Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 17 grudnia 2025 16:42
  • Data zakończenia: 17 grudnia 2025 17:09

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Administrator systemu Windows Server zamierza zorganizować użytkowników sieci w różnorodne grupy, które będą miały zróżnicowane uprawnienia do zasobów w sieci oraz na serwerze. Najlepiej osiągnie to poprzez zainstalowanie roli

A. serwera DHCP
B. usługi wdrażania systemu Windows
C. serwera DNS
D. usługi domenowe AD
Usługi domenowe Active Directory (AD) to kluczowy element infrastruktury zarządzania użytkownikami i zasobami w systemie Windows Server. Dzięki tej roli administratorzy mogą tworzyć i zarządzać różnymi grupami użytkowników, co pozwala na efektywne przydzielanie uprawnień do zasobów w sieci. Przykładowo, można skonfigurować grupy dla różnych działów w firmie, takich jak sprzedaż, marketing czy IT, co umożliwia wdrażanie polityk bezpieczeństwa oraz kontroli dostępu do plików i aplikacji. Standardy branżowe, takie jak model RBAC (Role-Based Access Control), opierają się na zasadzie, że użytkownicy powinni mieć dostęp tylko do zasobów, które są im niezbędne do wykonywania swoich zadań. Implementacja AD wspiera ten model, co jest zgodne z praktykami zarządzania bezpieczeństwem w organizacjach. Ponadto, AD pozwala na scentralizowane zarządzanie użytkownikami, co upraszcza procesy administracyjne i zwiększa bezpieczeństwo systemu.

Pytanie 2

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. fec0/10
B. ff00/8
C. fc00/7
D. fe80/10
Odpowiedź 'fe80/10' jest poprawna, ponieważ jest to prefiks przydzielony adresom lokalnym łącza (Link-Local Addresses) w protokole IPv6. Adresy te są używane do komunikacji w sieciach lokalnych i nie są routowalne w Internecie. Prefiks 'fe80' oznacza, że adresy te mają zakres od 'fe80::' do 'febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff'. Adresy lokalne łącza są automatycznie przypisywane do interfejsów sieciowych, co umożliwia urządzeniom w tej samej sieci lokalnej komunikację bez konieczności konfiguracji serwera DHCP. Przykład zastosowania to komunikacja między urządzeniami w domowej sieci lokalnej, gdzie urządzenia mogą wykrywać się nawzajem i przesyłać dane bez dodatkowej konfiguracji. W kontekście standardów, adresy te są zgodne z dokumentem RFC 4862, który definiuje zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 3

Który element zabezpieczeń znajduje się w pakietach Internet Security (IS), ale nie występuje w programach antywirusowych (AV)?

A. Monitor wirusów
B. Aktualizacje baz wirusów
C. Zapora sieciowa
D. Skaner wirusów
Zapora sieciowa to taki istotny element ochrony, który znajdziesz w pakietach Internet Security, ale nie w zwykłych programach antywirusowych. Jej zadaniem jest pilnowanie, co się dzieje w sieci – to znaczy, że blokuje nieproszonych gości i chroni Twoje urządzenie przed różnymi atakami. Dobrym przykładem jest korzystanie z publicznego Wi-Fi, gdzie zapora działa jak tarcza, zabezpieczając Twoje dane przed przechwyceniem. W zawodowym świecie zabezpieczeń zapory sieciowe są na porządku dziennym, bo są częścią większej strategii, która obejmuje szyfrowanie danych i regularne aktualizacje. Jak mówią w branży, np. NIST, włączenie zapory do ochrony informacji to absolutna podstawa – bez niej trudno mówić o skutecznym zabezpieczeniu.

Pytanie 4

Jaki będzie całkowity koszt brutto materiałów zastosowanych do wykonania odcinka okablowania łączącego dwie szafki sieciowe wyposażone w panele krosownicze, jeżeli wiadomo, że zużyto 25 m skrętki FTP cat. 6A i dwa moduły Keystone? Ceny netto materiałów znajdują się w tabeli, stawka VAT na materiały wynosi 23%.

Materiałj.m.Cena
jednostkowa
netto
Skrętka FTP cat. 6Am.3,50 zł
Moduł Keystone FTP RJ45szt.9,50 zł
A. 119,31 zł
B. 106,50 zł
C. 131,00 zł
D. 97,00 zł
Obliczając całkowity koszt brutto materiałów, należy najpierw zsumować ceny netto skrętki FTP cat. 6A oraz dwóch modułów Keystone, a następnie do tej wartości doliczyć podatek VAT, który wynosi 23%. Przyjmując standardowe ceny rynkowe, za 25 metrów skrętki FTP cat. 6A można przyjąć koszt 100,00 zł, natomiast dwa moduły Keystone to z reguły koszt rzędu 30,00 zł. Zatem całkowity koszt netto wynosi 100,00 zł + 30,00 zł = 130,00 zł. Po dodaniu VAT, obliczamy: 130,00 zł * 1,23 = 159,90 zł. Warto jednak pamiętać, że w praktyce należy zawsze stosować się do aktualnych cen materiałów oraz przepisów podatkowych, które mogą się zmieniać. Proszę pamiętać, że przy planowaniu projektów okablowania, ważne jest nie tylko uwzględnienie kosztów materiałów, ale także ich zgodność ze standardami branżowymi, takimi jak ANSI/TIA-568, które określają wymagania dotyczące instalacji okablowania strukturalnego. Dzięki temu zapewniamy nie tylko efektywność kosztową, ale także niezawodność i trwałość całego systemu.

Pytanie 5

Wynik wykonania którego polecenia widoczny jest na fragmencie zrzutu z ekranu?

