Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 lutego 2026 21:34
  • Data zakończenia: 3 lutego 2026 21:43

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Nieprawidłowe odpowiedzi na pytanie o schemat podłączenia automatu schodowego często wynikają z niepełnego zrozumienia działania tego urządzenia oraz zasad elektryki. W przypadku odpowiedzi A, B i D, brak jest uwzględnienia kluczowych połączeń, które determinują, że automat schodowy działa poprawnie. Na przykład, w schematach, gdzie przewód fazowy nie jest podłączony do właściwego zacisku L, nie tylko dochodzi do nieprawidłowego działania, ale także do potencjalnych zagrożeń dla użytkowników. Niedostateczne połączenia przycisków A1 i A2 mogą skutkować brakiem możliwości włączania i wyłączania oświetlenia, co jest nieakceptowalne w przestrzeniach, gdzie kontrola nad oświetleniem jest istotna dla bezpieczeństwa. Często w tych błędnych interpretacjach mylone są podstawowe zasady obwodów elektrycznych, takie jak zasada działania obwodów równoległych i szeregowych. Warto również zwrócić uwagę na standardy bezpieczeństwa, które podkreślają konieczność prawidłowego podłączenia komponentów w celu uniknięcia zwarć oraz innych awarii elektrycznych. Zrozumienie tych zasad jest kluczem do samodzielnego projektowania prostych instalacji, a także do świadomego korzystania z technologii w codziennym życiu.

Pytanie 2

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,69
B. 0,82
C. 0,99
D. 0,57
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 3

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielożyłowy uzbrojony.
B. Jednodrutowy nieuzbrojony.
C. Jednożyłowy uzbrojony.
D. Wielodrutowy nieuzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 4

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Gniazda wtykowego.
B. Puszki łączeniowej.
C. Wtyczki kabla zasilającego.
D. Oprawki źródła światła.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 5

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Połączenie wyrównawcze.
B. Użycie odbiorników II klasy ochronności.
C. Separację odbiornika.
D. Samoczynne wyłączenie zasilania.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 6

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 A oraz znamionowy prąd ciągły 40 A
B. 0,03 mA oraz napięcie znamionowe 40 V
C. 0,03 A oraz napięcie znamionowe 40 V
D. 0,03 mA oraz znamionowy prąd ciągły 40 mA
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 7

Na którym rysunku przedstawiono układ zasilania lampy rtęciowej?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór innej odpowiedzi może wynikać z nieporozumień dotyczących budowy i działania układu zasilania lamp rtęciowych. Schematy przedstawione w odpowiedziach A, C i D nie zawierają kluczowych elementów, które są niezbędne do prawidłowego funkcjonowania lampy rtęciowej. Na przykład, odpowiedź A może przedstawiać układ zasilania, który nie ma dławika, co jest fundamentalnym błędem, gdyż dławik jest niezbędny do ograniczenia prądu i zapewnienia stabilności działania lampy. W przypadku odpowiedzi C, zamiast kondensatora, mogłyby znajdować się inne komponenty, co nie tylko zmienia funkcjonalność układu, ale także prowadzi do ryzyka uszkodzenia lampy. Z kolei odpowiedź D, jeśli zawiera inne źródło zasilania, może wprowadzać w błąd co do zasady działania lamp rtęciowych. Kluczowym błędem myślowym przy wyborze niepoprawnych odpowiedzi jest niewłaściwe zrozumienie roli dławika i kondensatora w układzie, które są niezbędne do zapewnienia odpowiednich warunków pracy lampek rtęciowych. W praktycznych zastosowaniach, ignorowanie tych elementów może prowadzić do awarii, co podkreśla znaczenie znajomości poprawnych schematów zasilania w kontekście bezpieczeństwa elektrycznego oraz efektywności energetycznej.

