Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 18 grudnia 2025 17:32
  • Data zakończenia: 18 grudnia 2025 17:47

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
B. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
C. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
D. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 2

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o tych samych wymiarach
B. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
C. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
D. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
Wstawienie kondensatora o pojemności odpowiadającej pojemności znamionowej odczytanej ze schematu urządzenia jest kluczowe dla zapewnienia prawidłowego działania układów elektronicznych. Kondensatory są komponentami, które pełnią istotne funkcje w obwodach, takie jak filtracja, przechowywanie energii czy stabilizacja napięcia. Użycie kondensatora o właściwej pojemności zapewnia, że układ pracuje zgodnie z założeniami projektowymi. Na przykład, w aplikacjach audio, niewłaściwa pojemność może prowadzić do zniekształceń dźwięku, a w obwodach zasilania, do niestabilności napięcia. Praktyczne podejście do wymiany kondensatorów obejmuje także przestrzeganie norm, takich jak IEC 60384, które regulują klasyfikację, parametry i metody testowania kondensatorów. Zachowanie tych standardów zapewnia bezpieczeństwo i niezawodność urządzenia. Ponadto, w przypadku wymiany kondensatora, warto również zwrócić uwagę na jego napięcie pracy oraz typ (elektrolityczny, ceramiczny, mylarowy itp.), co jest zgodne z dobrą praktyką serwisową.

Pytanie 3

Do jakiego celu wykorzystuje się komparator?

A. wzmacniania sygnału
B. filtrowania napięć
C. porównania dwóch napięć
D. sumowania dwóch sygnałów
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 4

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm
A. Trzy krótkie dzwonki, wyłączone diody LED.
B. Włączone diody LED czerwona i niebieska.
C. Wyłączona dioda LED niebieska, bez brzęczyka.
D. Szybkie zapalanie diody LED czerwonej.
Jak widzisz, gdy niebieska dioda LED jest wyłączona i brzęczyk też nie działa, to znaczy, że urządzenie jest w trybie programowania. To bardzo ważne, bo w systemach zbliżeniowych możemy wtedy dostosować różne ustawienia, na przykład dodać nowych użytkowników czy zmienić kody dostępu. Musimy dobrze rozumieć, w jakim stanie jest nasze urządzenie, bo to kluczowe dla bezpieczeństwa. Na przykład w automatyce budynkowej, jeśli źle zrozumiemy, co sygnalizują diody LED lub dźwięki, możemy przez przypadek zmienić coś, co wpłynie na cały system. Dlatego warto znać te sygnały, bo to duża część szkolenia dla techników, którzy zajmują się instalowaniem i naprawianiem zabezpieczeń zbliżeniowych. To naprawdę istotna kwestia w codziennej pracy.

Pytanie 5

Jaką rolę pełni heterodyna w radiu?

A. Filtra aktywnego środkowo przepustowego
B. Wzmacniacza pośredniej częstotliwości
C. Układu zmiany zakresów w obwodach wielkiej częstotliwości
D. Generatora sygnału o określonej częstotliwości
Wszystkie pozostałe odpowiedzi odnoszą się do funkcji, które heterodyna nie pełni w odbiorniku radiowym. Wzmacniacz pośredniej częstotliwości, będący jednym z elementów obwodu odbiorczego, ma za zadanie wzmacniać sygnał pośredniej częstotliwości po jego zdemodulowaniu, ale sam nie generuje nowych sygnałów. Z tego względu nie można go mylić z heterodyną, której głównym celem jest właśnie generowanie sygnałów w procesie konwersji częstotliwości. Filtr aktywny środkowo-przepustowy również nie ma związku z funkcją heterodyny, ponieważ jego zadaniem jest przepuszczanie sygnałów o określonym zakresie częstotliwości, a nie generowanie nowych sygnałów. Przy tym, może on być zastosowany w różnych miejscach obwodu, ale nie ma związku z demodulacją sygnału, co czyni go niewłaściwym odniesieniem w tym kontekście. Kolejna nieprawidłowa odpowiedź, dotycząca układu zmiany zakresów, jest myląca, ponieważ heterodyna nie zmienia zakresu częstotliwości, lecz przekształca sygnał, aby umożliwić jego dalsze przetwarzanie w obrębie tego samego zakresu częstotliwości. Typowe błędy myślowe mogą obejmować mylenie funkcji generowania sygnału z jego wzmacnianiem lub filtrowaniem, co prowadzi do nieporozumień na temat roli poszczególnych komponentów w obwodach radiowych. Zrozumienie różnicy między tymi funkcjami jest kluczowe dla prawidłowego przyswojenia wiedzy na temat działania systemów komunikacji radiowej.

Pytanie 6

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 3 wejścia adresowe
B. 4 wejścia adresowe
C. 5 wejść adresowych
D. 2 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 7

Do jakiej klasy urządzeń energoelektronicznych należy przekształtnik zwany czoperem?

A. Bezpośrednich konwerterów częstotliwości
B. Bezpośrednich konwerterów prądu stałego
C. Pośrednich konwerterów częstotliwości
D. Pośrednich konwerterów prądu stałego
Czoper to taki przekształtnik, który ma za zadanie zmieniać napięcie stałe na inne poziomy napięcia stałego, przy tym zachowując moc. Fajnie się sprawdza, kiedy na przykład zasilamy silniki prądu stałego i potrzebujemy regulować ich prędkość. To ma spore znaczenie w różnych procesach przemysłowych, gdzie liczy się precyzja. Używa się go też w systemach zasilania odnawialnych źródeł energii, jak panele słoneczne, co pozwala lepiej wykorzystać energię. Czopery są zgodne z normami IEC i IEEE, więc można na nie liczyć w przemyśle. Dobrze jest też zastosować odpowiednie filtry, żeby zredukować zakłócenia elektromagnetyczne, które mogą się pojawić podczas działania czopera.