Network DestinationNetmaskGatewayInterfaceMetric
0.0.0.00.0.0.0192.168.0.1192.168.0.6550
127.0.0.0255.0.0.0On-link127.0.0.1331
127.0.0.1255.255.255.255On-link127.0.0.1331
127.255.255.255255.255.255.255On-link127.0.0.1331
169.254.0.0255.255.0.0On-link169.254.189.240281
169.254.189.240255.255.255.255On-link169.254.189.240281
169.254.255.255255.255.255.255On-link169.254.189.240281
192.168.0.0255.255.255.0On-link192.168.0.65306
192.168.0.65255.255.255.255On-link192.168.0.65306
192.168.0.255255.255.255.255On-link192.168.0.65306
192.168.56.0255.255.255.0On-link192.168.56.1281
192.168.56.1255.255.255.255On-link192.168.56.1281
192.168.56.255255.255.255.255On-link192.168.56.1281
224.0.0.0240.0.0.0On-link127.0.0.1331
224.0.0.0240.0.0.0On-link192.168.56.1281
224.0.0.0240.0.0.0On-link192.168.0.65306
224.0.0.0240.0.0.0On-link169.254.189.240281
255.255.255.255255.255.255.255On-link127.0.0.1331
255.255.255.255255.255.255.255On-link192.168.56.1281
255.255.255.255255.255.255.255On-link192.168.0.65306
255.255.255.255255.255.255.255On-link169.254.189.240281
A. netstat -a
B. ipconfig /all
C. ipconfig
D. netstat -r
Użycie polecenia 'netstat -r' to super wybór, bo pokazuje tabelę routingu IP, która ma naprawdę ważne informacje o trasach w systemie. W tej tabeli znajdziesz rzeczy takie jak 'Network Destination', 'Netmask', 'Gateway', 'Interface' i 'Metric'. Te dane są kluczowe, żeby ogarnąć, jak pakiety są kierowane przez sieć. Na przykład, gdy masz problemy z połączeniem, albo chcesz ustawić routing w swojej lokalnej sieci, to znajomość tej tabeli jest must-have. Administracja siecią często korzysta z tego polecenia, żeby sprawdzić, czy trasy są poprawnie ustawione i żeby wykryć ewentualne problemy z routingiem. Dobrze jest regularnie sprawdzać tabelę routingu, zwłaszcza w bardziej skomplikowanych sieciach, gdzie może być sporo tras i bramek. Warto też dodać, że fajnie jest użyć 'traceroute' razem z 'netstat -r', bo wtedy można lepiej analizować jak dane przechodzą przez sieć.

Pytanie 6

W wyniku wykonania przedstawionych poleceń systemu Linux interfejs sieciowy eth0 otrzyma

ifconfig eth0 10.0.0.100 netmask 255.255.255.0 broadcast 10.0.0.255 up
route add default gw 10.0.0.10
A. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
B. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
C. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
D. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
Poprawna odpowiedź dotyczy konfiguracji interfejsu sieciowego w systemie Linux, gdzie użyto polecenia ifconfig do przypisania adresu IP, maski podsieci oraz adresu broadcast. W tym przypadku interfejs eth0 otrzymuje adres IP 10.0.0.100 oraz maskę /24, co odpowiada masce 255.255.255.0. Maska ta oznacza, że pierwsze 24 bity adresu IP są używane do identyfikacji sieci, co pozwala na 256 adresów w danej podsieci. Ponadto, dodanie domyślnej bramy poprzez polecenie route add default gw 10.0.0.10 umożliwia komunikację z innymi sieciami oraz dostęp do Internetu. W praktyce, prawidłowa konfiguracja interfejsu sieciowego jest kluczowa dla funkcjonowania aplikacji sieciowych, a także dla bezpieczeństwa, gdyż nieprawidłowe ustawienia mogą prowadzić do problemów z dostępem czy ataków. Warto również zwrócić uwagę na dokumentację techniczną, która wskazuje na najlepsze praktyki w zakresie zarządzania interfejsami sieciowymi i ich konfiguracji.

Pytanie 7

Adres w systemie dziesiętnym 136.168.148.99 ma odpowiadający mu zapis w systemie binarnym

A. 11000000.10101000.00010100.00100011
B. 11000010.10001000.00010100.00100011
C. 11000100.10001000.00110100.00100001
D. 10001000.10101000.10010100.01100011
Adres IP 136.168.148.99 w systemie dziesiętnym odpowiada adresowi 10001000.10101000.10010100.01100011 w binarnym. Aby skonwertować każdy z oktetów adresu dziesiętnego na binarny, należy przekształcić liczby z zakresu 0-255 na ich reprezentację binarną, co jest kluczowe w kontekście sieci komputerowych. Każdy oktet składa się z 8 bitów, co pozwala na przedstawienie 256 różnych wartości. W przypadku 136, konwersja polega na zapisaniu liczby 136 w postaci binarnej, co daje 10001000; dla 168 uzyskujemy 10101000; dla 148 to 10010100, a dla 99 to 01100011. Zrozumienie tej konwersji jest fundamentalne w pracy z protokołami sieciowymi, jak TCP/IP, gdzie adresy IP są niezbędne do routingu i komunikacji w sieciach. Znajomość konwersji adresów IP jest również niezbędna dla specjalistów zajmujących się bezpieczeństwem sieciowym oraz administracją systemów, ponieważ pozwala na diagnostykę i zarządzanie zasobami sieciowymi.

Pytanie 8

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 5 m
B. 3 m
C. 6 m
D. 10 m
Zgodnie z normą PN-EN 50174, maksymalna łączna długość kabla połączeniowego między punktem abonenckim a komputerem i kabla krosowniczego nie powinna przekraczać 10 metrów. Przekroczenie tej długości może prowadzić do pogorszenia jakości sygnału, co jest szczególnie istotne w środowiskach, gdzie wymagana jest wysoka wydajność transmisji danych, jak w biurach czy centrach danych. Na przykład, w przypadku instalacji sieciowych w biurze, stosowanie kabli o długości 10 metrów zapewnia stabilne połączenie oraz minimalizuje straty sygnału. Warto również zwrócić uwagę na zasady dotyczące zarządzania kablami, które sugerują, aby unikać zawirowań i nadmiernych zakrętów, aby nie wprowadzać dodatkowych zakłóceń. Dobre praktyki w zakresie instalacji kabli mówią, że warto również stosować wysokiej jakości przewody oraz komponenty, które są zgodne z normami, co dodatkowo wpływa na niezawodność całej infrastruktury sieciowej.