Pytanie 8

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do montażu zacisków zakleszczających.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 9

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-2, II-4, III-1, IV-3
B. I-1, II-4, III-2, IV-3
C. I-4, II-3, III-2, IV-1
D. I-1, II-2, III-3, IV-4
Analizując zastosowane podejścia w niepoprawnych odpowiedziach, widać, że błędnie interpretują one zasady dotyczące podłączenia łącznika krzyżowego. Wiele osób może mylnie sądzić, że wystarczy zamienić miejscami wejścia i wyjścia bez zrozumienia ich funkcji. Na przykład, konfiguracja I-2, II-4, III-1, IV-3 sugeruje, że wejście 2 pełni rolę głównego źródła sygnału, co jest niezgodne z funkcją łącznika krzyżowego. Tego typu błędne myślenie można przypisać braku zrozumienia, jak sygnały elektryczne przepływają przez system, co prowadzi do nieprawidłowego sterowania oświetleniem. Kolejnym typowym błędem jest nieodróżnianie między funkcją wejść a wyjść łącznika. Wejścia 1 i 4 mają za zadanie przyjmować sygnały sterujące, a wyjścia 2 i 3 są odpowiedzialne za przekazywanie energii do oświetlenia. Niezrozumienie tej struktury może prowadzić do nieefektywnego działania całego układu oraz problemów z instalacją. Ważne jest, aby zrozumieć, że każdy element ma swoją określoną rolę w systemie elektrycznym i nie można dowolnie zmieniać ich funkcji bez konsekwencji dla bezpieczeństwa i wydajności instalacji.

Pytanie 10

Do których zacisków przekaźnika zmierzchowego przedstawionego na schemacie należy podłączyć czujnik światła?

Ilustracja do pytania
A. 7 i 9
B. 10 i 12
C. N i 12
D. L i 10
Czujnik światła powinien być podłączony do zacisków 7 i 9 przekaźnika zmierzchowego, ponieważ te zaciski są przeznaczone do podłączenia zewnętrznych czujników. W praktyce, gdy zmierzchowy przekaźnik wykryje spadek natężenia światła, czujnik ten aktywuje przekaźnik, co pozwala na automatyczne włączanie lub wyłączanie oświetlenia w zależności od warunków oświetleniowych. Zgodnie z normami branżowymi, podłączanie czujników do właściwych zacisków jest kluczowe dla zapewnienia prawidłowego działania systemu. W przypadku zastosowań w inteligentnych domach, poprawne podłączenie czujnika światła do właściwych zacisków pozwala na efektywne zarządzanie energią, co jest zgodne z ideą zrównoważonego rozwoju. W praktyce, użytkownik może ustawić czujnik w odpowiedniej lokalizacji, aby optymalizować jego działanie, co z kolei wpływa na komfort i oszczędności energii.

Pytanie 11

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. hotelowy.
B. schodowy.
C. świecznikowy.
D. dwubiegunowy.
Wybór jednego z pozostałych typów łączników, takich jak dwubiegunowy, hotelowy czy świecznikowy, prowadzi do nieporozumień dotyczących ich funkcji oraz zastosowania. Łącznik dwubiegunowy, w przeciwieństwie do schodowego, służy głównie do włączania i wyłączania zasilania w obwodzie, ale nie umożliwia zdalnej kontroli z dwóch miejsc. Jego zastosowanie zazwyczaj ogranicza się do pojedynczego miejsca, co nie jest odpowiednie w kontekście schodów lub długich korytarzy. Z kolei łącznik hotelowy jest wykorzystywany w specyficznych aplikacjach w hotelach, gdzie ma inną funkcjonalność, najczęściej związaną z systemami zarządzania pokojami. Natomiast łącznik świecznikowy, używany do podłączenia świeczników i lamp, również nie spełnia roli łącznika schodowego, ponieważ nie jest skonstruowany do obsługi oświetlenia z dwóch miejsc jednocześnie. Wybierając nieodpowiedni typ łącznika, można narazić użytkowników na niewygodę lub wręcz niebezpieczeństwo, jeśli oświetlenie będzie nietypowo skonfigurowane. Użycie właściwego oznaczenia ma kluczowe znaczenie w zapewnieniu poprawności instalacji elektrycznej, co jest zgodne z obowiązującymi normami branżowymi.

