Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 18 grudnia 2025 19:59
  • Data zakończenia: 18 grudnia 2025 20:03

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. uchwytu widełkowego ze sworzniem.
B. kołnierza.
C. łap mocujących.
D. ucha ze sworzniem.
Łapy mocujące to bardzo popularny sposób przytwierdzania siłowników, zwłaszcza w zastosowaniach przemysłowych. Dzięki swojej konstrukcji zapewniają stabilność i łatwość montażu w różnych pozycjach. Są często używane w systemach, gdzie istnieje potrzeba montażu na powierzchniach płaskich. Mocowanie za pomocą łap jest zgodne z wieloma standardami, takimi jak ISO 6020/2 dla siłowników hydraulicznych. W praktyce stosuje się je w maszynach budowlanych, liniach produkcyjnych czy w przemyśle samochodowym. Przewagą łap mocujących jest możliwość łatwego dostosowania i demontażu, co jest kluczowe w środowiskach, gdzie częsta konserwacja jest niezbędna. Co więcej, umożliwiają one absorpcję obciążeń bocznych, co zwiększa trwałość i żywotność całego układu. Dzięki temu ich użycie jest efektywne i ekonomiczne na dłuższą metę. Warto również pamiętać, że odpowiednie rozmieszczenie śrub mocujących łapy do podłoża gwarantuje równomierne rozłożenie obciążeń, co jest podstawą dobrej praktyki inżynierskiej.

Pytanie 2

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-45.
B. zaciskania tulejek.
C. ściągania izolacji.
D. zaciskania wtyków RJ-11.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 3

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. XNOR
Na rysunku widzimy schemat, który realizuje funkcję logiczną NAND. To jest dość popularna operacja w logice cyfrowej, szczególnie w układach sterowania przemysłowego. Operacja NAND jest kombinacją operacji AND i NOT - daje wynik prawdziwy, jeżeli przynajmniej jeden z jej wejść jest fałszywy. W praktyce oznacza to, że wyjście będzie wyłączone tylko wtedy, gdy oba wejścia są w stanie wysokim (1). Ten rodzaj logiki jest często stosowany w projektowaniu zabezpieczeń, gdzie konieczne jest wyłączenie systemu w przypadku odczytu niepożądanych stanów na wejściach. W codziennej pracy inżynierskiej, bramka NAND jest uważana za jedną z najczęściej używanych, bo pozwala na realizację dowolnej funkcji logicznej przy użyciu odpowiednich kombinacji. Dodatkowo, z mojego doświadczenia, w układach sterowania PLC, stosowanie NAND jest efektywne i oszczędza miejsce oraz zasoby, co jest zgodne z dobrymi praktykami projektowania.

Pytanie 4

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica napięcia 2x24 V DC / 230 V AC
B. Obiektowy separator napięć 24 V DC
C. Przetwornica akumulatorowa 2x24 V / 230 V AC
D. Zasilacz 230 V AC / 24 V DC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 5

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. dynamometryczny.
B. grzechotkowy.
C. przegubowy.
D. udarowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 6

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. styki.
B. zworę.
C. cewkę.
D. rdzeń.
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 7

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. zawór.
B. smarownicę.
C. manometr.
D. filtr.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 8

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 2
Ilustracja do odpowiedzi A
B. Ilustracja 1
Ilustracja do odpowiedzi B
C. Ilustracja 3
Ilustracja do odpowiedzi C
D. Ilustracja 4
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 9

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 1001.
B. input SW1 - 10001100, output SW2 - 0000.
C. input SW1 - 01011010, output SW2 - 0110.
D. input SW1 - 01001001, output SW2 - 0000.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 10

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy φ10 wykonane pod montaż czujników indukcyjnych?

A. Mikrometr zewnętrzny.
B. Przymiar kreskowy.
C. Suwmiarkę uniwersalną.
D. Czujnik zegarowy.
Suwmiarka uniwersalna to wszechstronne narzędzie pomiarowe, które odgrywa kluczową rolę w przemysłowej kontroli jakości oraz w warsztatowych pomiarach. Dzięki niej możemy z dużą precyzją, bo aż do 0,1 mm, mierzyć różne wielkości, takie jak średnice zewnętrzne, wewnętrzne, a także głębokości. W przypadku otworów o średnicy φ10, suwmiarka jest idealnym wyborem, ponieważ jej szczęki pomiarowe są zaprojektowane tak, aby dokładnie wpasować się w otwory, co pozwala na precyzyjne odczyty bez ryzyka błędu wynikającego z niedopasowania przyrządu. Przykładowo, w branży produkcji czujników indukcyjnych, gdzie precyzja montażu jest kluczowa, stosowanie suwmiarki uniwersalnej zapewnia, że czujniki będą prawidłowo umieszczone. Ponadto stosowanie suwmiarki jest zgodne z dobrymi praktykami metrologicznymi i zaleceniami norm ISO dotyczących pomiarów warsztatowych. Z mojego doświadczenia wynika, że choć nowoczesne technologie oferują bardziej zaawansowane narzędzia, to suwmiarka pozostaje niezastąpiona w codziennych zadaniach, łącząc prostotę z dokładnością, co czyni ją nieodzownym narzędziem w rękach każdego technika.

