Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 16 lutego 2026 15:46
  • Data zakończenia: 16 lutego 2026 15:54

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie montażu systemów energii odnawialnej multicyklony wykorzystywane są jako urządzenia redukujące emisję do atmosfery

A. tlenku siarki
B. pyłu
C. tlenku węgla
D. koksu
W kontekście systemów energetyki odnawialnej, separacja i kontrola emisji zanieczyszczeń jest istotnym zagadnieniem, jednak odpowiedzi dotyczące koksu, tlenku węgla i tlenku siarki są nieadekwatne. Koks jest materiałem stałym, który powstaje w procesie karbochemicznym i nie ma bezpośredniego związku z emisjami w kontekście energetyki odnawialnej, ponieważ nie jest to substancja emitowana w typowych procesach takich jak spalanie biomasy czy wykorzystanie energii wiatrowej. Tlenek węgla, gaz powstający głównie w wyniku niekompletnego spalania, jest ograniczany poprzez odpowiednie technologie kotłowe i nie jest głównym celem działania multicyklonów, które skupiają się na particulate matter. Tlenek siarki, z kolei, jest emisją charakterystyczną dla procesów spalania paliw kopalnych, a nie odnawialnych. Typowe błędy myślowe, prowadzące do wyboru tych odpowiedzi, wynikają z ogólnych skojarzeń z procesami przemysłowymi, które nie są specyficzne dla technologii odnawialnych, a także z niedostatecznego zrozumienia funkcji multicyklonów i ich roli w kontekście jakości powietrza oraz emisji pyłów. W rzeczywistości, efektywność multicyklonów w usuwaniu pyłów jest kluczowa dla spełnienia norm środowiskowych i poprawy jakości powietrza, co podkreśla znaczenie ich stosowania w branży energetyki odnawialnej.

Pytanie 2

Podczas instalowania systemu fotowoltaicznego stosuje się złączki, które zapewniają całkowitą hermetyczność oraz zapobiegają niewłaściwemu podłączeniu biegunów paneli słonecznych do akumulatora

A. MC4
B. MPX
C. HDMI
D. WAGO
Złączki MC4 są standardem w instalacjach fotowoltaicznych, służącym do łączenia paneli słonecznych z systemem zasilania. Dzięki swojej konstrukcji, złączki te zapewniają pełną hermetyczność, co jest kluczowe w kontekście ochrony przed wilgocią i zanieczyszczeniami. W praktyce oznacza to, że stosując złączki MC4, minimalizuje się ryzyko wystąpienia korozji oraz uszkodzeń, które mogą prowadzić do obniżenia wydajności systemu. Dodatkowo, złączki te wyposażone są w mechanizm blokujący, który uniemożliwia przypadkowe rozłączenie połączenia, co jest niezwykle istotne oraz zapewnia bezpieczeństwo w eksploatacji. Zgodnie z normami IEC 62109 oraz IEC 61730, przy wyborze komponentów do instalacji fotowoltaicznych, należy kierować się ich niezawodnością i odpornością na ekstremalne warunki atmosferyczne, co złączki MC4 z pewnością spełniają. Dlatego są one powszechnie stosowane zarówno w instalacjach domowych, jak i komercyjnych, co potwierdza ich skuteczność i popularność w branży.

Pytanie 3

Na przedstawionym schemacie pośredniego przygotowania ciepłej wody użytkowej cyfrą 1 oznaczono

Ilustracja do pytania
A. separator powietrza.
B. zawór zwrotny.
C. pompę cyrkulacyjną.
D. zawór bezpieczeństwa.
Pompa cyrkulacyjna, oznaczona na schemacie jako numer 1, jest naprawdę ważnym elementem w systemach ciepłej wody użytkowej. Jej głównym zadaniem jest zapewnienie, żeby woda ciągle krążyła w instalacji. Dzięki temu, jak tylko otworzysz kran, masz od razu ciepłą wodę, a nie musisz czekać, co jest naprawdę wygodne. To nie tylko oszczędza czas, ale też zmniejsza straty energii. Użycie pompy cyrkulacyjnej jest zgodne z normami efektywności energetycznej, które zalecają takie rozwiązania w nowoczesnych systemach. Co więcej, często mają one regulatory, które dostosowują ich pracę do potrzeb użytkowników, więc są bardziej wydajne i tańsze w eksploatacji. Nie zapomnij też, że prawidłowe umiejscowienie pompy w systemie jest kluczowe, aby wszystko działało sprawnie. Regularna konserwacja też jest super ważna – dzięki niej pompa będzie długo działać bez awarii.

Pytanie 4

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Wschodnia
B. Północna
C. Zachodnia
D. Południowa
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 5

Jak należy łączyć miedziane rury z rurami ze stali ocynkowanej?

A. Lutuje się miedzianą złączkę do stalowej rury
B. Lutuje się stalową złączkę do miedzianej rury
C. Zaciska się miedzianą rurę na stalowej rurze
D. Używa się specjalnej złączki mosiężnej jako przejściowej
Lutowanie złączki stalowej do rury miedzianej oraz lutowanie złączki miedzianej do rury stalowej to metody, które mogą wydawać się logiczne, jednak w praktyce są niewłaściwe ze względu na różnice w temperaturze topnienia oraz charakterystyce chemicznej obu materiałów. Lutowanie wymaga odpowiednich materiałów lutowniczych, a w przypadku stali i miedzi występuje ryzyko powstawania nieszczelności, gdyż różnice w rozszerzalności cieplnej mogą prowadzić do pęknięć w połączeniach. Co więcej, lutowanie stalowych złączek do miedzi może skutkować korozją elektrolityczną, co jest skutkiem kontaktu dwóch różnych metali w obecności elektrolitu, jakim jest woda. Użycie zacisku do rur miedzianych na rurze stalowej jest również niewłaściwym podejściem, gdyż nie zapewnia trwałego, szczelnego połączenia. Zaciski mogą z czasem się luzować, co prowadzi do wycieków. W praktyce, dla bezpieczeństwa i wydajności systemów hydraulicznych, powinno się stosować dedykowane złączki mosiężne, które eliminują te problemy i gwarantują długotrwałą niezawodność połączeń. Warto również pamiętać o przestrzeganiu norm dotyczących łączenia różnych materiałów, co jest kluczowe dla zapewnienia bezpieczeństwa i trwałości instalacji.

Pytanie 6

Którego elementu brakuje, aby zapobiec odwrotnemu przepływowi wody z podgrzanego zbiornika do kolektora w czasie nocy?