Pytanie 12

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W listwach przypodłogowych
B. Na drabinkach
C. W kanałach podłogowych
D. Przewodami szynowymi
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 13

Na której ilustracji przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 4.
Prawidłowo wskazana została ilustracja 4, bo właśnie tam widzimy typową rozdzielnicę natynkową przeznaczoną do montażu na ścianie, a nie w jej wnętrzu. Charakterystyczne cechy to wyraźnie wystająca obudowa, brak kołnierza do osadzenia w tynku oraz zaokrąglone krawędzie korpusu, które po prostu „siadają” na gotowej ścianie. Taka rozdzielnica ma zwykle przygotowane miejsca na przepusty kablowe z góry, z dołu lub z tyłu, żeby można było wygodnie wprowadzić przewody w istniejącej instalacji. Od frontu widoczna jest uchylna, najczęściej przezroczysta pokrywa, pod którą montuje się aparaturę na szynie DIN: wyłączniki nadprądowe, różnicowoprądowe, ograniczniki przepięć, liczniki energii itp. W praktyce natynkowe rozdzielnice stosuje się głównie w garażach, piwnicach, pomieszczeniach gospodarczych, warsztatach, a także w instalacjach modernizowanych, gdzie nie ma sensu kuć ścian pod wersję podtynkową. Moim zdaniem to jest najwygodniejsze rozwiązanie wszędzie tam, gdzie liczy się łatwy dostęp serwisowy i możliwość późniejszej rozbudowy obwodów. Zgodnie z dobrą praktyką i wymaganiami norm (PN‑HD 60364 i norm producentów osprzętu) dobierając taką rozdzielnicę zwraca się uwagę na stopień ochrony IP, klasę izolacji, ilość modułów oraz sposób wprowadzenia kabli. Ważne jest też prawidłowe mocowanie do podłoża – kołki rozporowe lub odpowiednie śruby – tak, aby obudowa była stabilna, nie przenosiła naprężeń na przewody i zapewniała odpowiednie warunki chłodzenia aparatów. W instalacjach domowych często spotyka się rozdzielnice natynkowe w wykonaniu z tworzywa, dokładnie takie jak na ilustracji 4, bo są lekkie, łatwe w montażu i odporne na korozję.

Pytanie 14

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Watomierza
C. Waromierza
D. Reflektometru
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 15

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 16

Kondensator stosowany w jednofazowych silnikach indukcyjnych przeznaczony jest do

A. zmiany wartości napięcia w układzie.
B. wytworzenia momentu rozruchowego.
C. zatrzymywania silnika.
D. regulacji prędkości obrotowej.
Poprawnie – kondensator w jednofazowych silnikach indukcyjnych służy właśnie do wytworzenia momentu rozruchowego. Jednofazowe uzwojenie stojana samo z siebie tworzy tylko pole pulsujące, a nie wirujące, więc silnik bez dodatkowych zabiegów w ogóle by nie wystartował, tylko buczał. Kondensator wraz z uzwojeniem pomocniczym powoduje przesunięcie fazowe prądu względem uzwojenia głównego. W efekcie w stojanie powstają dwa pola magnetyczne przesunięte w fazie, które „składają się” na pole wirujące, dające właśnie moment rozruchowy. W praktyce wyróżnia się silniki z kondensatorem rozruchowym oraz z kondensatorem pracy. Ten pierwszy jest zwykle o większej pojemności, włączany tylko na czas rozruchu przez wyłącznik odśrodkowy lub przekaźnik prądowy, żeby zapewnić duży moment startowy, np. w sprężarkach, pompach, małych wentylatorach o większym oporze rozruchowym. Kondensator pracy ma mniejszą pojemność, jest włączony na stałe i oprócz poprawy rozruchu wpływa też na lepszą pracę silnika, trochę poprawia cos φ i kulturę pracy. Moim zdaniem warto kojarzyć, że kondensator nie jest tu żadnym elementem regulacyjnym czy zabezpieczeniem, tylko częścią układu wytwarzającego sztuczne „drugie uzwojenie fazowe”. W dokumentacji producentów silników jednofazowych zawsze podawana jest zalecana pojemność kondensatora na 1 kW mocy oraz jego napięcie pracy, zwykle 400–450 V AC, i tego w praktyce trzeba się trzymać, bo zła wartość pojemności od razu psuje właściwości rozruchowe.