Pytanie 11

Na ilustracji przedstawiono

Ilustracja do pytania
A. separator sygnałów USB.
B. zadajnik cyfrowo-analogowy.
C. elektroniczny czujnik ciśnienia.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 12

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. OR
B. NOT
C. NAND
D. AND
{"correct_feedback":"Poprawna odpowiedź to bramka AND. W przedstawionym układzie logicznym pierwsza bramka po lewej (OR, oznaczona symbolem ≥1) otrzymuje na wejście sygnały 1 i 0, więc zgodnie z zasadą OR na wyjściu powinna dać logiczne 1 – i faktycznie tak jest. Następnie sygnał ten trafia do bramki AND razem z drugim wejściem o wartości 0. Działanie poprawnej bramki AND polega na tym, że na wyjściu pojawia się logiczna 1 tylko wtedy, gdy oba wejścia mają wartość 1. W tym przypadku jedno wejście to 1, drugie 0 – więc wynik powinien być 0. Tymczasem na rysunku wyjście tej bramki AND wynosi 1, co jednoznacznie wskazuje, że to właśnie ona jest uszkodzona. W praktyce takie błędy są typowe dla układów TTL i CMOS po przepięciach lub przegrzaniu – bramka może „zawiesić się” w stanie wysokim. Moim zdaniem warto zapamiętać, że diagnostyka bramek logicznych zawsze zaczyna się od analizy tabel prawdy i porównania ich z rzeczywistymi stanami – to prosty, ale skuteczny sposób na wykrycie usterki w dowolnym układzie cyfrowym.

Pytanie 13

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. redukcyjny.
B. dławiący.
C. zwrotny.
D. bezpieczeństwa.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 14

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DS-w
B. LY-w
C. DG-w
D. DY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 15

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. DIV
B. ADD
C. MUL
D. SUB
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 16

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. silnik prądu stałego.
B. multimetr cyfrowy.
C. autotransformator.
D. opornik dekadowy.
Autotransformator to bardzo ciekawe urządzenie, które często znajduje zastosowanie w laboratoriach i różnych systemach elektrycznych. Ma jedno uzwojenie, które pełni zarówno funkcję pierwotną, jak i wtórną. Dzięki temu jest bardziej kompaktowy i efektywny kosztowo niż standardowy transformator dwuuzwojeniowy. Często używa się go do regulacji napięcia przemiennego w sposób płynny. To znaczy, że możesz precyzyjnie dostosować napięcie wyjściowe do swoich potrzeb, co jest niezwykle przydatne w sytuacjach, gdy wymagana jest zmienna wartość napięcia, np. w testach laboratoryjnych czy w zasilaniu urządzeń elektrycznych o różnych wymaganiach. W praktyce autotransformatory są używane w przemyśle do zasilania maszyn o różnych standardach napięcia oraz w systemach przesyłowych do regulacji poziomów napięcia. Co ciekawe, pomimo swojej prostoty, autotransformatory muszą być używane z odpowiednią ostrożnością. Dobry projekt i odpowiednie zabezpieczenia to klucz do ich bezpiecznego użycia. Warto też pamiętać, że zgodnie z normami, ich stosowanie powinno uwzględniać specyficzne wymagania systemów elektrycznych, aby uniknąć przeciążeń i uszkodzeń.