A. Zaworu zwrotnego
B. Pompy cyrkulacyjnej
C. Zaworu bezpieczeństwa
D. Regulatora systemu
Zawór zwrotny odgrywa kluczową rolę w systemach hydraulicznych, zapewniając jednostronny przepływ medium, co jest istotne w kontekście systemów ogrzewania solarnym. Jego brak w konfiguracji między nagrzanym zasobnikiem a kolektorem może prowadzić do niekontrolowanego odwrotnego przepływu wody, szczególnie w nocy, gdy temperatura wody w zasobniku jest wyższa niż w kolektorze. W takich sytuacjach woda może przemieszczać się z powrotem do kolektora, co nie tylko zaburza efektywność całego systemu, ale również może prowadzić do jego uszkodzenia. Zawory zwrotne są projektowane zgodnie z normami branżowymi, aby zapewnić niezawodność i długotrwałe działanie. W praktyce, ich zastosowanie w instalacjach solarnych jest niezbędne, aby zapobiec strat energetycznym i zachować stabilność systemu. Dlatego regularne kontrole stanu zaworów zwrotnych oraz ich wymiana zgodnie z zaleceniami producentów są ważnymi elementami utrzymania systemów grzewczych w dobrym stanie.

Pytanie 7

W słonecznej instalacji grzewczej przedstawionej na rysunku, przeznaczonej do całorocznego wspomagania przygotowania ciepłej wody użytkowej, urządzenie oznaczone cyfrą 1 jest zbiornikiem

Ilustracja do pytania
A. dwupłaszczowym.
B. z jedną wężownicą.
C. z dwiema wężownicami.
D. wyrównawczym.
Zbiornik numer 1 w tej instalacji grzewczej to rzeczywiście taki z dwiema wężownicami. Każda z nich ma swoją specyfikę: jedna odbiera ciepło z kolektorów słonecznych, a druga z kolei przekazuje ciepło do ciepłej wody użytkowej. Takie rozwiązanie jest super, bo pozwala na efektywne wykorzystanie energii słonecznej i przygotowanie ciepłej wody. W domach jednorodzinnych z systemami solarnymi taki zbiornik naprawdę może pomóc obniżyć rachunki za energię i zmniejszyć ślad węglowy. Ważne, żeby te instalacje były projektowane zgodnie z regulacjami, na przykład PN-EN 12976, bo to ułatwia wszystko i zapewnia, że system działa tak, jak powinien.

Pytanie 8

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 4380 kWh
B. 1095 kWh
C. 3650 kWh
D. 1460 kWh
Wybór odpowiedzi, która nie jest równa 4380 kWh, może wynikać z kilku błędnych założeń dotyczących obliczeń związanych z zużyciem energii. Kluczowym błędem jest niewłaściwe zrozumienie jednostek i koncepcji energii. Niektórzy mogą błędnie obliczać dzienne zużycie, nie uwzględniając czasu pracy sprężarki przez 4 godziny, co prowadzi do pominięcia istotnego aspektu. Na przykład, jeśli ktoś obliczy moc na rok, myśląc o stałym poborze mocy przez całą dobę, zamiast skupić się na rzeczywistym czasie pracy, może dojść do nieprawidłowych wniosków. Ponadto, typowym błędem jest zignorowanie faktu, że roczne zużycie energii nie jest tylko prostym mnożeniem mocy przez liczbę dni; trzeba uwzględnić rzeczywisty czas działania urządzenia. Aby skutecznie obliczać zużycie energii, ważne jest zrozumienie, że powinniśmy zawsze analizować zarówno moc, czas pracy, jak i warunki pracy urządzenia. Nadmierne uproszczenie tego procesu bez staranności może prowadzić do znacznych różnic w oszacowaniach, co w praktyce może skutkować nieprawidłowym planowaniem kosztów i nieefektywnym zarządzaniem energią.

Pytanie 9

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło solanka, gromadzenie energii powietrze
B. dolne źródło woda, gromadzenie energii powietrze
C. dolne źródło powietrze, gromadzenie energii woda
D. dolne źródło woda, gromadzenie energii woda
Wybór niewłaściwej odpowiedzi wskazuje na niepełne zrozumienie zasad działania sprężarkowych pomp ciepła oraz ich klasyfikacji. Odpowiedzi sugerujące wodę jako źródło dolne są mylące, ponieważ woda, będąca medium, nie jest w stanie w pełni wykorzystać potencjału gruntowego wymiennika ciepła, który funkcjonuje z solanką. Systemy oparte na wodzie mogą być użyteczne, jednak najczęściej dotyczą one pompy ciepła powietrze-woda, co nie odpowiada podanej symbolice B/A. Odpowiedzi, które wskazują powietrze jako źródło dolne, również są błędne, ponieważ w takim przypadku odnosiłyby się do systemu pompy ciepła powietrze-powietrze. Ważne jest, aby zrozumieć, że te różnice mają kluczowe znaczenie dla efektywności systemu oraz jego zastosowania w praktyce. Typowym błędem jest mylenie pojęć związanych z różnymi układami pompowymi, co prowadzi do niepoprawnej klasyfikacji i oszacowania potencjału grzewczego systemu. W rzeczywistości, wybór odpowiedniego medium dla źródła dolnego i odbiornika energii ma kluczowe znaczenie dla efektywności energetycznej oraz wydajności całego układu. Dobre praktyki projektowe oraz znajomość norm branżowych są niezbędne do prawidłowego doboru komponentów w instalacjach opartych na pompach ciepła.

Pytanie 10

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. niewłaściwie wolnym wypełnianiem systemu
B. użycia pompy obiegowej o niedostosowanej mocy
C. wykorzystania zbyt dużych średnic rur w instalacji
D. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
Niewłaściwe ciśnienie wstępne w naczyniu wzbiorczym jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie instalacji solarnej. Naczynie wzbiorcze, które pełni rolę bufora, powinno być odpowiednio dobrane do systemu. Jeśli ciśnienie wstępne jest zbyt niskie, może to prowadzić do powstawania pęcherzyków powietrza w instalacji, co z kolei skutkuje obniżeniem efektywności systemu i możliwości jego pracy. Przykładowo, w systemach solarnych często rekomenduje się ciśnienie wstępne w zakresie 1-2 bar, co zapewnia odpowiednie warunki do obiegu cieczy. W praktyce, regularne kontrole ciśnienia oraz jego kalibracja w oparciu o specyfikacje producenta naczynia wzbiorczego są kluczowe dla utrzymania efektywności instalacji. Ponadto, zgodnie z normami branżowymi, takich jak PN-EN 12976, odpowiednie ciśnienie wstępne przyczynia się do stabilności całego systemu, eliminując ryzyko awarii związanych z zapowietrzeniem.