Pytanie 17

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
D. Do montażu zacisków zakleszczających.
Odpowiedź, że szczypce są przeznaczone do formowania oczek na końcach żył jednodrutowych, jest prawidłowa, ponieważ szczypce okrągłe zostały zaprojektowane z myślą o precyzyjnym formowaniu takich elementów w obszarze elektryki i mechaniki. Oczka na końcach żył są kluczowe, ponieważ umożliwiają solidne połączenie przewodów z zaciskami, co jest istotne dla zapewnienia bezpieczeństwa oraz niezawodności instalacji. W praktyce, formowanie oczek to nie tylko kwestia estetyki, ale również funkcjonalności; dobrze uformowane oczka minimalizują ryzyko luźnych połączeń, które mogą prowadzić do przegrzewania się lub awarii. W inżynierii elektrycznej stosuje się różne standardy, takie jak IEC 60947-1, które regulują wymagania dotyczące połączeń elektrycznych. Warto również wspomnieć, że odpowiednie formowanie końców żył ma kluczowe znaczenie w kontekście odporności na wibracje i długotrwałą niezawodność połączeń.

Pytanie 18

W jaki sposób odbywa się sterowanie oświetleniem w układzie wykonanym według schematu montażowego przedstawionego na rysunku?

Ilustracja do pytania
A. Klawisze 1a i 1b sterują żarówką A, a klawisze 2a i 2b sterują żarówką B
B. Klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b sterują żarówką A
C. Klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A
D. Klawisze 1a i 2a sterują żarówką A, a klawisze 1b i 2b sterują żarówką B
Wiele osób ma trudności ze zrozumieniem działania układów schodowych, co prowadzi do błędnych wniosków dotyczących ich funkcjonalności. W przypadku odpowiedzi wskazujących, że klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b żarówką A, należy zwrócić uwagę na fakt, że nie jest to zgodne z zasadą działania układu schodowego. Klawisze w takim układzie są połączone w sposób, który pozwala na kontrolowanie jednej żarówki z dwóch różnych lokalizacji, a nie na podział sterowania między różnymi żarówkami w sposób zasugerowany w tych odpowiedziach. Typowym błędem jest mylenie funkcji klawiszy w kontekście ich połączenia oraz nieznajomość zasad działania obwodów elektrycznych, co prowadzi do błędnego przyporządkowania klawiszy i żarówek. Układ schodowy opiera się na zasadzie, że każda para klawiszy działa niezależnie, ale zawsze w odniesieniu do tej samej żarówki. W konsekwencji, brak zrozumienia tego mechanizmu może prowadzić do nieprawidłowego podłączenia i w efekcie do nieefektywnego działania systemu oświetleniowego. Zrozumienie działania układów schodowych jest kluczowe w praktyce elektrycznej, zwłaszcza przy projektowaniu układów oświetleniowych w obiektach mieszkalnych oraz komercyjnych.

Pytanie 19

Na podstawie rysunku określ wymiar, który opisuje wysokość zawieszenia opraw oświetleniowych w sali lekcyjnej.

Ilustracja do pytania
A. Wymiar b
B. Wymiar d
C. Wymiar a
D. Wymiar c
Wybór innych wymiarów, takich jak wymiar a, c czy d, wskazuje na pewne nieporozumienia dotyczące interpretacji rysunku oraz podstawowych zasad projektowania oświetlenia. Wymiar a, zazwyczaj odnosi się do odległości poziomej w pomieszczeniu, co nie ma zastosowania przy ocenie wysokości zawieszenia opraw oświetleniowych. Podobnie wymiar c, mogący oznaczać wysokość mebli, lub wymiar d, który najprawdopodobniej przedstawia inne aspekty przestrzenne, nie odnoszą się do zagadnienia wysokości zawieszenia opraw. W praktyce, wysokość zawieszenia opraw ma kluczowe znaczenie dla efektywności oświetlenia oraz komfortu użytkowników. Typowym błędem jest skupienie się na wymiarach, które nie mają bezpośredniego wpływu na sposób, w jaki światło rozchodzi się w przestrzeni. Właściwe zrozumienie, że wysokość opraw oświetleniowych nie jest tylko kwestią estetyki, ale także funkcjonalności, jest niezbędne w projektowaniu efektywnych i ergonomicznych przestrzeni edukacyjnych. Zbyt niskie lub zbyt wysokie zawieszenie opraw może prowadzić do olśnień, cieni oraz niewystarczającego oświetlenia roboczego, co negatywnie wpływa na koncentrację i wyniki uczniów. Z tego powodu kluczowe jest, aby przy projektowaniu uwzględniać odpowiednie normy i wytyczne, aby uniknąć tych powszechnych problemów.