Pytanie 8

Parametry techniczne podane w tabeli określają czujkę PIR

Parametry techniczne:
• Metoda detekcji: PIR
• Zasięg detekcji: 24 m (po 12 m na każdą stronę)
• Ilość wiązek: 4 (po 2 na każdą stronę)
• Zasilanie: 10 ÷ 28 V
• Pobór prądu: 38 mA (maks.)
• Temperatura pracy [st. C]: -20 do +50
• Stopień ochrony obudowy: IP55
• Wysokość montażu: 0,8 ÷1,2 m
• Masa: 400 g
A. zewnętrzna o poborze prądu 50 mA
B. zewnętrzna o wysokości montażu 0,8-1,2 m
C. tylko wewnętrzna o napięciu zasilania 12 V
D. tylko wewnętrzna o wysokości montażu 0,8-1,2 m
Odpowiedź "zewnętrzna o wysokości montażu 0,8-1,2 m" jest prawidłowa, ponieważ parametry techniczne czujki PIR wskazują, że jej wysokość montażu mieści się w tym zakresie. Wysokość montażu czujek PIR jest kluczowa dla ich efektywności, ponieważ niewłaściwe umiejscowienie może prowadzić do ograniczonego zasięgu detekcji. Właściwy montaż czujki w zakresie od 0,8 do 1,2 m zapewnia optymalne pole widzenia oraz umożliwia efektywne wykrywanie ruchu w obszarze, który chcemy monitorować. Dodatkowo, parametry takie jak stopień ochrony IP55 oraz zakres temperatury pracy od -20 do +50°C wskazują, że czujka jest przystosowana do warunków zewnętrznych, co czyni ją odpowiednim wyborem do zastosowań na zewnątrz budynków. W praktyce, czujki PIR znajdują zastosowanie w systemach alarmowych, monitoringu obiektów oraz automatyzacji budynków, gdzie ich właściwe umiejscowienie jest kluczowe dla skuteczności działania systemu bezpieczeństwa.

Pytanie 9

Urządzeniem realizującym zadania jest

A. fotorezystor
B. silnik elektryczny prądu stałego
C. czujnik
D. przycisk monostabilny
Fotorezystor to taki element, co ma różne funkcje w automatyce, ale nie jest urządzeniem wykonawczym. Działa na zasadzie zmiany rezystancji w zależności od światła, więc najczęściej spotkać go można w systemach pomiarowych, czy do automatycznego sterowania światłem, ale sam nic nie rusza. A ten przycisk monostabilny, to on zmienia stan układu, jak go naciśniesz, ale nie generuje ruchu ani nie przekształca energii – po prostu sygnalizuje co chcesz. Z kolei czujnik wykrywa zmiany w otoczeniu, na przykład temperaturę, ciśnienie czy ruch i zmienia to na sygnał elektryczny. I mimo że czujniki i przyciski są mega ważne w automatyce, to raczej pełnią rolę sensoryczną lub kontrolną, nie wykonawczą. Często ludzie mylą to i myślą, że czujniki mogą coś wykonać, a to nie tak. W praktyce, rozumienie różnicy tych komponentów jest kluczowe w projektowaniu i wdrażaniu systemów automatyki, co jest ważne w zarządzaniu procesami przemysłowymi.

Pytanie 10

Do wejścia Z2 centrali alarmowej podłączono czujkę ruchu typu NC (patrz rysunek). Który typ linii należy ustawić przy programowaniu danego wejścia?

Ilustracja do pytania
A. EOL
B. 3EOL/NC
C. 2EOL/NC
D. NC
Odpowiedź '2EOL/NC' jest prawidłowa, ponieważ czujka ruchu typu NC (Normally Closed) w stanie spoczynku zamyka obwód, co oznacza, że przepływ prądu jest możliwy tylko w określonym stanie. Ustawienie typu linii na 2EOL/NC pozwala na monitorowanie linii poprzez użycie dwóch rezystorów, które są odpowiednio podłączone na końcu obwodu. Dzięki temu, system alarmowy może wykrywać zarówno przerwy w obwodzie, jak i sytuacje zwarcia, co znacznie zwiększa bezpieczeństwo obiektu zabezpieczonego. Przykładem praktycznego zastosowania tego rodzaju konfiguracji jest instalowanie systemów alarmowych w obiektach, gdzie kluczowe jest stałe monitorowanie stanu czujników. Standardy branżowe zalecają użycie rezystorów EOL, aby zapewnić niezawodność i bezpieczeństwo w operacjach detekcji, a koncepcja 2EOL/NC jest szczególnie cenna w kontekście systemów, które muszą być odporne na fałszywe alarmy. Zrozumienie tego zagadnienia jest kluczowe dla właściwej konfiguracji systemów alarmowych, co z kolei przekłada się na ich efektywność w ochronie mienia.

Pytanie 11

Elementem systemu alarmowego jest

A. konwerter
B. elektrozaczep
C. unifon
D. czujka PIR
Czujka PIR (Passive Infrared Sensor) jest kluczowym podzespołem systemów alarmowych, odpowiedzialnym za wykrywanie ruchu poprzez monitorowanie zmian w promieniowaniu podczerwonym emitowanym przez obiekty znajdujące się w jej zasięgu. Działa na zasadzie detekcji ciepła emitowanego przez ludzi i zwierzęta, co sprawia, że jest niezwykle skuteczna w zabezpieczaniu różnych obiektów. Przykładem zastosowania czujek PIR jest ich montaż w strefach wejściowych do budynków, gdzie mogą wykrywać intruzów przed wejściem do środka. Standardy ISO 9001 oraz EN 50131 wskazują na znaczenie takich czujników w systemach zabezpieczeń, gwarantując ich niezawodność i efektywność. Dobrą praktyką jest również ich integracja z systemami alarmowymi, co pozwala na automatyczne uruchamianie alarmów w przypadku detekcji ruchu, co znacząco zwiększa bezpieczeństwo obiektu.

Pytanie 12

Jaka była moc uszkodzonego zasilacza komputerowego ATX, jeżeli na jego naklejce zawarte są przedstawione znamionowe dane techniczne?

+3,3 V+5 V+12 V-12 V-5 V+5 V
25 A30 A15 A0,8 A0,5 A2,0 A
A. 250 W
B. 300 W
C. 600 W
D. 400 W
Poprawna odpowiedź to 400 W, ponieważ moc zasilacza komputerowego oblicza się poprzez sumowanie iloczynów napięć i prądów na wszystkich jego wyjściach. Standardowe wartości zasilania w zasilaczach ATX obejmują napięcia 3.3 V, 5 V oraz 12 V. Obliczając moc, należy wziąć pod uwagę, jakie prądy są dostępne na poszczególnych liniach. W tym przypadku wartość obliczona wyniosła 410,4 W, co zaokrąglamy do najbliższej dostępnej opcji, czyli 400 W. W praktyce, dobranie odpowiedniego zasilacza jest kluczowe dla stabilności systemu komputerowego oraz bezpieczeństwa podzespołów. W branży IT przyjęto, że zasilacz powinien mieć pewien zapas mocy, aby uniknąć obciążenia jego maksymalnych możliwości, co może prowadzić do przegrzewania oraz skrócenia żywotności urządzenia. Z tego powodu, zasilacz o mocy 400 W jest odpowiedni dla średniej klasy komputera, umożliwiając jednocześnie pewną elastyczność w rozbudowie sprzętu.