Pytanie 11

Gdzie w instalacji solarnej umieszcza się zawór zwrotny?

A. za separatorem
B. przed pompą solarną
C. przed inwerterem
D. za pompą solarną
Zawór zwrotny w instalacji solarnej to naprawdę ważny element, który pomaga utrzymać system w dobrym stanie i działać efektywnie. Odpowiednie jego umiejscowienie za pompą solarną jest zgodne z praktykami branżowymi, bo zapobiega cofaniu się medium grzewczego w kierunku kolektorów, gdy pompa nie działa. Dzięki temu nie musimy się martwić o spadki ciśnienia czy uszkodzenie paneli słonecznych. Wyobraź sobie, co by się stało, gdyby ten zawór był zamontowany przed pompą - to mogłoby doprowadzić do tego, że medium cofnęłoby się do kolektorów, co z kolei mogłoby przegrzać i uszkodzić instalację. Przykłady norm, jak EN oraz wytyczne różnych organizacji, jasno mówią, że zawory zwrotne powinny być umieszczane tam, gdzie naprawdę mogą dobrze działać i nie narażać nas na awarie. Na przykład, w instalacjach z wymiennikami ciepła, zawór zwrotny jest wręcz konieczny dla prawidłowego działania systemu grzewczego. Dobrze dobrane komponenty i ich odpowiednie umiejscowienie to klucz do osiągnięcia maksymalnej efektywności energetycznej.

Pytanie 12

Urządzenie przedstawione na rysunku przeznaczone jest do

Ilustracja do pytania
A. ogrzewania rur.
B. kielichowania rur.
C. zaciskania rur.
D. wykonywania otworów w izolacji cieplnej.
To, co widzisz na zdjęciu, to kielichówka do rur. To naprawdę super narzędzie, które ma ogromne znaczenie w instalacjach. Używamy go do kielichowania, co oznacza, że końce rur są rozszerzane, a to pozwala na ich efektywne łączenie. No i mniejsza ilość złączek to mniejsze ryzyko wycieków, więc to na pewno plus! W praktyce, dzięki kielichowaniu, można szybko i sprawnie łączyć rury w systemach wodociągowych i grzewczych. To po prostu ułatwia robotę. I tak, jak zalecają standardy ISO czy normy PN-EN 1057, kielichówka zapewnia, że połączenia są naprawdę trwałe i odporne na wysokie temperatury czy ciśnienie. Idealne do różnych zastosowań budowlanych i przemysłowych.

Pytanie 13

Jakie urządzenie wykorzystuje się do określenia temperatury krzepnięcia płynu solarnego?

A. rotametr
B. higrometr
C. manometr
D. refraktometr
Refraktometr jest urządzeniem używanym do pomiaru wskaźnika załamania światła, co umożliwia określenie stężenia substancji rozpuszczonych w cieczy. W kontekście płynów solarnych, refraktometr jest szczególnie przydatny do pomiaru temperatury zamarzania, ponieważ pozwala na precyzyjne określenie właściwości płynów, takich jak ich stężenie glikolu. Wysokiej jakości refraktometry wykorzystywane w aplikacjach solarnych są skalibrowane w odpowiednich zakresach temperatur, co czyni je niezastąpionym narzędziem w ocenie efektywności systemów solarnych. Dzięki zastosowaniu refraktometru, inżynierowie mogą monitorować właściwości płynów roboczych, co jest kluczowe dla utrzymania optymalnych warunków pracy instalacji. Zrozumienie, jak zmienia się gęstość i inne właściwości cieczy w różnych temperaturach, ma bezpośredni wpływ na wydajność systemów solarnych. W branży energetycznej, przestrzeganie standardów i dobrych praktyk pomiarowych jest kluczowe dla zapewnienia niezawodności systemów, a refraktometr stanowi narzędzie do osiągnięcia tych celów.

Pytanie 14

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
B. Na powrocie, 10 cm ponad najwyższą częścią kotła
C. Na zasilaniu, 10 cm pod najwyższą częścią kotła
D. Na powrocie, 10 cm pod najwyższą częścią kotła
Wybór odpowiedzi na zasilaniu, 10 cm powyżej najwyższej części kotła, jest zgodny z zasadami bezpieczeństwa i praktykami w zakresie instalacji systemów grzewczych. Montując zabezpieczenie w tym miejscu, zapewniamy stały dostęp wody do kotła, co jest kluczowe dla jego prawidłowej pracy. W przypadku kotłów z automatycznym podajnikiem paliwa, bezpieczeństwo eksploatacji nabiera szczególnego znaczenia, ponieważ brak wody może prowadzić do uszkodzenia kotła, a nawet pożaru. Zgodnie z normami, taka lokalizacja zabezpieczenia umożliwia monitorowanie poziomu wody w systemie oraz minimalizuje ryzyko sytuacji awaryjnych. Przykładem zastosowania tej lokalizacji może być instalacja w budynku mieszkalnym, gdzie regularne kontrole poziomu wody gwarantują, że system grzewczy działa efektywnie, co przekłada się na komfort użytkowników. Dodatkowo, odpowiednia lokalizacja zabezpieczenia ułatwia także serwisowanie systemu, co jest istotne dla utrzymania jego sprawności.

Pytanie 15

Turbina akcyjna to turbina

A. Francisa
B. Peltona
C. X
D. Kaplana
Turbina Peltona to przykład turbiny akcyjnej, która jest szczególnie efektywna w zastosowaniach, gdzie dostępna jest woda o dużym spadku. Działa na zasadzie wykorzystania energii kinetycznej strumienia wody, który uderza w łopatki turbiny, powodując jej obrót. W praktyce, turbiny Peltona są często stosowane w elektrowniach wodnych, zwłaszcza tam, gdzie spadek wody przekracza 300 metrów, co pozwala na efektywne przetwarzanie energii potencjalnej wody na energię mechaniczną. Dzięki swojej konstrukcji, turbiny te charakteryzują się wysoką sprawnością w szerokim zakresie przepływów. W branży hydroenergetycznej, standardy projektowania i budowy turbin akcyjnych, w tym Peltona, są ściśle określone przez organizacje takie jak International Electrotechnical Commission (IEC), co zapewnia ich niezawodność i efektywność.