Pytanie 17

Który rysunek przedstawia symbol graficzny zestyku przekaźnika czasowego o opóźnionym załączeniu?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – to symbol zestyków przekaźnika czasowego o opóźnionym załączeniu. Charakterystycznym elementem jest łukowata linia przy stykach, oznaczająca działanie zależne od czasu. W praktyce oznacza to, że po podaniu napięcia na cewkę przekaźnika zestyk nie załącza się od razu, lecz dopiero po upływie określonego czasu ustawionego na przekaźniku. Takie przekaźniki są stosowane np. w układach automatyki, gdzie konieczne jest sekwencyjne uruchamianie urządzeń – wentylator włącza się dopiero po kilku sekundach od startu silnika, oświetlenie awaryjne reaguje z opóźnieniem lub grzałka załącza się po stabilizacji układu. W dokumentacji technicznej zapis symbolu jest zgodny z normami PN-EN 60617. Moim zdaniem warto zapamiętać, że łuk w symbolu zawsze oznacza funkcję czasową – a jego położenie względem styków określa, czy chodzi o opóźnione załączenie, czy opóźnione wyłączenie.

Pytanie 18

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

Ilustracja do pytania
A. Klucz oczkowy.
B. Wkrętak krzyżakowy.
C. Klucz nasadowy.
D. Wkrętak płaski.
Wybór wkrętaka płaskiego jako narzędzia do demontażu przycisku sterującego jest trafny z kilku powodów. Po pierwsze, większość przycisków i elementów sterujących zaprojektowano z myślą o łatwym montażu i demontażu, co często wymaga jedynie podstawowych narzędzi, jak właśnie wkrętak płaski. Wkrętak ten umożliwia precyzyjne działanie na śruby lub zaczepy bez ryzyka uszkodzenia plastikowych elementów obudowy. Z mojego doświadczenia wynika, że wkrętaki płaskie są niezastąpione w sytuacjach, gdzie przestrzeń jest ograniczona, a demontaż wymaga delikatności. Standardy branżowe często zalecają użycie narzędzi minimalizujących uszkodzenia, co może mieć znaczenie przy obsłudze delikatnych urządzeń elektronicznych. Praktyczne zastosowanie wkrętaka płaskiego obejmuje nie tylko demontaż, ale również możliwość korekty ustawienia elementów montażowych, co czyni go uniwersalnym narzędziem w skrzynce każdego majsterkowicza.

Pytanie 19

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. zawór.
B. manometr.
C. smarownicę.
D. filtr.
Manometr to urządzenie, które służy do pomiaru ciśnienia gazów lub cieczy. Na schemacie zespołu przygotowania powietrza ten symbol wskazuje na obecność manometru. W praktyce manometry są niezwykle istotne w systemach pneumatycznych, ponieważ pomagają monitorować i utrzymywać odpowiednie ciśnienie robocze. Bez prawidłowego ciśnienia, systemy mogą działać nieefektywnie lub, co gorsza, uszkodzić się. W standardach inżynieryjnych, manometry są zazwyczaj montowane w miejscach łatwo dostępnych, aby umożliwić szybki odczyt i ocenę sytuacji. Ich zastosowanie jest szerokie - od przemysłowych kompresorów, przez systemy grzewcze, aż po instalacje wodociągowe. Dzięki manometrom można szybko zdiagnozować problemy z ciśnieniem, co jest kluczowe w utrzymaniu bezpieczeństwa i efektywności systemów. Moim zdaniem, umiejętność prawidłowego odczytywania i interpretowania wskazań manometrów jest jednym z podstawowych elementów wiedzy każdego technika zajmującego się systemami pneumatycznymi czy hydraulicznymi. To nie tylko teoria, ale praktyka, którą warto znać.

Pytanie 20

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ prawidłowo przedstawia początek sekwencji współbieżnej w sieci SFC (Sequential Function Chart). Sekwencja współbieżna to taki typ organizacji procesu, gdzie równocześnie mogą być wykonywane różne zadania, co jest osiągane dzięki odpowiedniemu rozdzieleniu kroków. Na rysunku widzimy, że po kroku 1, sekwencja rozdziela się na dwa równoległe kroki: krok 2 i krok 3, co jest zgodne z zasadami projektowania SFC. W praktyce takie podejście jest niezwykle przydatne w systemach automatyki przemysłowej, gdzie konieczne jest jednoczesne wykonanie kilku niezależnych procesów. Standardy takie jak IEC 61131-3 jasno określają, jak powinny wyglądać diagramy sekwencyjne, a poprawne ich stosowanie zwiększa czytelność i efektywność systemów sterowania. Ważne jest, aby zrozumieć, że każda linia pozioma na diagramie SFC oznacza punkt synchronizacji, zapewniający, że wszystkie równoległe czynności są zakończone przed przejściem do następnego etapu. Dzięki temu możemy utrzymać pełną kontrolę nad sekwencją zdarzeń, co jest kluczowe w środowiskach wymagających wysokiej niezawodności.