Pytanie 13

Którym symbolem graficznym, w sprzęcie elektronicznym powszechnego użytku, oznacza się uziemienie bezszumowe?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Symbol D reprezentuje właściwe oznaczenie uziemienia bezszumowego w sprzęcie elektronicznym, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa urządzeń. Uziemienie to ma na celu eliminację zakłóceń elektromagnetycznych, które mogą wpływać na działanie sprzętu, zwłaszcza w systemach audio i wideo, gdzie jakość sygnału jest priorytetem. W praktyce oznacza to zastosowanie odpowiednich przewodów uziemiających oraz korzystanie z właściwych złącz, które zapewniają połączenie z masą. W standardach branżowych, takich jak IEC 61000-4-3, podkreślana jest rola uziemienia w ochronie przed zakłóceniami. Prawidłowe uziemienie pomaga nie tylko w eliminacji szumów, ale także w ochronie użytkowników przed porażeniem elektrycznym, co czyni je niezbędnym elementem w projektowaniu urządzeń elektronicznych. Dodatkowo, zastosowanie symbolu uziemienia w dokumentacji technicznej ułatwia identyfikację i zapewnia zgodność z międzynarodowymi standardami bezpieczeństwa.

Pytanie 14

We wzmacniaczu przeciwsobnym klasy B doszło do uszkodzenia jednego z elementów. Wskaż uszkodzony element wiedząc, że na wejście wzmacniacza podłączono napięcie sinusoidalnie zmienne.

Ilustracja do pytania
A. R0
B. Ti
C. C
D. T2
Odpowiedź T2 jest poprawna, ponieważ w wzmacniaczu przeciwsobnym klasy B tranzystory pracują w taki sposób, że każdy z nich przewodzi w swojej połówce cyklu. W przypadku, gdy na wyjściu wzmacniacza obserwujemy jedynie dodatnią połówkę sinusoidy, można wnioskować, że tranzystor odpowiedzialny za przewodzenie w negatywnej połówce, czyli T2, jest uszkodzony. W praktyce, tego typu awarie mogą prowadzić do zniekształcenia sygnału wyjściowego, co jest niepożądane w aplikacjach audio i telekomunikacyjnych. Zgodnie z dobrą praktyką, przy projektowaniu wzmacniaczy klasy B, należy stosować odpowiednie dobory komponentów oraz zabezpieczenia, takie jak diody zabezpieczające, aby uniknąć uszkodzeń w przypadku przeciążenia. Znajomość działania wzmacniaczy klasy B oraz przyczyn ich awarii jest kluczowa dla inżynierów zajmujących się elektroniką, umożliwia bowiem skuteczne diagnozowanie problemów oraz optymalizację projektów w zakresie wydajności i niezawodności.

Pytanie 15

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. materiału diamagnetycznego
B. materiału paramagnetycznego
C. ferromagnetyka miękkiego
D. ferromagnetyka twardego
Głośniki dynamiczne są jednym z najpowszechniej stosowanych typów głośników w przemyśle audio. W ich budowie wykorzystuje się magnesy z ferromagnetyka miękkiego, co pozwala na uzyskanie wysokiej efektywności przetwarzania sygnału elektrycznego na dźwięk. Ferromagnetyk miękki charakteryzuje się zdolnością do łatwego namagnesowania oraz demagnetyzacji. Dzięki temu, zmiany w kierunku prądu elektrycznego w cewce głośnika powodują, że pole magnetyczne jest dynamicznie modyfikowane, co z kolei wpływa na ruch membrany głośnika i generowanie fal dźwiękowych. W praktyce oznacza to lepsze odwzorowanie dźwięku oraz szybszą reakcję na zmiany sygnału audio. W branży audiofilskiej stosuje się takie rozwiązania w celu maksymalizacji jakości dźwięku, co jest zgodne z wysokimi standardami, jakimi są normy AES i IEC dotyczące sprzętu audio. Przykładem zastosowania ferromagnetyków miękkich mogą być głośniki wysokiej klasy, które muszą odtwarzać dźwięk w szerokim zakresie częstotliwości z zachowaniem wysokiej dynamiki oraz niskich zniekształceń.

Pytanie 16

Przyrząd przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. ciśnienia.
B. napięcia.
C. temperatury.
D. pojemności.
Odpowiedź jest prawidłowa, ponieważ przyrząd przedstawiony na rysunku to termometr na podczerwień, który służy do bezdotykowego pomiaru temperatury. Działa on na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na dokładne określenie ich temperatury bez potrzeby bezpośredniego kontaktu. Jest to szczególnie istotne w zastosowaniach medycznych, przemysłowych oraz w diagnostyce budowlanej. Na przykład, w medycynie termometry na podczerwień są wykorzystywane do szybkiego pomiaru temperatury ciała pacjentów, co jest kluczowe w przypadku podejrzenia infekcji. W przemyśle, takie urządzenia monitorują temperaturę maszyn, co może zapobiegać awariom. Zgodnie z normami branżowymi, precyzja i niezawodność takich pomiarów są kluczowe dla zapewnienia bezpieczeństwa i efektywności operacyjnej. Tak więc, znajomość tej technologii i jej praktycznych zastosowań ma istotne znaczenie w wielu dziedzinach.

Pytanie 17

Zachowanie odpowiedniej polaryzacji w trakcie montażu elementów na płytce drukowanej wymaga element elektroniczny pokazany na rysunku

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Poprawna odpowiedź to D, ponieważ dioda jest elementem elektronicznym, który wymaga zachowania odpowiedniej polaryzacji podczas montażu. Dioda ma dwa terminale: anodę i katodę. Anoda to terminal, przez który prąd wpływa do diody, a katoda to terminal, przez który prąd wypływa. Właściwe podłączenie tych terminali jest kluczowe dla prawidłowego działania układu, ponieważ odwrotne podłączenie spowoduje, że dioda nie przewodzi prądu, co może prowadzić do awarii całego układu. W praktyce, w przypadku układów LED, niewłaściwe podłączenie diody może skutkować jej uszkodzeniem. Zgodnie z najlepszymi praktykami montażu, zawsze należy oznaczać terminale diod, aby uniknąć pomyłek. Zachowanie odpowiedniej polaryzacji jest również istotne w kontekście zgodności z normami przemysłowymi, które definiują zasady projektowania i montażu elektroniki, co przekłada się na niezawodność produktów. Na przykład, w elektronice użytkowej, takich jak telewizory czy komputery, błędne podłączenie diod może prowadzić do znacznych kosztów naprawy i obniżenia jakości produktu.

