłącznie sprawdzonymi i odpowiednimi standardami branżowymi w doborze opraw oświetleniowych.