Pytanie 20

Na izolatorach wsporczych instaluje się przewody

A. rdzeniowe
B. szynowe
C. kabelkowe
D. uzbrojone
Przewody rdzeniowe zazwyczaj odnoszą się do kabli, które mają jeden lub więcej rdzeni przewodzących, jednak nie są stosowane w kontekście izolatorów wsporczych. Ich głównym zastosowaniem są instalacje, gdzie wymagana jest większa elastyczność i mniejsze obciążenia mechaniczne, co nie jest typowe dla izolatorów wsporczych. Przewody uzbrojone z kolei są to przewody, które mają dodatkowe wzmocnienia mechaniczne, często stosowane w trudniejszych warunkach, ale również nie znajdują zastosowania w izolatorach wsporczych, które wymagają specyficznych rozwiązań. Wreszcie, przewody kabelkowe, które są wykorzystywane w instalacjach kablowych, posiadają różne osłony i są wbudowane w ziemię lub inne struktury, co również nie jest odpowiednie dla izolatorów wsporczych, które zasadniczo podtrzymują przewody w przestrzeni powietrznej. Błędem jest zatem mylenie terminologii i funkcji różnych typów przewodów, co może prowadzić do nieefektywnego projektowania oraz stosowania niewłaściwych elementów w systemach elektroenergetycznych. Właściwe zastosowanie technologii jest kluczowe dla zapewnienia nieprzerwanej i bezpiecznej dostawy energii elektrycznej.

Pytanie 21

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. D.
B. B.
C. C.
D. A.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 22

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. strugoszczelna.
B. nieodporna na wnikanie wody.
C. wodoszczelna.
D. odporna na krople wody.
Twoja odpowiedź jest trafna, bo jeśli przyjrzymy się rysunkowi oprawy oświetleniowej, to nie widać żadnych uszczelnień ani odpowiednich zabezpieczeń. To oznacza, że ten produkt nie nadaje się do używania w miejscach, gdzie może być wilgoć lub woda. W praktyce, oprawy, które można stosować w miejscach z podwyższoną wilgotnością, jak w łazienkach czy na zewnątrz, muszą spełniać pewne normy odporności na wodę, na przykład normy IP. Jeżeli nie zastosujemy takich standardów, to mogą wystąpić problemy z elektroniką, a nawet zagrożenie pożarowe. Dlatego warto zwracać uwagę na klasę ochrony przy wyborze opraw oświetleniowych, bo to sprawi, że będą one bezpieczniejsze i dłużej posłużą.

Pytanie 23

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Izolacja żyły.
B. Oplot włóknisty.
C. Powłoka.
D. Uzbrojenie.
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 24

W którym układzie sieciowym, w przypadku przerwania przewodu ochronno-neutralnego, na obudowach metalowych odbiorników może pojawiać się pełne napięcie fazowe?