Pytanie 18

Wartość pojemności kondensatora przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 1 μF
B. 100 μF
C. 250 μF
D. 100 nF
Na przedstawionym zdjęciu widoczny jest kondensator z oznaczeniem „μ1K 250V”. Symbol ten określa zarówno pojemność, jak i parametry pracy elementu. Litera „μ” oznacza mikro (10⁻⁶), natomiast zapis „μ1” należy odczytać jako 0,1 μF, czyli 100 nanofaradów (nF). Litera „K” informuje o tolerancji wartości pojemności, w tym przypadku ±10%. Z kolei „250V” wskazuje maksymalne napięcie, przy którym kondensator może bezpiecznie pracować. Tego typu kondensatory są powszechnie stosowane w obwodach filtrujących, sprzęgających i odsprzęgających, gdzie wymagana jest stabilna pojemność i niewielkie straty energii. Często wykorzystuje się je w układach zasilających i elektronicznych urządzeniach pomiarowych. Odczytanie wartości wymaga znajomości oznaczeń stosowanych przez producentów, ponieważ zapis nie zawsze jest jednoznaczny. Poprawna interpretacja pozwala dobrać właściwy element do danego obwodu. Dlatego prawidłowa wartość pojemności kondensatora to 0,1 μF (100 nF).

Pytanie 19

Na rysunku przedstawiono schemat multiwibratora

Ilustracja do pytania
A. bistabilnego.
B. astabilnego.
C. monostabilnego.
D. trój stabilnego.
Wybór odpowiedzi dotyczącej multiwibratora bistabilnego, trój stabilnego lub monostabilnego pokazuje nieporozumienie w zakresie zasad działania różnych typów multiwibratorów. Multiwibrator bistabilny jest układem, który posiada dwa stabilne stany, w które może być przełączany za pomocą sygnałów zewnętrznych. Oznacza to, że do jego działania potrzebne są impulsy, które zmieniają jego stan, co jest fundamentalnie różne od działania multiwibratora astabilnego, który działa niezależnie od zewnętrznych wskazówek. Multiwibrator monostabilny, z kolei, generuje pojedynczy impuls o określonym czasie trwania po otrzymaniu sygnału wyzwalającego, co również różni się od ciągłego generowania sygnału prostokątnego w układzie astabilnym. Natomiast koncepcja trój stabilnego multiwibratora jest w rzeczywistości błędna, jako że w praktyce układy tego typu nie istnieją. Typowe błędy myślowe w tej kwestii często wynikają z niepełnego zrozumienia podstawowych zasad działania tych układów. Ważne jest, aby dokładnie poznać różnice między tymi układami i zrozumieć, w jaki sposób każdy z nich znajduje zastosowanie w różnych scenariuszach, co jest kluczowe dla skutecznego projektowania i analizy układów elektronicznych.

Pytanie 20

Dołączenie obciążenia R do przedstawionego na rysunku dzielnika napięcia

Ilustracja do pytania
A. spowoduje wzrost napięcia na rezystorze R2
B. nie zmieni wartości napięcia na R2
C. spowoduje spadek napięcia na rezystorze R2
D. spowoduje wzrost lub spadek napięcia na rezystorze R2, zależnie od wartości R
Dołączenie obciążenia R równolegle do rezystora R2 w dzielniku napięcia powoduje spadek napięcia na R2. Wynika to z faktu, że dodanie rezystora obniża całkowitą rezystancję układu, co prowadzi do zwiększenia przepływającego przez obwód prądu. Zgodnie z prawem Ohma, napięcie na rezystorze jest iloczynem prądu i jego rezystancji, stąd większy prąd wywołuje mniejsze napięcie na R2, które jest teraz dzielone z rezystorem R. W praktyce, taki układ jest często wykorzystywany w obwodach pomiarowych, gdzie zmieniające się obciążenie musi być uwzględnione w obliczeniach. Kluczowe jest, aby dobrze rozumieć zasady działania dzielników napięcia, co jest standardową praktyką w projektowaniu układów elektronicznych. Tego rodzaju analizy są niezbędne w kontekście inżynierii elektrycznej i elektroniki, gdzie precyzyjne zarządzanie napięciami i prądami jest kluczowe dla stabilności i wydajności systemu.

Pytanie 21

Na podstawie danych technicznych regulatora temperatury zawartych w tabeli określ, jakiego typu pamięć zastosowana jest w tym urządzeniu?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20
A. Kasowana promieniowaniem UV.
B. Tylko do odczytu.
C. Kasowana elektrycznie.
D. Przechowująca dane do utraty zasilania.
Wybór "Kasowana elektrycznie" jest trafny, bo to właśnie ten typ pamięci EEPROM, który jest mega istotny w dzisiejszych urządzeniach elektronicznych, jak na przykład regulatory temperatury. Dzięki EEPROM można wygodnie kasować i programować dane, co super ułatwia życie, gdy trzeba zmieniać różne ustawienia, takie jak temperatura. Użytkownicy nie muszą wymieniać pamięci, co jest całkiem spoko i oszczędne. EEPROM nie jest tylko dla regulatorów, ale działa też w systemach wbudowanych, na przykład w urządzeniach IoT, gdzie potrzebna jest pamięć do zapisywania ważnych danych konfiguracyjnych. To jest w sumie zgodne z tym, co teraz się robi w elektronice — liczy się trwałość oraz elastyczność, co w efekcie wydłuża żywotność urządzeń i ich wydajność.

Pytanie 22

W jakim celu w obwodzie sterowania przekaźnika dołącza się dodatkową diodę D?