Pytanie 16

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. na końcu rzędu paneli
B. pomiędzy dwoma panelami w stringu
C. w skrzynce przyłączeniowej panelu fotowoltaicznego
D. między łańcuchem paneli a akumulatorem
Montaż diod bypass w instalacji fotowoltaicznej na końcu łańcucha paneli nie jest zalecany, ponieważ w przypadku zaciemnienia lub uszkodzenia jednego z ogniw, cały łańcuch może zostać poważnie obciążony, co prowadzi do znacznych strat w generacji energii. Umieszczanie ich pomiędzy dwoma panelami w stringu także nie zabezpiecza przed stratami, gdyż ogranicza działanie diod do lokalnego obszaru, co może nie wystarczyć w przypadku szerszych problemów w całym łańcuchu. Kolejnym błędnym podejściem jest montowanie diod pomiędzy łańcuchem paneli a akumulatorem; diody bypass nie są przeznaczone do zarządzania przepływem energii między tymi elementami, ale raczej do ochrony pojedynczych ogniw w obrębie panelu. Kluczowym celem diod bypass jest minimalizacja strat mocy na poziomie paneli, co osiąga się przez ich umiejscowienie w puszce przyłączeniowej, a nie w innych lokalizacjach. Nieprawidłowe umiejscowienie diod bypass może prowadzić do mylnego przekonania o ich efektywności oraz do obniżenia całkowitej wydajności systemu fotowoltaicznego, co w dłuższej perspektywie wpływa na rentowność inwestycji i trwałość instalacji.

Pytanie 17

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Monokrystaliczne
B. Polikrystaliczne
C. CdTe
D. a-Si
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 18

Do napełniania i odpowietrzania instalacji solarnych stosuje się urządzenie

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Chociaż może się wydawać, że inne urządzenia, takie jak myjka ciśnieniowa, kompresor czy opryskiwacz, mogą być użyteczne w kontekście instalacji solarnych, ich zastosowanie w napełnianiu i odpowietrzaniu jest całkowicie niewłaściwe. Myjka ciśnieniowa jest przeznaczona do czyszczenia powierzchni, co jest przydatne w konserwacji paneli słonecznych, ale nie ma zastosowania w procesie napełniania ani odpowietrzania instalacji. Kompresor, z drugiej strony, jest urządzeniem do sprężania powietrza, które w niektórych sytuacjach może być użyte do podawania powietrza, ale nie jest odpowiednie do transportu płynów roboczych, które są niezbędne w instalacjach solarnych. Opryskiwacz, który jest używany do rozprowadzania cieczy, nie ma zastosowania w systemach solarnych, ponieważ nie może efektywnie odpowietrzać instalacji ani wprowadzać płynu roboczego. Takie nieporozumienia mogą wynikać z błędnej interpretacji funkcji tych urządzeń oraz ich ogólnego przeznaczenia. Również przy wyborze odpowiednich urządzeń do instalacji solarnych należy kierować się wiedzą techniczną i najlepszymi praktykami, aby zapewnić bezpieczeństwo i efektywność działania systemu. Wybierając niewłaściwe narzędzia, można narazić instalację na nieefektywność i problemy operacyjne, co może prowadzić do zwiększonych kosztów eksploatacji i obniżonej wydajności energetycznej.

Pytanie 19

Które z narzędzi przedstawionych na rysunku stosuje się do cięcia blachy?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Narzędzie oznaczone literą A. to nożyce do blachy, które są powszechnie stosowane w przemyśle do precyzyjnego cięcia blach metalowych. Ich konstrukcja umożliwia cięcie blachy o różnej grubości, co czyni je niezwykle wszechstronnym narzędziem. Nożyce do blachy mogą być ręczne lub elektryczne, a ich wybór zależy od rodzaju materiału oraz wymagań danego zadania. W praktyce, wykorzystywane są do formowania kształtów w metalowych komponentach, co jest kluczowe w wielu branżach, takich jak budownictwo, motoryzacja czy produkcja sprzętu elektronicznego. Ponadto, stosowanie nożyc do blachy jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa, ponieważ pozwala na uzyskanie czystych i dokładnych krawędzi, minimalizując ryzyko obróbki, która mogłaby prowadzić do uszkodzenia materiału. Warto również zauważyć, że nożyce do blachy powinny być używane zgodnie z ich przeznaczeniem oraz z zachowaniem odpowiednich środków ostrożności, co znacząco zwiększa efektywność pracy.

Pytanie 20

Jakie są możliwości magazynowania biogazu?

A. zbiorniku niskociśnieniowym
B. zbiorniku pod wysokim ciśnieniem
C. wymienniku ciepła
D. zbiorniku wzbiorczym przepływowym
Zbiorniki niskociśnieniowe są odpowiednim miejscem do magazynowania biogazu, ponieważ są zaprojektowane do przechowywania gazów w warunkach niskiego ciśnienia, co zapewnia ich bezpieczeństwo i efektywność. Biogaz, składający się głównie z metanu i dwutlenku węgla, jest gazem, który podczas przechowywania pod niskim ciśnieniem nie stwarza ryzyka eksplozji, co jest istotne w kontekście bezpieczeństwa. Praktyczne zastosowanie tego typu zbiorników można zauważyć w biogazowniach, gdzie biogaz jest produkowany z odpadów organicznych i następnie gromadzony w zbiornikach niskociśnieniowych, aby mógł być wykorzystany do produkcji energii lub jako surowiec do dalszej obróbki. Ponadto, zgodnie z najlepszymi praktykami, zbiorniki te są często wyposażone w systemy pomiarowe, które umożliwiają monitorowanie ciśnienia i jakości gazu, co jest kluczowe dla efektywnego zarządzania procesami technologii biogazowej. W związku z tym, stosowanie zbiorników niskociśnieniowych w kontekście biogazu jest szeroko rekomendowane przez specjalistów branżowych oraz normy dotyczące magazynowania gazów.

Pytanie 21

Jak powinny być przechowywane rury miedziane?

A. w pomieszczeniach bez dostępu do powietrza
B. w czystych i suchych pomieszczeniach
C. pod zadaszeniem na drewnianym podeście
D. na otwartym terenie budowy bez ochrony
Przechowywanie rur miedzianych w pomieszczeniach bez dostępu powietrza, pod wiatą na podeście drewnianym czy na placu budowy bez zadaszenia to praktyki, które mogą prowadzić do poważnych problemów z jakością i trwałością tych materiałów. Magazynowanie w pomieszczeniach bez dostępu powietrza nie jest zalecane, ponieważ brak wentylacji może prowadzić do kondensacji wilgoci, co sprzyja korozji. Miedź jest szczególnie podatna na różne formy degradacji, gdy jest narażona na wilgoć oraz ograniczoną cyrkulację powietrza. Z kolei umieszczanie rur na placu budowy bez zadaszenia naraża je na warunki atmosferyczne, takie jak deszcz, śnieg czy zmienne temperatury, co może prowadzić do nieodwracalnych uszkodzeń. Przechowywanie na podeście drewnianym, chociaż może zapewnić pewien poziom ochrony przed bezpośrednim kontaktem z ziemią, nie eliminuje ryzyka związanego z wilgocią oraz zanieczyszczeniami. Dodatkowo, brak odpowiednich zabezpieczeń może skutkować uszkodzeniami mechanicznymi rur podczas transportu czy manipulacji. Warto pamiętać, że przestrzeganie zasad właściwego magazynowania materiałów budowlanych jest kluczowe dla ich późniejszej użyteczności oraz trwałości, a standardy branżowe, takie jak normy ISO, kładą duży nacisk na utrzymanie odpowiednich warunków przechowywania, co ma na celu minimalizację strat i zapewnienie jakości.