Pytanie 21

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. magnetyczny.
B. indukcyjny.
C. pojemnościowy.
D. optyczny.
Odpowiedź optyczny jest prawidłowa, ponieważ w systemach bezpieczeństwa często stosuje się bariery świetlne, które opierają się na technologii optycznej. Tego typu czujniki składają się z nadajnika i odbiornika, które tworzą niewidzialną linię światła, najczęściej podczerwonego. Kiedy coś lub ktoś przecina tę linię, system jest w stanie natychmiast zareagować, na przykład zatrzymać maszynę, co jest kluczowe dla zapewnienia bezpieczeństwa pracowników. W wielu zakładach przemysłowych bariery optyczne są standardem, ponieważ pozwalają na szybkie i skuteczne wykrywanie obecności osób w niebezpiecznych strefach. Co więcej, dzięki różnorodnym konfiguracjom, można je dostosować do specyficznych potrzeb danego stanowiska pracy. Moim zdaniem, zastosowanie technologii optycznej w takich rozwiązaniach jest jednym z najlepszych przykładów na to, jak nowoczesna technologia wpływa na poprawę warunków bezpieczeństwa w przemyśle. Nowoczesne standardy BHP często wymagają stosowania takich rozwiązań, co podkreśla ich znaczenie w dzisiejszym środowisku pracy.

Pytanie 22

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawna jest odpowiedź przedstawiająca symbol przekładni zębatej. Na rysunku technicznym taki symbol oznacza dwa współpracujące koła zębate, które przenoszą moment obrotowy z jednego wału na drugi. Linie prostopadłe i krótkie poprzeczne kreski pokazują położenie osi i zazębienie. W praktyce konstrukcyjnej stosuje się ten zapis w schematach kinematycznych, gdzie nie pokazuje się kształtu zębów, tylko sposób przeniesienia napędu. Przekładnie zębate są bardzo powszechne – można je spotkać w skrzyniach biegów, mechanizmach obrabiarek, napędach bram czy robotach przemysłowych. Ich główną zaletą jest duża sprawność i możliwość przenoszenia dużych momentów przy niewielkich stratach energii. W dokumentacji technicznej obowiązują normy PN-EN ISO, które określają dokładnie wygląd symboli, dzięki czemu każdy inżynier lub technik może zrozumieć rysunek niezależnie od kraju. Moim zdaniem dobrze jest zapamiętać ten symbol, bo pojawia się on w większości schematów maszynowych.

Pytanie 23

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. obciążalności prądowej.
B. parametrów ekonomicznych.
C. dopuszczalnego spadku napięcia.
D. skuteczności ochrony przeciwporażeniowej.
Przy doborze przewodów w instalacji elektrycznej, uwzględnienie parametrów ekonomicznych jest rzeczywiście mniej istotne w porównaniu do innych kryteriów. Choć koszty instalacji mogą mieć znaczenie w kontekście budżetowania projektu, są one drugorzędne w stosunku do kwestii bezpieczeństwa i wydajności. Dla elektryka priorytetem jest zapewnienie, że przewody spełniają odpowiednie normy techniczne i bezpieczeństwa. W praktyce oznacza to, że większą wagę przykłada się do obciążalności prądowej, dopuszczalnego spadku napięcia oraz skuteczności ochrony przeciwporażeniowej. Standardy takie jak PN-IEC 60364 wymagają, aby przewody były dobrane zgodnie z ich zdolnością do przenoszenia prądu i zapewniały minimalny spadek napięcia, co ma kluczowe znaczenie dla efektywności energetycznej systemu. Skuteczność ochrony przeciwporażeniowej jest również nie do przecenienia, ponieważ chroni przed porażeniem prądem elektrycznym. Podsumowując, parametry ekonomiczne są ważne, ale w kontekście projektowania instalacji elektrycznych ustępują miejsca bardziej krytycznym czynnikom technicznym, które zapewniają bezpieczeństwo i niezawodność systemu.