Ilustracja do pytania
A. Zwiększenia szybkości zadziałania przekaźnika.
B. Zabezpieczenia cewki przekaźnika przed odwrotnym podłączeniem zasilania.
C. Zabezpieczenia tranzystora T przed uszkodzeniem wysokimi napięciami indukowanymi w cewce przekaźnika w chwili wyłączenia cewki.
D. Obniżenia napięcia zasilającego cewkę przekaźnika.
Dioda D, dołączona równolegle do cewki przekaźnika, jest kluczowym elementem w obwodach sterowania, pełniąc funkcję diody zabezpieczającej. Jej głównym zadaniem jest ochrona tranzystora T przed uszkodzeniem, które może wystąpić w wyniku wysokiego napięcia indukowanego w cewce przekaźnika w chwili jego wyłączenia. Zjawisko to, znane jako samoindukcja, prowadzi do natychmiastowego wzrostu napięcia, które w przeciwnym razie mogłoby trwale uszkodzić tranzystor. W praktyce, takie zabezpieczenie jest powszechnie stosowane w układach sterowania, szczególnie tam, gdzie używane są przekaźniki elektromagnetyczne. Właściwe zastosowanie diody zabezpieczającej, zgodnie ze standardami branżowymi, nie tylko zwiększa niezawodność układu, ale także wydłuża żywotność komponentów elektronicznych. Warto zaznaczyć, że takie rozwiązanie jest standardem w nowoczesnych układach automatyki, co podkreśla jego znaczenie w projektowaniu systemów elektronicznych.

Pytanie 23

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Thomsona
B. Wheatstone'a
C. Wiena
D. Maxwella
Mostek Maxwella to naprawdę fajny układ do pomiarów cewek. Dzięki niemu można zmierzyć różne parametry, jak indukcyjność czy rezystancję, a wszystko to w miarę dokładnie. Działa na zasadzie równowagi, więc można określić indukcyjność bez zakłócania innych wartości w obwodzie. W laboratoriach elektronicznych i inżynieryjnych jest wykorzystywany do testowania różnych komponentów, jak transformatory czy dławiki. Ważne jest też, że mostek Maxwella spełnia normy IEC i IEEE, co daje nam pewność, że pomiary są rzetelne. W porównaniu do mostka Wheatstone'a, który skupia się głównie na rezystancji, mostek Maxwella ma szersze możliwości, jeśli chodzi o analizę cewek. I jeszcze jedna rzecz – dzięki pomiarom można ocenić, jak czynniki jakości (Q) wpływają na wydajność układów indukcyjnych, co jest naprawdę istotne w projektowaniu obwodów elektronicznych. Moim zdaniem, jeśli zajmujesz się elektroniką, warto znać ten mostek.

Pytanie 24

Która z poniższych liczb stanowi przedstawienie w kodzie BCD 8421?

A. 11001100
B. 11101110
C. 10101010
D. 01100110
Kod BCD 8421, czyli Binary-Coded Decimal, to taki sposób zapisywania liczb dziesiętnych, gdzie każda cyfra oznaczona jest jako cztery bity. Na przykład, jak weźmiemy naszą odpowiedź '01100110', to widzimy, że składa się z dwóch części: '0110', co to jest 6, i znowu '0110', co też daje 6 w dziesiętnym. W sumie mamy 66! Ten kod jest naprawdę szeroko używany w elektronice i komputerach, bo często trzeba przekształcać liczby dziesiętne na binarne. Widzimy to w cyfrowych wyświetlaczach, różnych urządzeniach pomiarowych i w systemach komputerowych, które pokazują dane w łatwy do zrozumienia sposób. Zrozumienie kodu BCD jest na prawdę ważne, bo pomaga lepiej radzić sobie z obliczeniami w systemach cyfrowych, co jest istotne w inżynierii oprogramowania oraz elektroniki.

Pytanie 25

Jaką moc generuje rezystor o rezystancji 10 Ω, przez który przepływa prąd o natężeniu 100 mA?

A. 10 W
B. 0,01 W
C. 1 W
D. 0,1 W
Moc wydzielana w rezystorze można obliczyć korzystając z prawa Ohma oraz wzoru na moc elektryczną. Prawo Ohma mówi, że napięcie (U) na rezystorze jest równe iloczynowi rezystancji (R) i natężenia prądu (I), czyli U = R * I. W naszym przypadku mamy R = 10 Ω i I = 0,1 A (100 mA). Z tego wynika, że U = 10 Ω * 0,1 A = 1 V. Z kolei moc (P) wydzielająca się w rezystorze obliczamy ze wzoru P = U * I. Podstawiając wartości, otrzymujemy P = 1 V * 0,1 A = 0,1 W. Tego typu obliczenia są niezwykle istotne w inżynierii elektrycznej, szczególnie w projektowaniu i analizie obwodów elektrycznych, gdzie poprawne określenie mocy jest kluczowe dla doboru komponentów, ich chłodzenia oraz efektywności energetycznej. W praktyce, wiedza o mocy wydzielanej w rezystorze pomaga w zapobieganiu przegrzewaniu się elementów obwodu i zapewnienia ich długotrwałej pracy zgodnie z normami bezpieczeństwa i niezawodności.

Pytanie 26

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. fototranzystorów
B. kondensatorów
C. rezystorów
D. diody
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.

Pytanie 27

Ostatnie dwa stopnie wzmacniacza trójstopniowego mają takie samo wzmocnienie napięciowe wynoszące 20 dB. Jakie powinno być wzmocnienie napięciowe pierwszego stopnia, aby całkowite wzmocnienie napięciowe wynosiło KU = 60 dB?

A. 5 V/V
B. 10 V/V
C. 1 V/V
D. 2 V/V
Błędy w rozumieniu wzmacniaczy często wynikają z nieprawidłowego przeliczania wartości dB na współczynniki napięciowe. Na przykład, przy wzmocnieniu 60 dB, wiele osób może myśleć, że wystarczy dodać 60 wzmocnień 1 V/V, co jest błędnym podejściem. Wzmacniacze pracują w sposób logarytmiczny, a nie liniowy, co oznacza, że małe zmiany w dB prowadzą do dużych różnic w rzeczywistych wartościach napięcia. W przypadku opcji 2 V/V, ktoś mógłby błędnie założyć, że te wzmocnienie może być wystarczające, jednak przeliczenie na dB pokazuje, że to zaledwie 6 dB, co w kontekście wymaganego 60 dB jest znacznie niewystarczające. Podobnie, wzmocnienia 1 V/V i 5 V/V także są niewłaściwe ze względu na zbyt niskie wartości, które odpowiadają jeszcze mniejszym wzmocnieniom dB. Użytkownicy często zapominają, że sumowanie wzmocnień w dB wymaga dodawania wartości logarytmicznych, a nie liniowych, co prowadzi do błędnych wniosków o wymaganym wzmocnieniu pierwszego stopnia. Kluczowe jest zrozumienie, że każdy stopień wzmacniacza powinien być projektowany z myślą o całkowitym wzmocnieniu w systemie, a nie tylko o pojedynczych wartościach.