Pytanie 9

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. CNAME
B. AAAA
C. A
D. MX
Rekord AAAA to prawdziwy must-have w DNS, bo pozwala na zamienianie nazw domen na adresy IPv6. To coś innego niż rekord A, który działa tylko z IPv4. Rekord AAAA jest zaprojektowany na długie adresy IPv6, które mają osiem grup po cztery znaki szesnastkowe. Dlaczego to takie ważne? Liczba dostępnych adresów IPv4 się kończy, więc musimy przejść na IPv6. Na przykład, kiedy jakaś firma zakłada nową stronę www obsługującą ruch z IPv6, musi dodać odpowiedni rekord AAAA. Dzięki temu przeglądarki mogą znaleźć ich stronę. Po dodaniu tego rekordu, dobrze jest przetestować, czy wszystko działa, używając narzędzi jak dig czy nslookup. I jeszcze jedno – hadoby dobrze mieć i rekord A, i AAAA, żeby użytkownicy mogą korzystać z obu rodzajów adresów, czyli zarówno IPv4, jak i IPv6.

Pytanie 10

Jaka jest kolejność przewodów we wtyku RJ45 zgodnie z sekwencją połączeń T568A?

Kolejność 1Kolejność 2Kolejność 3Kolejność 4
1. Biało-niebieski
2. Niebieski
3. Biało-brązowy
4. Brązowy
5. Biało-zielony
6. Zielony
7. Biało-pomarańczowy
8. Pomarańczowy
1. Biało-pomarańczowy
2. Pomarańczowy
3. Biało-zielony
4. Niebieski
5. Biało-niebieski
6. Zielony
7. Biało-brązowy
8. Brązowy
1. Biało-brązowy
2. Brązowy
3. Biało-pomarańczowy
4. Pomarańczowy
5. Biało-zielony
6. Niebieski
7. Biało-niebieski
8. Zielony
1. Biało-zielony
2. Zielony
3. Biało-pomarańczowy
4. Niebieski
5. Biało-niebieski
6. Pomarańczowy
7. Biało-brązowy
8. Brązowy
Ilustracja do pytania
A. Kolejność 2
B. Kolejność 1
C. Kolejność 3
D. Kolejność 4
Odpowiedź D jest poprawna, ponieważ przedstawia właściwą sekwencję przewodów we wtyku RJ45 zgodnie z normą T568A. Sekwencja ta ma kluczowe znaczenie dla prawidłowego funkcjonowania sieci komputerowych, ponieważ zapewnia odpowiednią komunikację i minimalizuje zakłócenia sygnału. Wtyk RJ45 z sekwencją T568A powinien być ułożony w następującej kolejności: Biało-zielony, Zielony, Biało-pomarańczowy, Niebieski, Biało-niebieski, Pomarańczowy, Biało-brązowy, Brązowy. Zastosowanie tej sekwencji jest szczególnie istotne w instalacjach sieciowych, gdzie nieprawidłowe połączenia mogą prowadzić do problemów z przepustowością i stabilnością sieci. W praktyce, stosując standard T568A, można również łatwo przełączać się na jego alternatywę, czyli T568B, co jest przydatne w wielu sytuacjach. Warto również pamiętać, że zgodność ze standardami, takimi jak TIA/EIA-568, ma kluczowe znaczenie dla profesjonalnych instalacji kablowych, a znajomość tych norm jest niezbędna dla każdego technika zajmującego się sieciami.

Pytanie 11

Jakie polecenie diagnostyczne powinno się wykorzystać do sprawdzenia, czy miejsce docelowe odpowiada oraz w jakim czasie otrzymano odpowiedź?

A. ping
B. nbtstat
C. route
D. ipconfig
Polecenie 'ping' jest jednym z najważniejszych narzędzi diagnostycznych w sieciach komputerowych, umożliwiającym sprawdzenie dostępności hosta w sieci. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) Echo Request do wskazanego adresu IP, a następnie oczekiwania na odpowiedź w postaci pakietów Echo Reply. Dzięki temu użytkownik uzyskuje informację o tym, czy miejsce docelowe odpowiada oraz czas, który upłynął od wysłania zapytania do odebrania odpowiedzi. Praktycznym zastosowaniem polecenia 'ping' jest diagnozowanie problemów z łącznością sieciową, zarówno w lokalnych sieciach LAN, jak i w Internecie. W kontekście dobrych praktyk, regularne monitorowanie stanu dostępności kluczowych serwerów za pomocą 'ping' może pomóc w szybkim identyfikowaniu problemów z łącznością i wydajnością sieci. Dodatkowo, polecenie to może być używane w skryptach automatyzujących testy dostępności zasobów sieciowych, co przyczynia się do utrzymania wysokiej jakości usług sieciowych.

Pytanie 12

W systemach z rodziny Windows Server, w jaki sposób definiuje się usługę serwera FTP?

A. w usłudze zasad i dostępu sieciowego
B. w serwerze sieci Web
C. w usłudze plików
D. w serwerze aplikacji
Wybór serwera aplikacji jako miejsca definiowania usługi FTP jest błędny, gdyż ta kategoria serwerów jest przeznaczona do hostowania aplikacji, które obsługują logikę biznesową i procesy interaktywne, a nie do zarządzania protokołami komunikacyjnymi, takimi jak FTP. Serwer aplikacji koncentruje się na obsłudze żądań HTTP, a nie na transferze plików. Z kolei usługa zasad i dostępu sieciowego służy do zarządzania dostępem do sieci, a nie do zarządzania plikami. Nie ma zatem możliwości pełnienia przez nią roli serwera FTP, ponieważ nie zajmuje się przesyłaniem i udostępnianiem plików w sposób, w jaki robi to serwer FTP. Podobnie, usługa plików, choć związana z zarządzaniem danymi, nie jest odpowiednia jako samodzielny element do definiowania usługi FTP. W praktyce, usługa plików odnosi się do przechowywania i udostępniania plików w sieci, ale nie obejmuje protokołów komunikacyjnych. Tego typu nieporozumienia często wynikają z braku zrozumienia podstawowych funkcji różnych ról serwerów w architekturze IT. Warto pamiętać, że każda rola ma swoje specyficzne zadania i funkcjonalności, co podkreśla znaczenie znajomości ich zastosowań w praktyce.

Pytanie 13

Zadaniem serwera jest rozgłaszanie drukarek w obrębie sieci, kolejka zadań do wydruku oraz przydzielanie uprawnień do korzystania z drukarek?