Pytanie 24

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

A. mikrometr.
B. szczelinomierz.
C. liniał sinusowy.
D. przymiar kreskowy.
Szczelinomierz to narzędzie powszechnie stosowane w przemyśle, gdy chcemy zmierzyć niewielkie luki między powierzchniami. Złożony jest z zestawu cienkich blaszek o różnej grubości, które pozwalają na dokładne określenie wielkości szczeliny. Wyobraź sobie sytuację, w której montujesz dwie metalowe części i musisz upewnić się, że pasują do siebie idealnie. W takim przypadku szczelinomierz jest nieoceniony. Często używają go mechanicy samochodowi do ustawiania luzów zaworowych w silnikach spalinowych. Z mojego doświadczenia wynika, że umiejętne posługiwanie się szczelinomierzem potrafi zaoszczędzić wiele problemów związanych z nadmiernym zużyciem części lub hałasem. W standardach przemysłowych często wymaga się precyzyjnego dopasowania elementów, a szczelinomierz jest narzędziem, które umożliwia sprostanie tym wymaganiom. Pamiętaj, że właściwy dobór narzędzi pomiarowych w dużym stopniu wpływa na jakość gotowego produktu, co jest kluczowe, szczególnie w produkcji masowej. Dodatkowo, użycie szczelinomierza jest stosunkowo proste i szybkie, nie wymaga skomplikowanych procedur kalibracyjnych, co czyni go idealnym wyborem w wielu sytuacjach przemysłowych.

Pytanie 25

W dokumentacji powykonawczej nie jest wymagane umieszczać

A. faktur lub innych dowodów zakupu z cenami.
B. warunków gwarancji.
C. protokołów pomiarowych.
D. certyfikatów użytych materiałów.
Faktury i inne dowody zakupu z cenami to dokumenty, które są istotne z punktu widzenia księgowego i finansowego, ale niekoniecznie muszą być częścią dokumentacji powykonawczej. Taka dokumentacja ma na celu przede wszystkim dostarczenie pełnych informacji technicznych dotyczących zrealizowanego projektu budowlanego lub instalacyjnego. Standardy branżowe, jak np. PN-EN 14351 czy PN-EN 1090, koncentrują się na zapewnieniu zgodności wykonanych prac z wymaganiami technicznymi i normami, dlatego też zawierają protokoły pomiarowe, certyfikaty użytych materiałów oraz warunki gwarancji. Te elementy świadczą o jakości wykonania i zgodności z przepisami. Faktury natomiast dotyczą aspektu ekonomicznego projektu i są wymagane raczej przez dział finansowy niż w kontekście odbioru technicznego. Moim zdaniem, znajomość różnicy między dokumentacją techniczną a finansową jest kluczowa w pracy inżynierskiej, ponieważ pozwala na lepsze zrozumienie potrzeb różnych działów w firmie. W codziennej praktyce warto pamiętać, że chociaż faktury są ważne dla rozliczeń, to w kontekście technicznym najważniejsza jest zgodność z projektem i normami.

Pytanie 26

Na schemacie przedstawiono

Ilustracja do pytania
A. regulowany wzmacniacz napięć lub prądów zmiennych.
B. przetwornik pomiarowy prądu lub napięcia AC.
C. konwerter łącza szeregowego na łącze światłowodowe.
D. przetwornik napięcia AC na prąd AC.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 27

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 4.
B. Rozrusznik 2.
C. Rozrusznik 3.
D. Rozrusznik 1.
Rozrusznik 3, ATS01N125, jest idealny do zastosowania w środowisku wysokiego zapylenia dzięki swojej obudowie o stopniu ochrony IP 67. To oznacza, że jest całkowicie odporny na kurz i może wytrzymać zanurzenie w wodzie do określonej głębokości i czasu. To kluczowy aspekt, gdy planujesz montaż urządzeń w trudnych warunkach środowiskowych, gdzie pył może wpływać na działanie sprzętu. Moim zdaniem, wybór odpowiedniego stopnia ochrony to absolutna podstawa w takich sytuacjach. Dodatkowo, ten model obsługuje napięcia 1x230 V, co jest zgodne z potrzebami dla silnika jednofazowego. Zastosowanie softstartu nie tylko wydłuża żywotność silnika, ale także zmniejsza zużycie energii podczas uruchamiania, co jest korzystne z punktu widzenia ekonomii i ochrony środowiska. Dzięki temu można uniknąć nagłych skoków prądu, które mogą uszkodzić inne komponenty systemu. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi i standardami branżowymi, gdzie zawsze warto kierować się niezawodnością i bezpieczeństwem.