A. TN-S
B. IT
C. TT
D. TN-C
Prawidłowa odpowiedź to układ TN-C, bo właśnie w tym systemie przewód ochronno‑neutralny PEN pełni jednocześnie dwie funkcje: przewodu roboczego (N) i ochronnego (PE). Jeśli dojdzie do jego przerwania, wszystkie obudowy urządzeń podłączone do tego przewodu „tracą” połączenie z punktem neutralnym transformatora i zaczynają się zachowywać jak przewód fazowy – może się na nich pojawić pełne napięcie fazowe względem ziemi. I to jest bardzo niebezpieczne w praktyce, bo użytkownik dotyka wtedy normalnie uziemionej obudowy, która nagle ma 230 V. W układzie TN-C przewód PEN jest prowadzony wspólnie, najczęściej w starszych instalacjach dwuprzewodowych (L + PEN). Z mojego doświadczenia właśnie w takich starych blokach czy kamienicach ryzyko przerwania PEN jest realne: poluzowane zaciski, korozja, złe łączenia. Normy, np. PN‑HD 60364, od lat odradzają stosowanie TN-C w instalacjach odbiorczych wewnątrz budynków i zalecają przejście na układy TN-S albo TN-C-S, gdzie funkcje PE i N są rozdzielone. Rozdział PEN na PE i N (układ TN-C-S) wykonuje się możliwie blisko punktu zasilania budynku, a w instalacji wewnętrznej prowadzi się już trzy przewody: L, N, PE, co radykalnie zmniejsza ryzyko pojawienia się napięcia na obudowach. W praktyce dobrym zwyczajem jest unikanie „dorabiania” ochrony przez mostkowanie bolca ochronnego do N w gniazdach w starych instalacjach TN-C. To tylko utrwala niebezpieczny układ i zwiększa skutki potencjalnego przerwania PEN. Zawodowo patrząc, każda modernizacja instalacji w TN-C powinna iść w stronę wymiany przewodów i rozdziału przewodu PEN, a nie kombinowania z przejściówkami. Moim zdaniem to jedno z kluczowych zagadnień ochrony przeciwporażeniowej, które każdy elektryk powinien mieć „w małym palcu”.

Pytanie 25

Co oznacza przeciążenie instalacji elektrycznej?

A. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
B. Przekroczeniu wartości prądu znamionowego danej instalacji
C. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
D. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 26

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Wyładowcze.
B. Elektroluminescencyjne.
C. Fluorescencyjne.
D. Żarowe.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 27

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Impedancja pętli zwarcia.
B. Rezystancja uziemienia.
C. Rezystancja przewodu ochronnego.
D. Impedancja przewodu neutralnego.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących różnych rodzajów rezystancji i impedancji w instalacjach elektrycznych. Impedancja pętli zwarcia odnosi się do całkowitego oporu w obwodzie w przypadku zwarcia, a jej pomiar jest istotny, by zapewnić odpowiednie działanie zabezpieczeń, ale nie jest to to samo, co rezystancja przewodu ochronnego. Odpowiedź dotycząca rezystancji uziemienia również może być mylnie utożsamiana z pomiarem rezystancji przewodu ochronnego. Uziemienie ma na celu ochronę przed niebezpiecznymi napięciami, natomiast przewód ochronny pełni rolę zabezpieczającą w kontekście porażenia prądem. Impedancja przewodu neutralnego również nie jest związana z pomiarem rezystancji przewodu ochronnego; w zasadzie odnosi się do oporu, który występuje w przewodzie neutralnym w trakcie normalnej pracy instalacji. Typowym błędem myślowym jest mylenie tych pojęć i branie pod uwagę nieodpowiednich parametrów podczas pomiarów. Kluczowe jest zrozumienie specyfikacji oraz funkcji poszczególnych przewodów w systemach elektrycznych, co jest niezbędne do prawidłowego diagnozowania i konserwacji instalacji. Znajomość różnic między tymi wielkościami jest fundamentalna dla bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 28

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 500 V
B. 2500 V
C. 250 V
D. 1000 V
Stosowanie napięcia 500 V, 250 V czy 2500 V do pomiaru rezystancji izolacji przewodu YDY 5x6 450/700 V jest nieprawidłowe z kilku powodów. Napięcie 500 V jest zbyt niskie, aby skutecznie ocenić stan izolacji, szczególnie w przypadku przewodów o niższej klasie napięcia, które mogą wykazywać defekty poddawane jedynie wyższym napięciom. Zastosowanie zbyt niskiego napięcia może prowadzić do fałszywie pozytywnych wyników, co skutkuje błędną oceną stanu izolacji i potencjalnym zagrożeniem bezpieczeństwa. Z kolei 250 V jest jeszcze niższe i również nie dostarcza wystarczającej energii do wykrycia ewentualnych uszkodzeń izolacji. Przeciwnie, napięcie 2500 V jest zbyt wysokie dla tego typu przewodów i może doprowadzić do uszkodzenia izolacji, co w konsekwencji może spowodować poważne awarie systemu elektrycznego. Z tego powodu kluczowe jest stosowanie napięć, które są zgodne z normami i zaleceniami branżowymi, aby zapewnić zarówno dokładność pomiarów, jak i bezpieczeństwo instalacji. Warto w tym kontekście przypomnieć, że zgodnie z normą PN-EN 60364-4-6, pomiar rezystancji izolacji powinien być przeprowadzany przy napięciu 1000 V dla instalacji o napięciu do 1000 V, co podkreśla znaczenie stosowania odpowiednich wartości napięcia w praktyce inżynieryjnej.