Pytanie 22

Jakie napięcie wskaże woltomierz podłączony do modułu fotowoltaicznego połączonego jak na rysunku?

Ilustracja do pytania
A. 1,5 V
B. 3,0 V
C. 4,5 V
D. 2,5 V
Wybierając nieprawidłowe napięcie, można łatwo wpaść w pułapkę mylenia połączenia równoległego z szeregowym. Odpowiedzi, które wskazują na wartości 2,5 V, 3,0 V lub 4,5 V, sugerują, że myślisz o połączeniu szeregowym, gdzie napięcia ogniw sumują się. W rzeczywistości, w połączeniu równoległym, napięcie pozostaje na poziomie pojedynczego ogniwa. W systemach fotowoltaicznych, gdzie ogniwa są łączone równolegle, każde ogniwo dostarcza to samo napięcie, a różnica polega jedynie na zwiększeniu natężenia prądu, co jest istotne dla efektywności systemu. Typowym błędem jest także założenie, że jeśli w układzie pojawiają się różne napięcia, można je zsumować, co prowadzi do mylnych obliczeń i przewidywań. Ważnym aspektem jest również zrozumienie, że wartość napięcia w układzie fotowoltaicznym może się zmieniać w zależności od warunków oświetleniowych oraz temperatury, co wskazuje na potrzebę monitorowania i dostosowania instalacji do zmiennych warunków zewnętrznych. Dlatego, aby uniknąć takich nieporozumień, istotne jest przyswojenie podstaw teorii obwodów elektrycznych, w tym zasad dotyczących połączeń równoległych i szeregowych, co pomoże w prawidłowym planowaniu i efektywnym zarządzaniu systemami fotowoltaicznymi.

Pytanie 23

Aby zredukować wahania wskazań rotametru w jednostce pompującej w instalacji solarnej, należy wykonać

A. zwiększenie ciśnienia w układzie solarnym
B. zmniejszenie ciśnienia w układzie solarnym
C. regulację pompy obiegowej
D. odpowietrzenie instalacji
Odpowiedź 'odpowietrzenie instalacji' jest prawidłowa, ponieważ wahania wskazań rotametru w instalacji solarnej mogą być spowodowane obecnością powietrza w systemie. Kiedy w układzie hydraulicznym znajduje się powietrze, może to prowadzić do zmniejszenia efektywności przepływu cieczy, co z kolei przekłada się na niestabilne wskazania rotametru. Odpowietrzenie instalacji, czyli usunięcie zbędnych pęcherzyków powietrza, przywraca poprawny przepływ wody, co stabilizuje działanie rotametru. W praktyce, aby skutecznie odpowietrzyć instalację, należy zlokalizować i otworzyć odpowietrzniki, które znajdują się w najwyższych punktach systemu. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu odpowietrzników, aby zapewnić ich sprawność oraz unikać problemów związanych z gromadzeniem się powietrza. Zgodnie z normami dotyczącymi instalacji solarnych, odpowiednie odpowietrzenie systemu jest kluczowe dla zapewnienia jego efektywności energetycznej oraz długowieczności.

Pytanie 24

W celu regulacji przepływu wody bezpośrednio na grzejnikach instaluje się

A. odpowietrznik
B. zawór trójdrożny
C. zawór czterodrożny
D. zawór termostatyczny
Zawór termostatyczny jest kluczowym elementem systemu grzewczego, który umożliwia precyzyjną regulację temperatury w pomieszczeniach. Jego działanie opiera się na automatycznym dopasowywaniu przepływu wody do aktualnych potrzeb grzewczych, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Dzięki zastosowaniu zaworów termostatycznych można uniknąć przegrzewania pomieszczeń, co jest szczególnie istotne w okresie grzewczym. Przykładowo, w systemach ogrzewania podłogowego, gdzie temperatura może łatwo osiągać zbyt wysokie wartości, zawór termostatyczny działa jako zabezpieczenie, regulując ilość ciepłej wody wpływającej do obiegu. Ważne jest również, aby zawory te były odpowiednio dobrane do specyfiki instalacji, co powinno być zgodne z normami takimi jak PN-EN 215, które dotyczą wymagań dotyczących zaworów termostatycznych. Dzięki ich zastosowaniu można zwiększyć efektywność energetyczną budynków oraz poprawić ich komfort termiczny.

Pytanie 25

Do instalacji ogrzewania podłogowego zasilanego pompą ciepła wykorzystuje się rury

A. stalowe
B. z tworzywa sztucznego
C. kamionkowe
D. żeliwne
Instalację ogrzewania podłogowego zasilaną z pompy ciepła wykonuje się najczęściej z rur z tworzywa sztucznego, takich jak polietylen (PE) lub polipropylen (PP). Te materiały charakteryzują się doskonałą odpornością na korozję, co jest kluczowe w systemach, w których krążą płyny o różnej chemicznej charakterystyce. Ponadto, rury z tworzywa sztucznego mają dobre właściwości izolacyjne, co pozwala na efektywne wykorzystanie energii z pompy ciepła. Elastyczność tych materiałów ułatwia montaż, pozwalając na łatwe formowanie i dostosowanie do najbardziej wymagających układów. W praktyce, stosując rury z tworzywa sztucznego, można zredukować ilość połączeń i złączy, co z kolei zmniejsza ryzyko wycieków. Standardy branżowe, takie jak PN-EN 1264 dotyczące ogrzewania podłogowego, podkreślają zalety używania tych materiałów i ich zgodność z nowoczesnymi technologiami ogrzewania. Dodatkowo, ich lekkość w porównaniu do rur stalowych czy żeliwnych sprawia, że instalacja staje się prostsza i szybsza, co jest nieocenione w praktyce budowlanej.