Pytanie 28

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. AQ
B. AI
C. I
D. Q
Sterowniki PLC, czyli programowalne sterowniki logiczne, są kluczowym elementem w automatyce przemysłowej. W ich działaniu wykorzystuje się różne typy sygnałów, które są oznaczane unikalnymi symbolami literowymi. Wejścia cyfrowe w sterownikach PLC oznacza się literą 'I' od angielskiego słowa 'input'. Taki sygnał cyfrowy jest kluczowy w przekazywaniu danych do sterownika z różnych czujników i przełączników, które są częścią procesu przemysłowego. Co ciekawe, te sygnały pozwalają na odczytanie informacji o stanie procesów, takich jak obecność produktu na taśmie czy pozycja urządzenia. W praktyce, wejścia te są często związane z urządzeniami typu przyciski lub przełączniki krańcowe, które umożliwiają bezpośredni odczyt stanów logicznych '0' lub '1'. Z mojego doświadczenia, wiedza ta jest niezastąpiona podczas projektowania i uruchamiania instalacji automatyki. Warto pamiętać, że prawidłowe oznaczenie i zrozumienie działania wejść cyfrowych jest podstawą do efektywnej pracy z PLC i pozwala na osiągnięcie wysokiej efektywności i niezawodności systemów automatyki.

Pytanie 29

Na podstawie przedstawionych w tabeli danych katalogowych wskaż zasilacz, którego należy użyć do zasilania akcesoriów napędu bram garażowych.

Dane katalogowe napędu bram garażowych
Napięcie zasilania (V ~/Hz)230/50
Napięcie zasilania akcesoriów (V DC)24
Maks. obciążenie akcesoriów [mA]200
Układ logicznyAutomatyczny/półautomatyczny
Wyprowadzenie płytyOtwieranie/stop/zabezpieczenia/układ kontrolny/ lampka błyskowa 24 V DC
Czas świecenia lampy oświetleniowej2 min


Zasilacz1234
Napięcie wejściowe110 ÷ 230 V AC,
50 ÷ 60 Hz
110 ÷ 230 V AC,
50 ÷ 60 Hz
230 V AC,
50 Hz
230 V AC,
50 Hz
Napięcie wyjściowe13,8 V DC12 V DC24 V AC24 V DC
Maksymalny prąd wyjściowy0,25 A2 A0,5 A0,3 A
A. 3
B. 1
C. 2
D. 4
Zastanówmy się, dlaczego zasilacz nr 4 jest najlepszym wyborem. Po pierwsze, napięcie zasilania akcesoriów według danych katalogowych wynosi 24 V DC. To oznacza, że potrzebujemy zasilacza, który dostarczy właśnie takie napięcie wyjściowe. Zasilacz nr 4 spełnia ten wymóg, ponieważ jego napięcie wyjściowe wynosi 24 V DC. To jest kluczowe, ponieważ użycie zasilacza o niewłaściwym napięciu mogłoby uszkodzić akcesoria lub spowodować ich nieprawidłowe działanie. Po drugie, maksymalne obciążenie akcesoriów wynosi 200 mA, co oznacza, że zasilacz musi dostarczać przynajmniej taki prąd. Zasilacz nr 4 może dostarczać prąd do 0,3 A, czyli 300 mA, co jest wystarczające. W praktyce stosowanie zasilacza, który ma trochę większy zapas prądu, jest dobrą praktyką, bo zapewnia stabilność zasilania i wydłuża żywotność sprzętu. Branża często zaleca, aby zasilacze miały przynajmniej 20% marginesu w stosunku do maksymalnego poboru prądu akcesoriów. Pamiętajmy, że odpowiedni dobór zasilacza to nie tylko kwestia jego parametrów elektrycznych, ale także bezpieczeństwa i niezawodności całego systemu. Moim zdaniem, zawsze warto zwracać uwagę na te szczegóły, bo mogą one decydować o długoterminowym funkcjonowaniu urządzeń.

Pytanie 30

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 440 ÷ 480 V
B. 220 ÷ 240 V
C. 380 ÷ 420 V
D. 254 ÷ 277 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 31