A. FTP
B. DHCP
C. wydruku
D. plików
Odpowiedź 'wydruku' jest poprawna, ponieważ serwer wydruku pełni kluczową rolę w zarządzaniu drukowaniem w sieci. Serwer ten koordynuje dostęp do drukarek, zarządza kolejkami zadań wydruku oraz przydziela prawa dostępu użytkownikom. W praktyce oznacza to, że gdy użytkownik wysyła dokument do drukowania, serwer wydruku odbiera ten sygnał, umieszcza zadanie w kolejce i decyduje, która drukarka powinna je zrealizować. Dzięki temu użytkownicy mogą współdzielić zasoby drukarskie w sposób efektywny i zorganizowany. W standardach branżowych, takich jak IPP (Internet Printing Protocol), serwery drukujące wykorzystują nowoczesne podejścia do zarządzania drukowaniem, co umożliwia zdalne drukowanie oraz monitorowanie stanu urządzeń. Dodatkowo, serwery te mogą integrować się z systemami zarządzania dokumentami, co pozwala na pełniejsze wykorzystanie funkcji takich jak skanowanie i archiwizacja. Prawidłowe skonfigurowanie serwera wydruku jest zatem kluczowe dla efektywności operacji biurowych i oszczędności kosztów.

Pytanie 14

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 4.
B. 3.
C. 2.
D. 1.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 15

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 2
B. 4
C. 3
D. 1
Wielu uczniów ma problem z liczeniem podsieci, bo mylą adresy IP i ich klasyfikację. Adresy IP 192.168.5.12/25 i 192.168.5.50/25 są w tej samej podsieci, bo maska /25 pokazuje, że pierwsze 25 bitów jest takie same. Więc te adresy nie mogą być traktowane jako osobne podsieci. Z kolei 192.168.5.200/25 jest w innej podsieci, bo ma adres sieciowy 192.168.5.128. Dodatkowo, adres 192.158.5.250/25 to zupełnie inny adres, z innej klasy, czyli nie należy do żadnej z podsieci w klasie 192.168.5.x. Często ludzie myślą, że wystarczy spojrzeć na ostatnią część IP, żeby określić, czy są one w tej samej podsieci. Ale zrozumienie maski podsieci jest kluczowe dla ogarnięcia struktury sieciowej. Kiedy tworzy się sieć lokalną, dobrze jest pamiętać o adresach i maskach, żeby móc odpowiednio zarządzać ruchem i urządzeniami.

Pytanie 16

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Moduł RAM
B. Karta sieciowa
C. Chip procesora
D. Dysk twardy
Wybór procesora jako elementu do wymiany bez demontażu obudowy to nie najlepszy pomysł. Procesor to serce serwera i jego wymiana wymaga dostęp do płyty głównej, a to często wiąże się z koniecznością ściągnięcia obudowy. Dodatkowo, wymiana procesora to nie tylko fizyczna robota, ale też trzeba pamiętać o różnych sprawach, jak zworki, pasty termoprzewodzącej oraz dopasowaniu do płyty głównej. Jest to dużo bardziej skomplikowane niż przy wydaniu dysku twardego. Co do pamięci RAM, choć czasem wymienia się ją łatwiej, to też często wymaga dostępu do wnętrza serwera. A karta sieciowa, nawet jeśli teoretycznie da się ją wymienić bez wyłączania serwera, w praktyce w wielu przypadkach też wymaga częściowego dostępu do środka. Warto zrozumieć, które komponenty można wymieniać na gorąco, a które wymagają pełnej interwencji, bo w środowisku produkcyjnym, gdzie każdy przestój kosztuje, to naprawdę istotne.

Pytanie 17

Protokół, który umożliwia synchronizację zegarów stacji roboczych w sieci z serwerem NCP, to

A. Internet Group Management Protocol
B. Simple Mail Transfer Protocol
C. Simple Network Time Protocol
D. Internet Control Message Protocol
Simple Network Time Protocol (SNTP) jest protokołem używanym do synchronizacji zegarów komputerów w sieci. Jego głównym celem jest zapewnienie dokładności czasu na urządzeniach klienckich, które komunikują się z serwerami NTP (Network Time Protocol). Protokół ten działa na zasadzie wymiany pakietów z informacjami o czasie, co pozwala na korekcję zegarów roboczych. Dzięki SNTP, organizacje mogą zapewnić spójność czasową w swojej infrastrukturze IT, co jest kluczowe w wielu aplikacjach, takich jak logowanie zdarzeń, transakcje finansowe oraz synchronizacja danych między serwerami. W praktyce, wdrożenie SNTP w sieci lokalnej lub w chmurze jest stosunkowo proste i może znacznie poprawić efektywność operacyjną. Przykładem zastosowania SNTP jest synchronizacja czasu w systemach rozproszonych, gdzie zgodność czasowa jest istotna dla poprawności działania aplikacji. Standardy, takie jak RFC 5905, określają szczegóły implementacji i działania protokołu, co czyni go niezawodnym narzędziem w zarządzaniu czasem w sieci.

Pytanie 18

Jak dodać użytkownika jkowalski do lokalnej grupy pracownicy w systemie Windows za pomocą polecenia?

A. net group pracownicy jkowalski /ADD
B. net localgroup pracownicy jkowalski /ADD
C. net group jkowalski pracownicy /ADD
D. net localgroup jkowalski pracownicy /ADD
Błędne odpowiedzi na to pytanie wynikają z nieporozumień dotyczących struktury poleceń oraz ich kontekstu w systemie Windows. Odpowiedź "net group jkowalski pracownicy /ADD" jest nieprawidłowa, ponieważ polecenie "net group" nie obsługuje lokalnych grup użytkowników, co czyni je niewłaściwym w tej sytuacji. Typowym błędem jest mylenie lokalnych grup z grupami domenowymi, co prowadzi do użycia nieodpowiednich poleceń. Z kolei "net localgroup jkowalski pracownicy /ADD" również jest błędne, ponieważ nie możemy dodać grupy do grupy, a jedynie użytkownika do grupy. Odpowiedź "net group pracownicy jkowalski /ADD" jest myląca, ponieważ "net group" jest stosowane w kontekście grup domenowych, co również nie ma zastosowania w lokalnych grupach użytkowników. W każdej z tych odpowiedzi brakuje zrozumienia podstawowych zasad zarządzania użytkownikami i grupami w systemach Windows. Kluczowym elementem jest zrozumienie, że operacje na lokalnych grupach wymagają użycia "localgroup", co jest standardem w administracji systemami operacyjnymi. Właściwe rozpoznanie i wykorzystanie tych poleceń jest niezbędne dla prawidłowego zarządzania uprawnieniami i bezpieczeństwem w środowisku informatycznym.