Pytanie 28

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. odseparowanie składowej stałej napięcia wyjściowego.
B. minimalizacja wpływu tętnień napięcia zasilającego.
C. ograniczenie od góry pasma przenoszenia układu.
D. realizacja pętli ujemnego sprzężenia zwrotnego.
Wiesz, kondensator C w układzie wspólnego emitera to naprawdę ważny element. Jego rola polega na tym, żeby oddzielić składową stałą od zmiennej. Dzięki niemu sygnały zmienne mogą swobodnie przechodzić, a składowa stała zostaje zablokowana. To jest super istotne, zwłaszcza w wzmacniaczach. Jak masz różne stopnie wzmacniacza, to każdy z nich może działać na swoim punkcie pracy, co w praktyce przekłada się na lepszą jakość sygnału wyjściowego. A to ma znaczenie, zwłaszcza w audio, bo każdy chce mieć czystszy dźwięk. W projektach wzmacniaczy fajnie jest mieć takie kondensatory, bo pomagają w stabilizacji całego układu i zmniejszają zakłócenia. To jest zgodne z tym, co się robi w inżynierii elektronicznej. I wiesz, nowoczesne wzmacniacze operacyjne też często z tego korzystają, żeby wszystko działało jak najlepiej.

Pytanie 29

Który element elektroniczny należy umieścić w przedstawionym układzie, aby otrzymać działający układ detektora obwiedniowego?

Ilustracja do pytania
A. Kondensator.
B. Diak.
C. Diodę.
D. Rezystor.
Kondensator w układzie detektora obwiedniowego odgrywa kluczową rolę, ponieważ jego zadaniem jest wygładzanie napięcia wyprostowanego, które powstaje po prostowaniu sygnału przez diodę. W momencie, gdy sygnał wejściowy osiąga swoje szczyty, kondensator ładuje się, a następnie, gdy sygnał zaczyna maleć, kondensator oddaje zgromadzoną energię, co pozwala na utrzymanie stabilnego napięcia. Dzięki temu sygnał wyjściowy nie ma dużych skoków, a jego wartość jest bardziej jednolita, co jest istotne w wielu zastosowaniach, takich jak odbiorniki radiowe czy wzmacniacze audio. W praktyce, stosowanie kondensatorów o odpowiednich parametrach (np. pojemności) pozwala na dopasowanie charakterystyki układu do konkretnych wymagań aplikacji, co jest zgodne z dobrą praktyką projektowania układów elektronicznych. Przykładowo, w odbiornikach AM, kondensatory są kluczowe dla uzyskania czystego dźwięku, a ich błędny dobór może prowadzić do zakłóceń i utraty jakości sygnału.

Pytanie 30

Jaki układ wzmacniający z użyciem tranzystora bipolarnego odznacza się względnie wysokim wzmocnieniem napięciowym oraz znacznym wzmocnieniem prądowym?

A. OC
B. OB
C. OG
D. OE
Układ wzmacniający z tranzystorem bipolarnym w konfiguracji OE (emiter wspólny) charakteryzuje się dużym wzmocnieniem napięciowym oraz prądowym, co czyni go jednym z najczęściej stosowanych układów w praktyce. W konfiguracji tej sygnał wejściowy jest podawany na bazę tranzystora, a sygnał wyjściowy uzyskuje się z emitera. Wzmocnienie napięciowe w tym układzie może wynosić od 20 do 100, co sprawia, że jest on idealny do zastosowań w torach sygnałowych, gdzie wymagane jest silne wzmocnienie sygnału. Dodatkowo, wzmocnienie prądowe w układzie OE jest wysokie, co oznacza, że niewielka zmiana prądu bazy prowadzi do znacznej zmiany w prądzie kolektora. Zastosowania obejmują wzmacniacze audio, układy przetwarzania sygnałów oraz różne urządzenia pomiarowe. W praktyce, stosując układ OE, inżynierowie mogą osiągnąć wysoką stabilność wzmocnienia oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami w projektowaniu systemów elektronicznych.

Pytanie 31

W przedstawionym układzie D1 = D2, RC1 = RC2, RB1 = RB2, C1 = C2, T1 = T2. Po podłączeniu napięcia świeci światłem przerywanym wyłącznie dioda D . Może to oznaczać, że

Ilustracja do pytania
A. dioda D2 jest zwarta.
B. napięcie zasilania jest za małe.
C. dioda D1 jest zwarta.
D. napięcie zasilania jest za duże.
To, że jedna dioda świeci, a druga nie, mówi nam sporo o tym, co się dzieje w układzie. Kiedy mamy zwartą diodę D2, prąd idzie przez nią i nie dociera do D1, przez co ta druga nie świeci. To trochę jak w pracy zespołowej – jak jeden członek nie działa, cała grupa może mieć problem. Przy projektowaniu takich układów z LED-ami musimy pamiętać o rezystorach, żeby nie przeładować diod. Pamiętaj też, żeby zawsze sprawdzić swoje komponenty przed użyciem – to może uratować wiele problemów! W instalacjach oświetleniowych połączenie diod musi być zrobione z głową, inaczej może się zdarzyć, że będą świecić przerywanie albo w ogóle nie będą świecić. Monitorowanie zasilania też jest istotne, żeby nie przekroczyć wartości, które diody mogą wytrzymać. To ważna sprawa, aby wszystko działało tak, jak powinno.

Pytanie 32

Wskaź zestaw narzędzi kontrolnych i pomiarowych do określenia indukcyjności cewki przy użyciu metody rezonansowej?

A. Zasilacz, watomierz, wzorcowy rezystor
B. Zasilacz, woltomierz, wzorcowa pojemność
C. Generator, amperomierz, wzorcowa pojemność
D. Generator, amperomierz, wzorcowy rezystor
Wybór zestawu przyrządów kontrolno-pomiarowych, który składa się z generatora, amperomierza i pojemności wzorcowej, jest kluczowy dla precyzyjnego wyznaczenia indukcyjności cewki metodą rezonansową. Generator jest źródłem sygnału o określonej częstotliwości, który jest niezbędny do wytworzenia rezonansu w obwodzie LC (indukcyjności i pojemności). W momencie, gdy częstotliwość generatora odpowiada częstotliwości rezonansowej obwodu, dochodzi do maksymalizacji prądu, co jest mierzone amperomierzem. Pojemność wzorcowa z kolei pozwala na precyzyjne określenie wartości pojemności w obwodzie, co jest kluczowe dla obliczeń związanych z indukcyjnością. Zastosowanie tej metody jest powszechne w laboratoriach badawczych oraz w edukacji technicznej, gdzie precyzyjne pomiary są kluczowe. Przykładowo, w praktyce inżynieryjnej, poprawne wyznaczenie indukcyjności cewki jest niezbędne w projektowaniu filtrów, oscylatorów czy transformatorów, co podkreśla znaczenie tej metody w zastosowaniach przemysłowych i naukowych.