Na schemacie przedstawiono

Ilustracja do pytania
A. konwerter łącza szeregowego na łącze światłowodowe.
B. przetwornik napięcia AC na prąd AC.
C. przetwornik pomiarowy prądu lub napięcia AC.
D. regulowany wzmacniacz napięć lub prądów zmiennych.
Na schemacie przedstawiono konwerter łącza szeregowego RS-232 na łącze światłowodowe. Urządzenie tego typu przekształca standardowe sygnały elektryczne (TxD, RxD, 0V) w sygnały optyczne, które mogą być przesyłane na duże odległości za pomocą światłowodu. Na schemacie widać typowe oznaczenia dla interfejsu RS-232 – linie transmisji i odbioru danych (TxD, RxD) oraz ekranowanie (Sh). Po stronie FO (Fiber Optic) znajdują się diody nadawcze i odbiorcze, które zamieniają impulsy elektryczne na światło i odwrotnie. Tego typu konwertery stosuje się, gdy trzeba zapewnić odporność transmisji na zakłócenia elektromagnetyczne, wydłużyć dystans lub odizolować galwanicznie dwa urządzenia. Moim zdaniem to świetne rozwiązanie w przemyśle, szczególnie przy połączeniach między sterownikami PLC a komputerem operatorskim, gdzie odległość przekracza kilka metrów. Konwerter pozwala na zachowanie pełnej funkcjonalności RS-232, a jednocześnie gwarantuje niezawodność transmisji nawet w trudnych warunkach środowiskowych. Typowy zakres napięć zasilania (24–240 V AC/DC) pozwala na uniwersalne zastosowanie w szafach sterowniczych, co jest zgodne z przemysłowymi standardami komunikacji.

Pytanie 32

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
B. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
C. Blok przerzutnika synchronicznego RS z dominującym wejściem S
D. Blok przerzutnika synchronicznego RS z dominującym wejściem R
Świetnie, że wybrałeś przerzutnik asynchroniczny RS z dominującym wejściem R. To oznacza, że zrozumiałeś, jak działa ten typ przerzutnika. Przerzutniki asynchroniczne działają bez potrzeby sygnału zegarowego, co pozwala na bardziej elastyczne sterowanie. W tym przypadku, wejście R ma priorytet, co oznacza, że gdy jest aktywne, wymusi stan niski na wyjściu Q niezależnie od stanu wejścia S. Jest to kluczowe w aplikacjach, gdzie ważne jest, by móc natychmiastowo zresetować układ, np. w systemach sterowania awaryjnego. W praktyce takie przerzutniki są często stosowane w automatyce przemysłowej, gdzie priorytet resetu zapewnia bezpieczeństwo i stabilność systemu. Z mojego doświadczenia wynika, że znajomość różnic między przerzutnikami synchronicznymi i asynchronicznymi jest fundamentalna dla każdego inżyniera automatyki. Wiedza ta pozwala na bardziej efektywne projektowanie układów logicznych i unikanie potencjalnych błędów w implementacji algorytmów sterowania.

Pytanie 33

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. USB
B. ETHERNET
C. RS-232
D. OBD II
Sterownik PLC przedstawiony na ilustracji korzysta z interfejsu ETHERNET, co jest powszechnym standardem w nowoczesnych systemach automatyki przemysłowej. Ethernet umożliwia szybkie przesyłanie danych i łatwą integrację z siecią lokalną oraz Internetem. Dzięki temu możemy zdalnie monitorować i kontrolować pracę systemów, co znacznie zwiększa ich elastyczność i efektywność. W praktyce oznacza to, że można na przykład zdalnie wgrywać nowe programy, aktualizować oprogramowanie, a także diagnozować ewentualne problemy bez potrzeby fizycznego dostępu do urządzenia. Z mojego doświadczenia, Ethernet w PLC to właściwie standard. Jest też niezwykle pomocny w integracji z innymi systemami, jak SCADA, co pozwala na kompleksowe zarządzanie procesami produkcyjnymi. Warto też wspomnieć, że Ethernet w sterownikach PLC wspiera protokoły takie jak Modbus TCP/IP czy Profinet, co dodatkowo ułatwia komunikację między różnymi urządzeniami w sieci.

Pytanie 34

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4
Dioda prostownicza oznaczona jest na płytce cyfrą 3, co jest kluczowe w kontekście układów elektronicznych. Dioda prostownicza pełni rolę zaworu jednokierunkowego, umożliwiając przepływ prądu tylko w jednym kierunku. W praktyce, wykorzystuje się ją głównie do prostowania prądu zmiennego (AC) na prąd stały (DC). W elektronice jest to niezbędne, na przykład w zasilaczach, które muszą dostarczyć prąd stały do urządzeń. Standardowo, zgodnie z normami branżowymi, oznaczenie na płytce drukowanej (PCB) pozwala na szybkie zidentyfikowanie komponentów, co jest ważne dla serwisu i napraw. Warto zwrócić uwagę, że diody prostownicze mogą różnić się parametrami, takimi jak prąd przewodzenia czy napięcie przebicia, co determinuje ich zastosowanie w różnych układach. Pamiętaj, że dobre praktyki projektowe zalecają stosowanie odpowiednich zabezpieczeń, np. bezpieczników, aby uniknąć uszkodzeń w przypadku awarii diody.