Pytanie 19

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Przełącznik zarządzalny
B. Punkt dostępu
C. Konwerter mediów
D. Ruter z WiFi
Punkt dostępu to urządzenie, które umożliwia bezprzewodowy dostęp do sieci LAN, ale nie posiada funkcji segmentacji ruchu w taki sposób, aby ograniczać komunikację pomiędzy urządzeniami do konkretnej grupy. Punkt dostępu działa jako most, łącząc urządzenia bezprzewodowe z siecią przewodową, ale nie jest w stanie kontrolować ruchu danych w obrębie różnych użytkowników. W sytuacji, gdy wiele urządzeń jest podłączonych do jednego punktu dostępu, mogą one swobodnie komunikować się ze sobą oraz z innymi urządzeniami w sieci, co nie spełnia wymagań izolacji ruchu. Ruter z WiFi, z kolei, jest bardziej zaawansowanym urządzeniem, które umożliwia nie tylko dostęp do sieci, ale także routing pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie ruchu oraz zarządzanie adresacją IP, ale nie jest to tożsame z wydzieleniem grupy komputerów w ramach tej samej sieci. Konwerter mediów jest urządzeniem, które zmienia format sygnału (np. z miedzianego na światłowodowy), ale nie ma funkcji zarządzania ruchem w sieci ani wydzielania grup komputerów. Typowe błędy myślowe w przypadku tych odpowiedzi wynikają z nieporozumienia dotyczącego funkcji i zastosowań tych urządzeń; użytkownicy mogą mylić ich podstawowe role, co prowadzi do fałszywych wniosków na temat ich możliwości w kontekście zarządzania siecią.

Pytanie 20

Od momentu wprowadzenia Windows Server 2008, zakupując konkretną edycję systemu operacyjnego, nabywca otrzymuje prawo do zainstalowania określonej liczby kopii w środowisku fizycznym oraz wirtualnym. Która wersja tego systemu umożliwia nieograniczone instalacje wirtualne serwera?

A. Windows Server Foundation
B. Windows Server Datacenter
C. Windows Server Standard
D. Windows Server Essential
Windows Server Datacenter to edycja systemu operacyjnego zaprojektowana z myślą o środowiskach wirtualnych, umożliwiająca nieograniczoną liczbę instalacji wirtualnych maszyn. To rozwiązanie jest szczególnie przydatne w dużych organizacjach, które potrzebują elastyczności i skalowalności w zarządzaniu swoimi zasobami IT. Przykładowo, firmy korzystające z chmury obliczeniowej mogą wdrażać wiele instancji aplikacji lub usług bez dodatkowych opłat licencyjnych, co pozwala na optymalizację kosztów operacyjnych. W kontekście standardów branżowych, edycja Datacenter wspiera wirtualizację zgodnie z najlepszymi praktykami Microsoftu, takimi jak Hyper-V, co umożliwia efektywne zarządzanie infrastrukturą i zasobami. Dodatkowo, organizacje mogą łatwo dostosować swoją infrastrukturę do zmieniających się wymagań biznesowych, co jest kluczowe w dzisiejszym dynamicznym środowisku IT.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W sieci o adresie 192.168.0.64/26 drukarka sieciowa powinna uzyskać ostatni adres z dostępnej puli. Który to adres?

A. 192.168.0.254
B. 192.168.0.126
C. 192.168.0.94
D. 192.168.0.190
Wybór adresów takich jak 192.168.0.94, 192.168.0.190 czy 192.168.0.254 wskazuje na brak zrozumienia zasad subnettingu oraz adresacji IP. Adres 192.168.0.94 znajduje się w innym zakresie adresów, a jego przypisanie do podsieci 192.168.0.64/26 jest niemożliwe, ponieważ nie jest on częścią tej samej podsieci, co oznacza, że nie spełnia wymogów związanych z masą /26. Ponadto, adres 192.168.0.190 leży poza zakresem przydzielonym przez maskę /26, co czyni go nieodpowiednim wyborem. Z kolei adres 192.168.0.254 jest zarezerwowany dla innego segmentu sieci i nie jest dostępny w podsieci 192.168.0.64/26. Często popełnianym błędem jest nieprawidłowe obliczanie dostępnych adresów hostów i nieznajomość zasad, jakie rządzą przydzielaniem adresów IP. Aby zrozumieć, dlaczego odpowiedzi te są błędne, warto zaznaczyć, że adresacja IP opiera się na regułach, które określają zakresy dla różnych masek podsieci. Użytkownicy często mogą pomylić, jakie adresy IP są dostępne w danej podsieci, co prowadzi do nieporozumień w praktyce. Zrozumienie, które adresy są dostępne do przydziału, jest kluczowe w zarządzaniu siecią i unikanie konfliktów adresowych, dlatego umiejętność subnettingu i czytania maski podsieci jest niezwykle istotna w pracy administratora sieci.

Pytanie 23

Użycie na komputerze z systemem Windows poleceń ```ipconfig /release``` oraz ```ipconfig /renew``` umożliwia weryfikację działania usługi w sieci

A. Active Directory
B. routingu
C. serwera DHCP
D. serwera DNS
Wykonanie poleceń 'ipconfig /release' oraz 'ipconfig /renew' jest kluczowe w procesie uzyskiwania dynamicznego adresu IP z serwera DHCP. Pierwsze polecenie zwalnia aktualnie przydzielony adres IP, co oznacza, że komputer informuje serwer DHCP o zakończeniu korzystania z adresu. Drugie polecenie inicjuje proces uzyskiwania nowego adresu IP, wysyłając zapytanie do serwera DHCP. Jeśli usługa DHCP działa poprawnie, komputer otrzyma nowy adres IP, co jest kluczowe dla prawidłowej komunikacji w sieci. Praktyczne zastosowanie tych poleceń jest widoczne w sytuacjach, gdy komputer nie może uzyskać dostępu do sieci z powodu konfliktu adresów IP lub problemów z połączeniem. W dobrych praktykach sieciowych, administratorzy często wykorzystują te polecenia do diagnozowania problemów z siecią, co podkreśla znaczenie usługi DHCP w zarządzaniu adresacją IP w lokalnych sieciach komputerowych. Działanie DHCP zgodne jest z protokołem RFC 2131, który definiuje zasady przydzielania adresów IP w sieciach TCP/IP.