Pytanie 29

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Śrubową.
B. Samozaciskową.
C. Gwintową.
D. Skrętną.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 30

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Przeciążenie jednej z faz.
B. Zawilgocenie izolacji jednej z faz.
C. Zwarcie międzyfazowe.
D. Jednofazowe zwarcie doziemne.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 31

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem 4 listwy zaciskowej X1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 32

Które z przedstawionych na rysunkach narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź B jest prawidłowa, ponieważ laser krzyżowy jest narzędziem wykorzystywanym w budownictwie i instalacjach elektrycznych do precyzyjnego wyznaczania linii. Jego działanie opiera się na emisji dwóch linii - pionowej i poziomej - które są widoczne na powierzchni roboczej, co ułatwia planowanie i montaż instalacji. Dzięki zastosowaniu lasera krzyżowego, technik może z łatwością wyznaczyć trasy dla przewodów elektrycznych na dużych powierzchniach, co jest kluczowe przy instalacjach w przestronnych pomieszczeniach. W praktyce, użycie lasera krzyżowego minimalizuje ryzyko błędów, które mogą wyniknąć z ręcznego mierzenia i rysowania linii. Zgodnie z normami branżowymi, precyzyjność w wyznaczaniu tras jest niezwykle istotna dla bezpieczeństwa i efektywności instalacji elektrycznych, co czyni laser krzyżowy niezastąpionym narzędziem w tej dziedzinie. Dodatkowo, wiele modeli laserów krzyżowych oferuje funkcje automatycznego poziomowania, co jeszcze bardziej zwiększa ich użyteczność.

Pytanie 33

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. kg
B. Nˑm
C. Pa
D. kgˑm2
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 34

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 8,20 MΩ
B. 6,40 MΩ
C. 8,11 MΩ
D. 6,57 MΩ
W tego typu zadaniach kluczowe jest właściwe zastosowanie przelicznika temperatury do rezystancji izolacji, bo izolacja silników elektrycznych silnie reaguje na zmiany temperatury. W praktyce często zdarza się, że ktoś popełnia błąd, wybierając nie ten współczynnik K₂₀ z tabeli, co trzeba albo myli etapy przeliczania. Przykładowo, jeśli ktoś wybierze współczynnik odpowiadający nie tej temperaturze, w której był wykonany pomiar – np. zamiast 0,90 (dla 17 °C) wybierze 1,00 (dla 20 °C) czy inny, cały wynik się rozjedzie. Równie często spotykam się z zamianą mnożenia na dzielenie, a przy tym wzorze trzeba pamiętać, że to R₂₀ = Rₜ/K₂₀, czyli dzielimy wartość zmierzoną przez współczynnik. To nie jest oczywiste, bo niektóre osoby automatycznie mnożą przez K₂₀, traktując go jak typowy przelicznik korekcyjny – a tu jest odwrotnie, bo współczynnik mówi, jak bardzo pomierzona rezystancja w danej temperaturze odbiega od tej w 20 °C. Jeśli ktoś tego nie zrozumie, uzyska wynik zbyt wysoki lub zbyt niski. Dodatkowo, niektórzy mogą zaokrąglać współczynnik albo wynik bez dokładności, co przy tak precyzyjnych pomiarach prowadzi do błędnych interpretacji technicznych. Takie niedopatrzenia w praktyce serwisowej mogą spowodować, że uznamy sprawny silnik za uszkodzony, lub odwrotnie – przeoczymy pogorszenie stanu izolacji. To pokazuje, jak ważne jest rzetelne stosowanie wzoru i korzystanie z aktualnych tabel przeliczeniowych zgodnych z normami branżowymi, jak PN-EN 60034-1. Moim zdaniem, zanim przeliczymy cokolwiek, zawsze warto dwa razy sprawdzić, czy na pewno korzystamy z właściwych danych i dobrze rozumiemy cel przeliczenia – bo w praktyce to procentuje bezpieczeństwem i niezawodnością pracy urządzeń.