Pytanie 35

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. oczkowy.
B. hakowy.
C. imbusowy.
D. dynamometryczny.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.

Pytanie 36

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 6,80 mm
B. 7,80 mm
C. 7,25 mm
D. 7,00 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 37

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Transametru.
B. Suwmiarki uniwersalnej.
C. Mikrometru.
D. Czujnika zegarowego.
Czujnik zegarowy to bardzo precyzyjne narzędzie pomiarowe, które jest powszechnie stosowane do kontroli równoległości powierzchni. Dzięki swojej konstrukcji pozwala na dokładne mierzenie odchyłek powierzchni w stosunku do referencyjnej linii prostej lub płaszczyzny. Czujnik zegarowy posiada wskazówkę, która precyzyjnie wskazuje różnice w wysokości na powierzchni, umożliwiając tym samym dokładną ocenę równoległości. W praktyce, gdy chcemy ocenić, czy dwie powierzchnie są równoległe, mocujemy czujnik na podstawie magnetycznej i przeprowadzamy pomiar wzdłuż jednej powierzchni, obserwując odczyty na skali. Przy braku odchyłek, wskazówka czujnika nie powinna się znacząco poruszać. Jest to zgodne z zasadą stosowania czujników do kontroli równoległości, co jest standardem w branży obróbki metalu, gdzie precyzja jest kluczowa. Moim zdaniem, czujnik zegarowy to jeden z najbardziej uniwersalnych przyrządów pomiarowych, który każdy technik powinien umieć obsługiwać. Pozwala na uzyskanie dokładnych pomiarów, co jest szczególnie istotne w procesach, gdzie liczy się każdy mikrometr.

Pytanie 38

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 39

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. wkrętaka krzyżowego.
B. wkrętaka płaskiego.
C. klucza płaskiego.
D. klucza imbusowego.
Poprawna odpowiedź to klucz płaski. Na zdjęciu widać typowe przyłącze pneumatyczne z gwintem zewnętrznym i sześciokątną częścią korpusu, które umożliwia jego montaż lub demontaż za pomocą klucza płaskiego lub oczkowego. Ten kształt sześciokąta jest właśnie po to, by narzędzie dobrze przylegało do powierzchni i nie uszkodziło gwintu ani obudowy. W praktyce technicznej, szczególnie w pneumatyce i hydraulice, takie złącza występują w dużych ilościach, np. przy siłownikach, rozdzielaczach i przewodach ciśnieniowych. Klucz płaski pozwala uzyskać odpowiedni moment dokręcenia bez ryzyka zniszczenia gniazda, co bywa problemem przy użyciu kombinerek czy wkrętaków. Moim zdaniem warto pamiętać, by zawsze dobrać właściwy rozmiar klucza (np. 12 mm, 14 mm), a przed demontażem odłączyć źródło sprężonego powietrza – to drobiazg, ale często pomijany w warsztacie. Dobrą praktyką jest też użycie niewielkiej ilości taśmy teflonowej przy ponownym montażu, żeby zapewnić szczelność połączenia.

Pytanie 40

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wyjściowego.
C. interfejsu komunikacyjnego.
D. modułu wejściowego.
Urządzenie oznaczone jako ADMC-1801 działa jako moduł wejściowy w systemie PLC. W kontekście automatyki przemysłowej, moduły wejściowe mają kluczowe znaczenie, ponieważ umożliwiają sterownikowi PLC odbieranie sygnałów z otoczenia, takich jak temperatury, ciśnienia lub stanów przełączników. W tym przypadku, ADMC-1801 jest połączony z czujnikiem PT100, co wskazuje na pomiar temperatury. Moduły wejściowe przetwarzają sygnały analogowe lub cyfrowe na format, który może być zrozumiany przez PLC. To zgodne z dobrymi praktykami branżowymi, które zalecają użycie dedykowanych modułów do konkretnych typów sygnałów, co optymalizuje dokładność i niezawodność systemu. W praktyce, umiejętne korzystanie z modułów wejściowych pozwala na precyzyjne sterowanie procesami technologicznymi, co z kolei przekłada się na zwiększoną efektywność produkcji i minimalizację błędów. Moim zdaniem, zrozumienie roli takich modułów to podstawa w automatyce, bo pozwala na lepsze projektowanie i implementowanie systemów automatyki, zgodnie z normami takimi jak IEC 61131.