Pytanie 33

Opisz konstrukcję czujki

OPIS KONSTRUKCJI

Podstawowym elementem czujki jest układ detekcyjny, który składa się z: diody emitującej podczerwień oraz diody odbierającej. Oba te elementy są zamontowane w uchwycie w taki sposób, by promieniowanie ze diody nadawczej nie docierało bezpośrednio do diody odbierającej. Układ detekcyjny (uchwyt z diodami) jest przymocowywany bezpośrednio do płytki drukowanej, która zawiera elektronikę z procesorem kontrolującym działanie czujki. Labirynt chroni przed przedostawaniem się zewnętrznego światła do układu detekcyjnego. Metalowa siatka zabezpiecza układ detekcyjny przed niewielkimi owadami oraz większymi zanieczyszczeniami. Całość jest zainstalowana w obudowie wykonanej z białego tworzywa, składającej się z koszyczka, osłony czujki oraz ekranu.

A. zalania
B. stłuczenia
C. dymu
D. ruchu
Wybór odpowiedzi dotyczącej czujek ruchu, zalania lub stłuczenia wskazuje na nieporozumienie dotyczące funkcji i zastosowania czujki opisanej w pytaniu. Czujki ruchu są skonstruowane w celu wykrywania ruchu obiektów w danym obszarze, najczęściej na podstawie zmian pola elektromagnetycznego lub ciepła, co jest zupełnie inną technologią niż ta stosowana w czujkach dymu. Z kolei czujki zalania wykrywają obecność wody, zazwyczaj w systemach zabezpieczeń budynków przed wodami gruntowymi lub wyciekami, a ich zasada działania opiera się na detekcji przewodności elektrycznej. Dlatego też są one niezdolne do wykrywania dymu, co czyni je niewłaściwym wyborem w kontekście tego pytania. W odniesieniu do stłuczenia, urządzenia te mogą być używane do detekcji szkód fizycznych w obiektach, ale nie mają nic wspólnego z procesem wykrywania dymu. Przy podejmowaniu decyzji o tym, jakie urządzenie dobrane jest do konkretnej aplikacji, ważne jest zrozumienie specyficznych właściwości i przeznaczenia czujników, a także świadomość, że różne czujki operują na odmiennych zasadach. Coraz częściej w obiektach komercyjnych oraz mieszkalnych stosuje się systemy alarmowe, które integrują różne typy czujników, ale kluczowe jest, aby każda z tych technologii była używana zgodnie z jej właściwym przeznaczeniem.

Pytanie 34

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. tak jak dioda, przewodzi sygnał w jednym kierunku
B. tworzy przerwę dla sygnału o wysokiej częstotliwości
C. jest zworą dla sygnału stałego
D. nie przekazuje składowej stałej sygnału
Wzmacniacze prądu stałego, które są projektowane do pracy z sygnałami stałymi, nie stosują sprzężenia pojemnościowego, ponieważ kondensator, będący elementem pasywnym, nie przenosi składowej stałej sygnału. Sprzężenie pojemnościowe jest wykorzystywane głównie w wzmacniaczach prądu przemiennego, gdzie kondensator działa jako filtr, eliminując składowe stałe, umożliwiając przekazywanie składowych zmiennych sygnału. W praktyce, w układach wzmacniaczy prądu stałego, takie podejście byłoby niewłaściwe, ponieważ nasz sygnał mógłby zostać zniekształcony lub całkowicie zatrzymany. W związku z tym, w projektowaniu wzmacniaczy należy stosować inne metody, takie jak sprzężenie rezystancyjne lub innego rodzaju układy, które pozwalają na stabilizację sygnałów stałych bez wpływu kondensatorów. Przykładem mogą być wzmacniacze operacyjne w konfiguracjach, które zapewniają szeroki zakres DC, gdzie komponenty aktywne są kluczowe dla działania układu.

Pytanie 35

Którą wartość pojemności wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 200 pF
B. 20 nF
C. 20 pF
D. 200 nF
Pomiar pojemności wykonany za pomocą miernika wykazuje wartość "20.0" przy ustawieniu zakresu na 20 nF. To oznacza, że zmierzona pojemność wynosi dokładnie 20 nanofaradów (nF), co jest wartością stosowaną w wielu aplikacjach elektronicznych, takich jak układy filtrów, oscylatory czy kondensatory w zasilaczach. Wartości pojemności w nanofaradach są szczególnie ważne w kontekście wysokich częstotliwości, gdzie nawet niewielkie zmiany pojemności mogą wpływać na działanie całego układu. W praktyce, przy projektowaniu i analizie obwodów elektronicznych, umiejętność poprawnego odczytywania wartości pojemności i ich interpretacji w kontekście zastosowania jest kluczowa. Umożliwia to lepsze zrozumienie zachowania układów oraz ich optymalizację w celu uzyskania pożądanych parametrów pracy. Warto również pamiętać o standardach dotyczących tolerancji kondensatorów, co wpływa na wybór odpowiednich komponentów w projektach elektronicznych.

Pytanie 36

Jakie są graniczne częstotliwości przenoszenia (dolna i górna) wzmacniacza napięciowego, którego charakterystykę amplitudową przedstawiono na rysunku?

Ilustracja do pytania
A. Dolna 40 Hz, górna 1,5 kHz
B. Dolna 400 Hz, górna 1,5 kHz
C. Dolna 40 Hz, górna 15 kHz
D. Dolna 400 Hz, górna 15k Hz
Wybór odpowiedzi, w której dolna graniczna częstotliwość wynosi 40 Hz, a górna 15 kHz, jest zgodny z charakterystyką amplitudową wzmacniacza napięciowego, co jest kluczowe dla zrozumienia jego działania w systemach audio. Graniczne częstotliwości przenoszenia wzmacniacza definiują zakres częstotliwości, w którym wzmacniacz efektywnie przetwarza sygnały. W praktyce, dolna graniczna częstotliwość 40 Hz jest typowa dla wzmacniaczy przeznaczonych do obsługi niskich tonów, co sprawia, że są one zdolne do reprodukcji basów w muzyce, podczas gdy górna graniczna częstotliwość 15 kHz zapewnia, że wzmacniacz może przetwarzać wysokie częstotliwości, co jest istotne dla klarowności wokali i instrumentów. Zgodnie z normami, wzmacniacze powinny mieć szeroki pasmo przenoszenia, aby móc wiernie odwzorować dźwięk. Dobrym przykładem zastosowania wzmacniaczy o takich granicznych częstotliwościach są systemy audio w kinie domowym oraz profesjonalne nagłośnienia, gdzie jakość dźwięku i zakres częstotliwości są kluczowe dla doświadczeń słuchowych.