Pytanie 35

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q1
B. NO stycznika Q1
C. NO stycznika Q2
D. NC stycznika Q2
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 36

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 6 mm2
B. 4 mm2
C. 10 mm2
D. 2,5 mm2
Wybór przekroju żył przewodu czterożyłowego o przekroju 6 mm² dla obciążenia 36 A jest zgodny z zasadami doboru przewodów elektrycznych. W tabelach obciążalności długotrwałej, przewody ułożone na ścianie, na uchwytach, są klasyfikowane w kolumnach, które uwzględniają różne warunki ułożenia i obciążenia. W przypadku prądu znamionowego 36 A, najbliższą większą wartością w tabeli jest 43 A, co odpowiada przekrojowi 6 mm². Przekrój ten zapewnia odpowiednie zabezpieczenie przed przegrzaniem przewodów, co jest kluczowe dla bezpieczeństwa instalacji. Należy również pamiętać, że w praktyce, wybór odpowiedniego przekroju żył powinien uwzględniać nie tylko prąd znamionowy, ale także długość przewodu, rodzaj materiału (miedź czy aluminium) oraz warunki zewnętrzne, takie jak temperatura otoczenia. W przypadku zastosowań domowych, gdzie wymagane jest zasilanie urządzeń o dużym poborze mocy, takich jak piece trójfazowe, właściwy dobór przekroju przewodów ma istotne znaczenie dla zapewnienia ich niezawodności i bezpieczeństwa. Ogólnie rzecz biorąc, przestrzeganie norm i standardów, takich jak PN-EN 60204-1, jest niezbędne dla każdego elektryka.

Pytanie 37

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-L
B. ZL-N
C. ZL-PE RCD
D. ZL-PE
Odpowiedź "ZL-PE RCD" jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia w układzie z urządzeniem różnicowoprądowym (RCD) wymaga uwzględnienia przewodu ochronnego PE oraz przewodu fazowego L. Zrozumienie tego zagadnienia jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W praktyce, pomiar ZL-PE RCD pozwala na ocenę skuteczności ochrony przeciwporażeniowej, co jest istotne w kontekście norm bezpieczeństwa, takich jak PN-IEC 60364. Przykładowo, w instalacjach, gdzie stosuje się RCD, odpowiedni pomiar zapewnia, że w przypadku zwarcia, prąd różnicowy (ΔI) nie przekroczy wartości granicznych, co pozwala na szybkie wyłączenie zasilania i minimalizację ryzyka porażenia prądem. Warto również zauważyć, że pomiar ten powinien być wykonywany przez wykwalifikowanych specjalistów, aby zapewnić dokładność i wiarygodność wyników. W kontekście praktycznym, wyniki pomiaru można wykorzystać do analizy stanu instalacji oraz planowania ewentualnych działań serwisowych, co jest zgodne z dobrymi praktykami w branży elektrycznej.

Pytanie 38

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 39

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 106 mA
B. 208 mA
C. 130 mA
D. 170 mA
Odpowiedź 208 mA jest poprawna, ponieważ wskazanie miliamperomierza na zdjęciu jest nieco powyżej wartości 200 mA. Dla użytkowników miliamperomierzy, takich jak elektronicy i technicy, dokładne odczyty są kluczowe dla zapewnienia prawidłowego działania obwodów i urządzeń. Odczytując wartość prądu, inżynierowie mogą precyzyjnie dostosować parametry urządzeń, takich jak zasilacze czy układy scalone, aby zapewnić ich optymalną wydajność. Wartości natężenia prądu są często używane w projektach elektronicznych, gdzie niewielkie zmiany w prądzie mogą wpływać na całkowitą funkcjonalność systemu. Dobre praktyki obejmują regularne kalibracje przyrządów pomiarowych oraz stosowanie ich w odpowiednich zakresach, aby uniknąć uszkodzeń lub błędnych odczytów. Przy stosowaniu miliamperomierzy w praktyce warto również pamiętać o zasadach bezpieczeństwa, aby zminimalizować ryzyko porażenia prądem.

Pytanie 40

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie C
B. W punkcie A
C. W punkcie B
D. W punkcie D
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.