Pytanie 26

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. przedmiar robót
B. zapytanie ofertowe
C. harmonogram wykonywanych prac
D. obmiar robót
Odpowiedzi, które wskazują na inne pojęcia, takie jak obmiar robót, zapytanie ofertowe czy harmonogram wykonywanych prac, nie oddają istoty procesu przygotowania projektu montażu instalacji solarnej. Obmiar robót to termin, który odnosi się do pomiaru wykonanych prac, a nie planowania materiałów potrzebnych do ich realizacji. Użycie obmiaru w kontekście instalacji solarnej może prowadzić do nieporozumień, ponieważ jest to dokument powstający po zakończeniu określonej fazy budowy, co uniemożliwia wcześniejsze zaplanowanie niezbędnych materiałów. Z kolei zapytanie ofertowe ma na celu uzyskanie cen od różnych dostawców, ale samo w sobie nie zawiera szczegółowych informacji o wymaganych materiałach, co czyni je niewystarczającym do formułowania zestawienia materiałowego. Harmonogram wykonywanych prac jest istotnym dokumentem, który planuje czas realizacji poszczególnych zadań, ale nie zajmuje się bezpośrednio określaniem ilości materiałów. W praktyce, wiele osób myli te pojęcia, co może prowadzić do niedoszacowania lub przeszacowania potrzebnych zasobów, a w konsekwencji do opóźnień w realizacji projektu i zwiększenia kosztów. Dlatego kluczowe jest zrozumienie roli przedmiaru robót jako fundamentalnej części procesu planowania.

Pytanie 27

Jaką moc wygeneruje moduł fotowoltaiczny o parametrach znamionowych U = 30 V, I = 10 A, gdy zostanie zaciśnięty, a nasłonecznienie wyniesie Me = 1000 W/m2?

A. 30 W
B. 1 000 W
C. 300 W
D. 0 W
Odpowiedzi 30 W, 300 W i 1000 W są nietrafione, bo opierają się na błędnym rozumieniu działania paneli fotowoltaicznych. Zaczynając od 30 W, to niby rozsądne, ale ta moc zakłada, że wszystko działa jak należy - napięcie i prąd są w porządku. Ale w przypadku zwarcia napięcie spada do zera, więc nie ma mowy o jakiejkolwiek produkcji mocy. Jeśli chodzi o 300 W, to nie wygląda najgorzej przy 10 A i 30 V, ale znowu - w sytuacji zwarcia napięcia nie ma, więc moc znów wynosi 0 W. A co z 1000 W? To bardziej maksymalne osiągi przy dobrym nasłonecznieniu, a nie w przypadku zwarcia, które całkowicie blokuje produkcję energii. Kluczowe jest, by pamiętać, że moc elektryczna to wynik P = U * I, więc obie wartości muszą być obecne, żeby coś zaistniało. Inżynierowie, patrząc na problemy ze zwarciami, muszą też myśleć o temperaturze czy o tym, jak różne czynniki wpływają na systemy PV.

Pytanie 28

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. właściwie uzupełniona karta gwarancyjna
B. złożony protokół uruchomienia
C. rachunek za zrealizowaną instalację
D. dokumentacja fotograficzna instalacji
Wszystkie wymienione elementy, z wyjątkiem dokumentacji fotograficznej, są kluczowe dla prawidłowego funkcjonowania gwarancji na instalację solarną. Prawidłowo wypełniona karta gwarancyjna jest podstawowym dokumentem, który identyfikuje zarówno wykonawcę, jak i użytkownika, a także specyfikacje systemu. Bez tego dokumentu producent może nie uznać gwarancji. Wypełniony protokół uruchomienia jest niezbędny, ponieważ potwierdza, że system został poprawnie zainstalowany i skonfigurowany zgodnie z zaleceniami producenta. Jest to kluczowy krok, ponieważ nieprawidłowe uruchomienie może prowadzić do awarii, które nie będą objęte gwarancją. Faktura za wykonaną instalację jest równie ważna, gdyż stanowi potwierdzenie zakupu i wykonania usługi, co jest niezbędne do zgłaszania wszelkich roszczeń gwarancyjnych. Nieuzasadnione poleganie na dokumentacji fotograficznej, jako środka potwierdzającego spełnienie wymogów gwarancyjnych, może prowadzić do mylnych wniosków, że wystarczy tylko udokumentować instalację wizualnie, co jest błędnym podejściem. Tego rodzaju błędy myślowe mogą wynikać z niepełnego zrozumienia standardów branżowych oraz możliwości, jakie stawiają przed użytkownikami oraz wykonawcami instalacji solarnych. Ważne jest, aby stosować się do wytycznych, aby zapewnić pełne wsparcie w zakresie gwarancji.

Pytanie 29

Co oznacza symbol PE-HD na rurze?

A. homopolimer polietylenu
B. polietylen o niskiej gęstości
C. polietylen o średniej gęstości
D. polietylen o wysokiej gęstości
Wybór polietylenu niskiej gęstości (LDPE) jako odpowiedzi na oznaczenie PE-HD jest błędny, ponieważ LDPE posiada całkowicie inne właściwości chemiczne i fizyczne. Polietylen niskiej gęstości cechuje się większą elastycznością oraz mniejszą gęstością, co sprawia, że jest mniej odporny na działanie wysokich temperatur oraz chemikaliów. Przykładem zastosowań LDPE są torby foliowe oraz opakowania, które nie wymagają wysokiej wytrzymałości mechanicznej. Wybór polietylenu średniej gęstości (MDPE) także nie jest adekwatny, ponieważ MDPE to materiał o pośrednich wartościach gęstości i właściwościach, który nie jest tak powszechnie stosowany jak PE-HD. MDPE ma zastosowanie głównie w systemach gazowych, ale nie jest odpowiednikiem PE-HD. Ostatecznie, homopolimer polietylenu jest terminem ogólnym, który nie wskazuje na konkretne właściwości związane z gęstością czy zastosowaniem. Niepoprawne odpowiedzi mogą wynikać z nieznajomości właściwości różnych typów polietylenu oraz ich zastosowań, co prowadzi do mylnych wniosków. Ważne jest, aby rozumieć, że różne rodzaje polietylenu mają różne właściwości, co wpływa na ich zastosowanie w przemyśle i budownictwie.