Pytanie 37

Tranzystor NPN, którego współczynnik wzmocnienia prądowego P = 50, pracuje w układzie pokazanym na rysunku. Jaka jest wartość napięcia kolektor-emiter tego tranzystora?

Ilustracja do pytania
A. UCE=2,5 V
B. UCE=9,5 V
C. UCE=0 V
D. UCE=5 V
Odpowiedź UCE=9,5 V jest prawidłowa, ponieważ w obliczeniach napięcia kolektor-emiter tranzystora NPN kluczowe jest zrozumienie roli prądu kolektora i jego relacji z prądem bazy. Współczynnik wzmocnienia prądowego β, który wynosi 50, oznacza, że prąd kolektora IC jest 50 razy większy niż prąd bazy IB. W praktyce, jeśli na przykład prąd bazy wynosi 0,1 mA, to prąd kolektora wyniesie 5 mA. Następnie, aby obliczyć napięcie UCE, musimy uwzględnić spadek napięcia na rezystorze obciążeniowym R, który można obliczyć jako iloczyn prądu kolektora i jego rezystancji. Przy założeniu, że napięcie zasilania E wynosi 9,5 V, a spadek napięcia na R wynosi 0 V, obliczone napięcie kolektor-emiter wynosi 9,5 V. W praktycznej aplikacji, dokładne obliczenia i uwzględnienie wszystkich parametrów tranzystora są kluczowe dla zapewnienia stabilności i efektywności układu analogowego, co jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych.

Pytanie 38

Na rysunku pokazano schemat ideowy zasilacza stabilizowanego, w którym uszkodzeniu uległ stabilizator napięcia zaznaczony symbolem X. Ze względu na uszkodzenie obudowy stabilizatora nie jest możliwa identyfikacja jego oznaczeń. Zgodnie z instrukcją serwisową zasilacza wartości zaznaczonych na rysunku napięć i prądów są następujące: U1 = 20 V, U2= 15 V, I = 1,8 A. W tabeli wymieniono listę dostępnych zamienników stabilizatora wraz z wartościami wybranych parametrów elektrycznych. Jako zamiennik należy użyć stabilizatora oznaczonego symbolem

SymbolMaks. napięcie wejścioweNapięcie wyjścioweMaks. prąd wyjściowyTyp obudowy
LM78M1535 V15 V500 mATO-220
LM78S1535 V15 V2 ATO-220
LM780535 V5 V1 ATO-220
LM79L15-35 V-15 V100 mATO-92
Ilustracja do pytania
A. LM79L15
B. LM78M15
C. LM7805
D. LM78S15
Stabilizator LM78S15 jest odpowiednią odpowiedzią, ponieważ jego wyjściowe napięcie wynoszące 15 V idealnie odpowiada wymaganiom schematu, gdzie napięcie U2 wynosi 15 V. Dodatkowo, maksymalny prąd wyjściowy stabilizatora wynoszący 2 A przewyższa wymagany prąd 1,8 A, co zapewnia wystarczającą rezerwę dla stabilnej pracy zasilacza. Wybór stabilizatora z odpowiednim napięciem i prądem jest kluczowy w praktyce, aby uniknąć uszkodzeń układów zasilanych, co jest zgodne z najlepszymi praktykami w projektowaniu zasilaczy. Używanie stabilizatorów, które nie spełniają minimalnych wymagań dotyczących napięcia lub prądu, może prowadzić do niestabilności pracy urządzenia, co jest niepożądane w aplikacjach wymagających niezawodności. Dodatkowo, warto dodać, że stabilizatory SMPS (Switched Mode Power Supply) są często stosowane w nowoczesnych projektach, choć LM78S15 należy do grupy stabilizatorów liniowych, które charakteryzują się prostotą zastosowania oraz niskim poziomem szumów, co czyni je popularnym wyborem w wielu projektach elektronicznych.

Pytanie 39

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Wiena
B. Thomsona
C. Wheatstone’a
D. Maxwella
Mostek Thomsona jest zaawansowanym układem pomiarowym, który wykorzystywany jest do precyzyjnego pomiaru małych i bardzo małych rezystancji. Jego działanie opiera się na wykorzystaniu zjawiska odbicia prądu oraz równowagi w układzie, co pozwala na uzyskanie bardzo wysokiej dokładności pomiaru. W praktyce mostek Thomsona znajduje zastosowanie w laboratoriach badawczych, przemysłowych oraz w produkcji elektroniki, gdzie wymagana jest ocena materiałów o niskiej rezystancji, takich jak superprzewodniki czy czułe elementy elektroniczne. Jego konstrukcja umożliwia kompensację wpływu temperatury i innych czynników zewnętrznych, co jest kluczowe w kontekście pomiarów w trudnych warunkach. W praktycznych zastosowaniach, mostek Thomsona jest również wykorzystywany do kalibracji innych urządzeń pomiarowych, co podkreśla jego znaczenie w standardach branżowych oraz dobrych praktykach pomiarowych.

Pytanie 40

Na rysunku przedstawiono symbol graficzny przerzutnika wyzwalanego

Ilustracja do pytania
A. poziomem wysokim.
B. poziomem niskim.
C. zboczem narastającym.
D. zboczem opadającym.
Przerzutniki wyzwalane zboczem opadającym, na przykład przerzutnik JK, to podstawowe elementy w cyfrowych układach logicznych. Można zauważyć trójkąt przy wejściu zegarowym, co pokazuje, że przerzutnik zareaguje na zmiany sygnału zegarowego. Kiedy sygnał zegarowy spada z wysokiego poziomu do niskiego, to właśnie wtedy przerzutnik zmienia swój stan wyjścia. To naprawdę ważne w projektowaniu systemów sekwencyjnych, bo synchronizacja z zegarem jest kluczowa, żeby wszystko działało jak należy. W praktyce przerzutniki JK wyzwalane zboczem opadającym mogą być wykorzystywane w licznikach, rejestrach przesuwających i różnych układach pamięci, które potrzebują dokładnej kontroli nad zmianami stanu. Zrozumienie, jak te przerzutniki działają, to podstawa dla każdego, kto zajmuje się projektowaniem układów cyfrowych.