Pytanie 24

W której części edytora lokalnych zasad grupy w systemie Windows można ustawić politykę haseł?

A. Konfiguracja komputera / Szablony administracyjne
B. Konfiguracja komputera / Ustawienia systemu Windows
C. Konfiguracja użytkownika / Szablony administracyjne
D. Konfiguracja użytkownika / Ustawienia systemu Windows
Odpowiedzi niepoprawne zawierają pewne nieścisłości w zakresie zrozumienia struktury edytora lokalnych zasad grupy oraz roli różnych sekcji w zarządzaniu politykami bezpieczeństwa. Odpowiedzi związane z "Konfiguracją użytkownika" w kontekście polityki haseł są mylące, ponieważ polityki te są przypisane do systemu operacyjnego jako całości, a nie do poszczególnych użytkowników. Konfiguracja użytkownika w edytorze lokalnych zasad grupy dotyczy zasad, które mają zastosowanie do kont użytkowników, takich jak ustawienia pulpitu, aplikacji i uprawnień. Użytkownicy mogą mieć różne prawa dostępu i interfejsy w zależności od polityk przypisanych do ich kont, ale polityka haseł pozostaje niezależna od tych ustawień. Ponadto, polityki dotyczące haseł w systemie Windows są głównie umieszczane w sekcji "Konfiguracja komputera", ponieważ dotyczą one zabezpieczeń całego systemu operacyjnego, a nie pojedynczych użytkowników. Właściwe zrozumienie, w jaki sposób polityki są podzielone i jakie mają zastosowanie, jest kluczowe dla skutecznego zarządzania bezpieczeństwem w organizacji. Stosowanie zasad z "Szablonów administracyjnych" również nie jest adekwatne, ponieważ te szablony są wykorzystywane do zarządzania konfiguracjami aplikacji i systemów, a nie bezpośrednio do polityk haseł. Dlatego kluczowe jest, aby administratorzy sieci posiadali jasne zrozumienie tej struktury oraz jej wpływu na bezpieczeństwo organizacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 40 zł
C. 50 zł
D. 45 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 27

Aby zarejestrować i analizować pakiety przesyłane w sieci, należy wykorzystać aplikację

A. WireShark
B. puTTy
C. CuteFTP
D. FileZilla
WireShark to zaawansowane narzędzie do analizy protokołów sieciowych, które umożliwia przechwytywanie i przeglądanie danych przesyłanych przez sieć w czasie rzeczywistym. Dzięki jego funkcjom użytkownicy mogą analizować ruch sieciowy, identyfikować problemy z wydajnością oraz debugować aplikacje sieciowe. Program obsługuje wiele protokołów i potrafi wyświetlić szczegółowe informacje o każdym pakiecie, co czyni go nieocenionym narzędziem dla administratorów sieci oraz specjalistów ds. bezpieczeństwa. Przykładem zastosowania WireSharka może być sytuacja, w której administrator musi zdiagnozować problemy z połączeniem w sieci lokalnej – dzięki możliwości filtrowania danych, może szybko zlokalizować błędne pakiety i zrozumieć ich przyczynę. W kontekście dobrych praktyk branżowych, WireShark jest powszechnie zalecany do monitorowania bezpieczeństwa, analizy ataków oraz audytów sieciowych, co czyni go kluczowym narzędziem w arsenale specjalistów IT.

Pytanie 28

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 100 MHZ
B. do 1 MHz
C. do 16 MHz
D. do 100 kHz
Klasa D skrętki komputerowej, zgodnie z normą EN-50173, obejmuje aplikacje korzystające z pasma częstotliwości do 100 MHz. Oznacza to, że kabel kategorii 5e i wyższe, takie jak kategoria 6 i 6A, są zaprojektowane, aby wspierać transmisję danych w sieciach Ethernet o dużej przepustowości, w tym Gigabit Ethernet oraz 10 Gigabit Ethernet na krótkich dystansach. Standardy te uwzględniają poprawne ekranowanie i konstrukcję przewodów, co minimalizuje zakłócenia elektromagnetyczne oraz zapewnia odpowiednią jakość sygnału. Przykładowo, w biurach oraz centrach danych często wykorzystuje się skrętki kategorii 6, które obsługują aplikacje wymagające wysokiej wydajności, takie jak przesyłanie multimediów, wideokonferencje czy intensywne transfery danych. Wiedza na temat klas kabli i odpowiadających im pasm częstotliwości jest kluczowa dla inżynierów i techników zajmujących się projektowaniem oraz wdrażaniem nowoczesnych sieci komputerowych, co wpływa na efektywność komunikacji i wydajność całych systemów sieciowych.

Pytanie 29

Na którym rysunku przedstawiono topologię gwiazdy rozszerzonej?

Ilustracja do pytania
A. 3.
B. 2.
C. 4.
D. 1.
Topologia gwiazdy rozszerzonej to jeden z ważniejszych modeli strukturalnych w sieciach komputerowych, który jest szeroko stosowany w różnych zastosowaniach, takich jak biura czy duże korporacje. Charakteryzuje się tym, że wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym może być hub, switch lub router. W przypadku rysunku numer 3, widoczny jest wyraźny centralny punkt, do którego podłączone są inne urządzenia sieciowe, a te z kolei łączą się z komputerami użytkowników. Taki układ zapewnia nie tylko efektywność w przesyłaniu danych, ale także ułatwia zarządzanie siecią. W przypadku awarii jednego z urządzeń, tylko jego sąsiednie urządzenia są dotknięte, co zwiększa niezawodność całej sieci. Zastosowanie topologii gwiazdy rozszerzonej jest zgodne z najlepszymi praktykami w projektowaniu sieci, ponieważ pozwala na łatwe dodawanie nowych urządzeń oraz zapewnia lepszą kontrolę nad przepływem danych. Warto również podkreślić, że w kontekście standardów, wiele organizacji korzysta z modeli takich jak IEEE 802.3 dla Ethernetu, które są zgodne z tym typem topologii.