Pytanie 30

Instalacja gruntowej pompy ciepła wymaga zbudowania kolektora poziomego jako dolnego źródła. W tym przypadku kolektor poziomy to

A. wężownica w wymienniku c.w.u.
B. system rur zakopanych pionowo na głębokości około 30 metrów
C. system rurek zakopanych pod powierzchnią gruntu poniżej strefy przemarzania
D. kolektor umiejscowiony płasko na dachu zwrócony w stronę południową
Kolektor poziomy w gruntowej pompie ciepła to system rurek zakopanych na głębokości poniżej strefy przemarzania, co jest kluczowe dla efektywności działania tego typu instalacji. Wysokiej jakości kolektor poziomy umożliwia wymianę ciepła z gruntem, który ma bardziej stabilną temperaturę w porównaniu z powietrzem. Właściwe umiejscowienie kolektora poniżej strefy przemarzania, zazwyczaj na głębokości od 0,8 do 1,5 metra, zapewnia, że ciepło jest odbierane efektywnie przez rurki wypełnione czynnikiem roboczym. Przykłady zastosowania obejmują domy jednorodzinne oraz budynki użyteczności publicznej, gdzie systemy te są projektowane z uwzględnieniem lokalnych warunków klimatycznych. Zgodnie z dobrymi praktykami branżowymi, projektanci instalacji ciepłowniczych powinni również uwzględniać właściwe obliczenia dotyczące długości i zakupu rur, aby zapewnić odpowiednią wydajność energetyczną oraz zgodność z normami EN 14511 i EN 14825.

Pytanie 31

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. ze stali ocynkowanej
B. z polipropylenu
C. Alu-PEX
D. ze stali nierdzewnej
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 32

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. południową
B. zachodnią
C. północną
D. wschodnią
Orientacja kolektorów słonecznych w kierunku północnym, zachodnim lub wschodnim wiąże się z licznymi problemami, które wpływają negatywnie na ich wydajność. Kolektory ustawione na północ są w zasadzie nieefektywne, ponieważ nie otrzymują praktycznie żadnego bezpośredniego promieniowania słonecznego w ciągu dnia, co znacznie ogranicza ich zdolność do produkcji ciepła lub energii elektrycznej. Pytanie o orientację kolektorów często prowadzi do nieporozumień dotyczących kierunków optymalnych, co może wynikać z niepełnego zrozumienia działania systemów solarnych. W przypadku orientacji zachodniej, chociaż kolektory mogą działać w godzinach popołudniowych, ich całkowita wydajność będzie znacznie niższa niż w przypadku orientacji południowej, co jest potwierdzone standardami branżowymi. Podobnie w przypadku orientacji wschodniej, kolektory uzyskują energię głównie w porannych godzinach, co nie przekłada się na efektywne wykorzystanie energii w ciągu dnia. Ważne jest, aby przy projektowaniu systemów solarnych kierować się dobrymi praktykami oraz dostosowywać ustawienia i orientacje do lokalnych warunków oraz specyfiki terenu. Błędy w wyborze kierunku mogą powodować znaczące straty finansowe i energetyczne, dlatego tak istotne jest zrozumienie zasad działania energii słonecznej oraz ich zastosowań.

Pytanie 33

Panele fotowoltaiczne zamocowane na stałych uchwytach (bez opcji regulacji kąta przez cały rok), zainstalowane na terytorium Polski, powinny być nachylone w stosunku do poziomu pod kątem:

A. 55°
B. 65°
C. 35°
D. 45°
Wybór kąta nachylenia ogniw fotowoltaicznych o wartości 55° lub 65° może prowadzić do obniżenia efektywności systemu. Wyższe kąty nachylenia mogą być korzystne w krajach o bardziej stonowanej pozycji Słońca, jednak w polskich warunkach klimatycznych, gdzie Słońce nie osiąga ekstremalnych wysokości, mogą nie zapewniać optymalnej produkcji energii. Ustawienie paneli pod kątem 35° również nie jest optymalne, ponieważ zbyt płaskie nachylenie prowadzi do suboptymalnego zbierania promieniowania słonecznego w okresach zimowych, kiedy Słońce znajduje się nisko na niebie. Użytkownicy często mylą te kąty, nie zastanawiając się nad zmiennością pozycji Słońca w ciągu roku. Ponadto, niewłaściwy kąt nachylenia może prowadzić do problemów z gromadzeniem się śniegu i brudu, co istotnie obniża wydajność ogniw. Najlepsze praktyki w branży energii odnawialnej wskazują na 45° jako najbardziej uniwersalne rozwiązanie, które zaspokaja potrzeby zarówno w zakresie efektywności, jak i konserwacji paneli. Dobrze jest również pamiętać, że przy wyborze kąta nachylenia warto kierować się zaleceniami producentów paneli oraz lokalnymi warunkami geograficznymi i atmosferycznymi.

Pytanie 34

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem:

A. ofertowym
B. powykonawczym
C. wstępnym
D. ślepym
Odpowiedzi, które nie wskazują na kosztorys ślepy, bazują na mylnych założeniach dotyczących typu dokumentów kosztorysowych. Kosztorys wstępny, choć istotny w procesie planowania, zawiera zwykle oszacowania cen, co czyni go niewłaściwym w kontekście pytania. Jest to narzędzie pomocne w pierwszych fazach projektu, kiedy cenowe kalkulacje są jeszcze niepełne, ale nie można go określić jako ślepy, ponieważ jego celem jest dostarczenie przybliżonego kosztu wykonania. Z kolei kosztorys ofertowy, który jest używany do przedstawiania propozycji finansowej w odpowiedzi na zapytania ofertowe, również zawiera szczegółowe informacje o cenach i jednostkach, co czyni go niewłaściwym wyborem. Natomiast kosztorys powykonawczy jest dokumentem podsumowującym rzeczywiste wydatki w stosunku do pierwotnych założeń, także zawiera elementy cenowe. Problemy w wyborze niewłaściwych odpowiedzi mogą wynikać z niepełnej znajomości typów kosztorysów oraz ich funkcji w procesie zarządzania projektami, co prowadzi do nieporozumień w interpretacji ich zastosowania.

Pytanie 35

Podczas szeregowego łączenia paneli fotowoltaicznych należy uwzględnić

A. częstotliwość prądu w instalacji elektrycznej
B. moc akumulatora
C. zakres napięcia regulatora ładowania
D. napięcie w instalacji elektrycznej
Zakres napięcia regulatora ładowania jest kluczowym elementem przy łączeniu szeregowo paneli fotowoltaicznych. Jest to istotne, ponieważ napięcie wyjściowe, które uzyskujemy z połączonych paneli, musi mieścić się w granicach, które regulator jest w stanie przyjąć. Przykładowo, jeśli połączymy kilka paneli o napięciu 36V każdy, to w połączeniu szeregowym otrzymamy napięcie na poziomie 108V. Regulator ładowania, który obsługuje akumulator, musi być przystosowany do obsługi tego napięcia, aby efektywnie zarządzać procesem ładowania. Zbyt wysokie napięcie może uszkodzić regulator, a w konsekwencji doprowadzić do niewłaściwego ładowania akumulatorów. W branży stosuje się standardy, takie jak IEC 61215, które określają testy jakości paneli, a odpowiedni dobór regulatora zgodnie z napięciem wyjściowym paneli jest kluczowy dla zapewnienia długotrwałej i niezawodnej pracy systemu. Oprócz tego, warto zwrócić uwagę na dobór regulatora z odpowiednią funkcjonalnością, taką jak MPPT, który maksymalizuje wydajność ładowania w zmiennych warunkach nasłonecznienia.