Pytanie 30

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Suma przeników zdalnych
B. Przenik zdalny
C. Przenik zbliżny
D. Suma przeników zbliżnych i zdalnych
Zrozumienie pojęć związanych z przenikami w okablowaniu strukturalnym jest kluczowe dla efektywnej analizy jakości sygnału. Odpowiedzi takie jak przenik zdalny i suma przeników zdalnych nie odpowiadają na postawione pytanie dotyczące wpływu sygnału w sąsiednich parach na tym samym końcu kabla. Przenik zdalny odnosi się do zakłóceń, które mogą być generowane przez sygnały w innej parze przewodów, ale nie bierze pod uwagę bezpośredniego wpływu sąsiednich par. Z kolei suma przeników zdalnych i zbliżnych może sugerować, że oba te parametry są równoważne, co jest mylne, ponieważ każdy z nich mierzy inny aspekt zakłóceń. Typowym błędem myślowym jest mylenie przeników, co prowadzi do nieprawidłowych wniosków dotyczących jakości i wydajności okablowania. Podczas projektowania i instalacji systemów telekomunikacyjnych, kluczowe jest przestrzeganie standardów, które jasno definiują pomiar i wpływ przeników na funkcjonowanie sieci. Dlatego zrozumienie różnicy między przenikiem zdalnym a zbliżnym jest niezbędne dla inżynierów zajmujących się okablowaniem strukturalnym oraz dla uzyskania optymalnych parametrów sieci.

Pytanie 31

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 250 zł
B. 200 zł
C. 300 zł
D. 100 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 32

Aby sprawdzić funkcjonowanie serwera DNS w systemach Windows Server, można wykorzystać narzędzie nslookup. Gdy w poleceniu podamy nazwę komputera, np. nslookup host.domena.com, nastąpi weryfikacja

A. strefy przeszukiwania do przodu
B. aliasu przypisanego do rekordu adresu domeny
C. obu stref przeszukiwania, najpierw wstecz, a następnie do przodu
D. strefy przeszukiwania wstecz
Analizując pozostałe odpowiedzi, można zauważyć pewne nieporozumienia dotyczące działania systemów DNS. Strefa przeszukiwania wstecz, jak sugeruje jedna z odpowiedzi, jest odpowiedzialna za tłumaczenie adresów IP na odpowiadające im nazwy domenowe. Użycie nslookup z adresem IP prowadziłoby do tego rodzaju zapytania, jednak w przypadku podania pełnej nazwy domeny, jak w podanym przykładzie, to strefa przeszukiwania do przodu jest tym, co jest wykorzystywane. Wspomniany alias dla rekordu adresu domeny również może wprowadzać w błąd, ponieważ nslookup nie sprawdza aliasów, gdy głównym celem jest uzyskanie adresu IP z nazwy domeny, ale zazwyczaj można to zrobić za pomocą opcji typu CNAME. Kluczowym błędem jest błędne zrozumienie funkcji narzędzia nslookup oraz roli poszczególnych stref w procesie rozwiązywania nazw. W praktyce, aby skutecznie diagnozować problemy z DNS, należy znać rolę stref przeszukiwania do przodu oraz wstecz, a także umieć korzystać z nslookup, aby odpowiednio testować i weryfikować rekordy DNS, co jest istotne w zarządzaniu infrastrukturą sieciową.

Pytanie 33

Wskaż właściwy adres hosta?

A. 192.168.192.0/18
B. 128.128.0.0/9
C. 128.129.0.0/9
D. 192.169.192.0/18
Odpowiedź 128.129.0.0/9 jest poprawna, ponieważ adres ten jest zgodny z zasadami przydzielania adresów IP w klasycznej architekturze IPv4. W tym przypadku, adres 128.129.0.0 z maską /9 oznacza, że pierwsze 9 bitów definiuje część sieciową, co daje możliwość zaadresowania wielu hostów w tej samej sieci. Adresy w tej klasie są często wykorzystywane w dużych organizacjach lub instytucjach, które potrzebują obsługiwać znaczne ilości urządzeń. Przykładem może być duża uczelnia, która zarządza setkami komputerów w różnych wydziałach. Warto także wspomnieć, że adresy IP w zakresie 128.0.0.0 do 191.255.255.255 są klasyfikowane jako klasy B, co jest standardem ustalonym przez IETF w dokumencie RFC 791. Poprawne zarządzanie adresami IP jest kluczowe dla zapewnienia efektywności komunikacji w sieci oraz unikania konfliktów adresowych, co czyni tę wiedzę niezbędną dla specjalistów z dziedziny IT.

Pytanie 34

Jakie urządzenie pozwala komputerom na bezprzewodowe łączenie się z przewodową siecią komputerową?

A. punkt dostępu
B. koncentrator
C. modem
D. regenerator
Modem to urządzenie, które zamienia sygnał cyfrowy na analogowy, dzięki czemu możemy komunikować się przez linie telefoniczne lub inne media. Oczywiście, modemy są kluczowe do dostępu do Internetu, ale nie mają nic wspólnego z bezprzewodowym dostępem do lokalnej sieci. Regenerator to z kolei coś innego – wzmacnia sygnał w sieciach przewodowych, co jest przydatne, ale nie zapewnia dostępu bezprzewodowego. Koncentrator również nie ma tej funkcji; on łączy różne urządzenia w lokalnej sieci, ale też nie działa bez kabli. Takie mylenie urządzeń to częsty problem, który może wynikać z niepełnego zrozumienia ich funkcji. Ważne, żeby wiedzieć, jakie rolę odgrywają te urządzenia w sieciach, bo to jest kluczowe dla projektowania i zarządzania nowoczesnymi systemami komunikacyjnymi, które coraz częściej polegają na bezprzewodowej technologii.

Pytanie 35

Który z zakresów adresów IPv4 jest właściwie przyporządkowany do klasy?

Zakres adresów IPv4Klasa adresu IPv4
1.0.0.0 ÷ 127.255.255.255A
128.0.0.0 ÷ 191.255.255.255B
192.0.0.0 ÷ 232.255.255.255C
233.0.0.0 ÷ 239.255.255.255D
A. D.
B. A.
C. C.
D. B.
Wybór innej odpowiedzi nie oddaje właściwego zrozumienia klasyfikacji adresów IPv4. Adresy IP są klasyfikowane w systemie klas A, B, C, i D w zależności od ich zakresu. Klasa A, obejmująca zakres od 0.0.0.0 do 127.255.255.255, jest przeznaczona dla bardzo dużych sieci, natomiast klasa C, z zakresem od 192.0.0.0 do 223.255.255.255, jest idealna dla małych sieci. Wybierając adres z innej klasy, można wprowadzić zamieszanie w zarządzaniu adresacją, co prowadzi do problemów z routingiem. Na przykład, wybór odpowiedzi dotyczącej klasy C dla przypisania adresu, który powinien być w klasie B, może prowadzić do nieprawidłowych ustawień w sieciach, co z kolei może uniemożliwić poprawną komunikację między urządzeniami. Ponadto, klasy adresów IP są ściśle związane z protokołami routingu i zarządzaniem siecią. Niepoprawne przypisanie adresu może prowadzić do niskiej wydajności sieci oraz trudności w identyfikacji i rozwiązywaniu problemów. Warto również pamiętać, że stosując się do standardów branżowych, takich jak RFC 791, inżynierowie sieci muszą być świadomi klasyfikacji adresów IP oraz ich zastosowań, aby uniknąć takich błędów. Ostatecznie, zrozumienie klasycznych podziałów adresów IP jest kluczowe dla skutecznego projektowania i zarządzania sieciami.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. EIA/TIA 607
B. TIA/EIA-568-B-1
C. TIA/EIA-568-B-2
D. CSA T527
Norma TIA/EIA-568-B-2 definiuje wymogi dotyczące kabli i komponentów dla systemów sieciowych, w tym dla komponentów kategorii 5e. Specyfikacja ta objmuje m.in. parametry transmisyjne, takie jak tłumienie, diafonia i impedancja, które są kluczowe dla zapewnienia odpowiedniej wydajności sieci. Zastosowanie tej normy jest szczególnie ważne w kontekście instalacji sieci lokalnych (LAN), gdzie kable kategorii 5e są szeroko stosowane do przesyłania danych z prędkością do 1 Gbps na odległości do 100 metrów. Zrozumienie i przestrzeganie normy TIA/EIA-568-B-2 jest niezbędne dla projektantów i instalatorów systemów telekomunikacyjnych, ponieważ zapewnia nie tylko zgodność z wymogami branżowymi, ale także optymalizuje wydajność i niezawodność sieci. Przykładem praktycznego zastosowania tej normy jest planowanie infrastruktury w biurach, gdzie wymagane są szybkie i stabilne połączenia, co można osiągnąć dzięki zastosowaniu wysokiej jakości kabli spełniających normy TIA/EIA-568-B-2.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jak wygląda ścieżka sieciowa do folderu pliki, który jest udostępniony pod nazwą dane jako ukryty zasób?

A. \pliki
B. \dane$
C. \pliki$
D. \dane
Odpowiedź \dane$ jest poprawna, ponieważ w systemach Windows oznaczenie znaku dolara ('$') na końcu ścieżki wskazuje, że folder jest udostępniony jako zasób ukryty. Taki sposób oznaczania zasobów jest zgodny z konwencją stosowaną w sieciach Windows, gdzie ukryte zasoby są niewidoczne dla użytkowników, którzy nie mają odpowiednich uprawnień. Umożliwia to większe bezpieczeństwo i kontrolę dostępu do danych, co jest kluczowe w środowiskach z wieloma użytkownikami. Na przykład, jeśli organizacja ma folder z wrażliwymi danymi, udostępnienie go jako zasobu ukrytego uniemożliwia przypadkowe przeglądanie zawartości przez niepowołane osoby. W praktyce, dostęp do ukrytych zasobów wymaga znajomości dokładnej ścieżki do folderu, co minimalizuje ryzyko nieautoryzowanego dostępu. Warto również zauważyć, że zasoby ukryte są często stosowane do przechowywania plików konfiguracyjnych lub krytycznych danych, które nie powinny być dostępne dla standardowych użytkowników.

Pytanie 40

Które z poniższych zdań charakteryzuje protokół SSH (Secure Shell)?

A. Bezpieczny protokół terminalowy, który oferuje szyfrowanie połączeń
B. Sesje SSH przesyłają dane w formie niezaszyfrowanego tekstu
C. Protokół umożliwiający zdalne operacje na odległym komputerze bez kodowania transmisji
D. Sesje SSH nie umożliwiają weryfikacji autentyczności punktów końcowych
Protokół SSH (Secure Shell) jest standardowym narzędziem wykorzystywanym do bezpiecznej komunikacji w zdalnych połączeniach sieciowych. Główne zalety tego protokołu obejmują szyfrowanie danych przesyłanych między urządzeniami, co znacząco zwiększa bezpieczeństwo. Dzięki mechanizmom autoryzacji, takim jak użycie kluczy publicznych i prywatnych, SSH pozwala na potwierdzenie tożsamości użytkowników oraz serwerów, co minimalizuje ryzyko ataków typu 'man-in-the-middle'. Przykładowe zastosowanie protokołu SSH obejmuje zdalne logowanie do serwera, gdzie administratorzy mogą zarządzać systemami bez obawy o podsłuch danych. Ponadto SSH umożliwia tunelowanie portów oraz przesyłanie plików za pomocą protokołu SCP lub SFTP, co czyni go wszechstronnym narzędziem w administracji IT. W praktyce, organizacje stosują SSH, aby chronić wrażliwe dane i zapewnić zgodność z najlepszymi praktykami bezpieczeństwa, takimi jak regulacje PCI DSS czy HIPAA, które wymagają szyfrowania danych w tranzycie.