Pytanie 36

Aby skutecznie spalić drewno, należy dobrać kocioł, który będzie w stanie wygenerować wymaganą energię po

A. dwóch załadowaniach
B. trzech załadowaniach
C. jednym załadowaniu
D. czterech załadowaniach
Wybór kotła, który wymaga trzech, dwóch lub czterech załadowań do osiągnięcia wymaganej ilości energii, wskazuje na nieefektywność procesu spalania. W przypadku kotłów grzewczych, istotne jest, aby były one w stanie maksymalnie wykorzystać energię zawartą w drewnie, co osiąga się dzięki odpowiedniej konstrukcji oraz zastosowaniu nowoczesnych technologii spalania. Wybierając kocioł, który potrzebuje więcej niż jednego załadowania, użytkownik naraża się na dodatkowe koszty operacyjne, ponieważ częste załadunki oznaczają większe zużycie paliwa oraz większą emisję spalin. Ponadto, kotły, które wymagają wielu załadowań, mogą nie spełniać standardów efektywności energetycznej, co może prowadzić do konieczności zastosowania dodatkowych urządzeń do oczyszczania spalin, zwiększając tym samym całkowite koszty eksploatacji. Kluczowe jest zrozumienie, że efektywne wykorzystanie energii z drewna wymaga nie tylko odpowiedniego kotła, ale również prawidłowego doboru paliwa oraz technik spalania. Wybór kotła, który nie spełnia tych wymagań, prowadzi do suboptymalnych rezultatów, co może być szkodliwe zarówno dla portfela, jak i dla środowiska.

Pytanie 37

Zawór STB w kotłach opalanych biomasą z wentylatorem i podajnikiem chroni kocioł przed

A. zbyt wysokim wzrostem temperatury wody
B. zablokowaniem podajnika paliwa
C. cofaniem płomienia
D. niedostatecznym spalaniem
Odpowiedzi sugerujące, że zawór STB zabezpiecza kocioł przed niezupełnym spalaniem, zatkaniem podajnika paliwa lub cofnięciem płomienia, wskazują na powszechne nieporozumienia dotyczące funkcji tego urządzenia. Zawór STB jest związany z regulacją temperatury wody w kotle, a nie z procesem spalania paliwa. Niezupełne spalanie jest wynikiem niewłaściwego doprowadzenia powietrza, niewłaściwych parametrów paliwa lub wadliwego działania elementów grzewczych, a nie bezpośrednio związane z działaniem zaworu STB. Zatkanie podajnika paliwa z kolei może prowadzić do przerwy w dostarczaniu paliwa, ale nie jest to sytuacja, którą zawór STB ma na celu rozwiązać. Cofnięcie płomienia, które może spowodować zagrożenie pożarowe, również nie jest funkcją zaworu STB, lecz wymaga zastosowania innych zabezpieczeń, takich jak klapy zwrotne czy systemy detekcji płomienia. Zrozumienie, że zawór STB działa głównie jako zabezpieczenie przed wzrostem temperatury, a nie jako element systemu kontroli procesów spalania, jest kluczowe dla zapewnienia prawidłowego eksploatowania kotłów na biomasę. Właściwe zrozumienie funkcji każdego elementu systemu grzewczego jest niezbędne do zapewnienia ich efektywności oraz bezpieczeństwa, a ignorowanie tej zasady może prowadzić do niepożądanych sytuacji i poważnych awarii.

Pytanie 38

W jaki sposób jest ukształtowany przedstawiony na rysunku kolektor gruntowy, współpracujący z pompą ciepła?

Ilustracja do pytania
A. Spiralny.
B. Skośny.
C. Koszowy.
D. Meandryczny.
Wybór spiralnego ukształtowania kolektora gruntowego często wiąże się z popularnym przekonaniem o jego efektywności, jednak w praktyce może prowadzić do nieoptymalnej wymiany ciepła. Spirale, mimo że mogą działać w niektórych warunkach, nie zapewniają takiej samej powierzchni kontaktu z gruntem jak układ meandryczny. To ogranicza ich zdolność do absorpcji energii geotermalnej, co jest kluczowe w kontekście wydajności systemów grzewczych. Odpowiedź koszowa, choć może wydawać się atrakcyjna w kontekście łatwości budowy, nie jest standardem w branży, ponieważ nieuchronnie prowadzi do nierównomiernego rozkładu temperatury w kolektorze. Z kolei ukształtowanie skośne, które również zostało wymienione, nie umożliwia właściwego kontaktu rur z ziemią na całej ich długości, co w rezultacie ogranicza sprawność systemu. Często występujące błędy myślowe związane z wyborem niewłaściwego kształtu kolektora wynikają z niepełnego zrozumienia zasady działania pomp ciepła oraz z niedostatecznej analizy warunków gruntowych. Aby zapewnić efektywność energetyczną i obniżyć koszty eksploatacji, zaleca się korzystanie z meandrycznego ukształtowania, które przynosi najlepsze rezultaty w większości zastosowań.

Pytanie 39

Narzędzie przedstawione na rysunku to

Ilustracja do pytania
A. nożyce do cięcia rur.
B. gwintownica.
C. szczypce.
D. obcinarka krążkowa.
Obcinarka krążkowa to specjalistyczne narzędzie ręczne, które jest niezwykle efektywne w precyzyjnym cięciu rur, zwłaszcza metalowych. Działa na zasadzie obracającego się ostrza w kształcie krążka, które stopniowo zagłębia się w materiał rury, zapewniając gładkie i proste cięcie. Jest to szczególnie ważne w branżach takich jak hydraulika czy instalacje gazowe, gdzie wymagana jest wysoka jakość łączeń. Wykorzystanie obcinarki krążkowej minimalizuje ryzyko uszkodzenia rury i obniża odpad materiałowy. Należy również pamiętać, że obcinarki krążkowe są dostępne w różnych rozmiarach, co pozwala na ich zastosowanie w różnych sytuacjach, od małych projektów domowych po duże instalacje przemysłowe. W praktyce, aby uzyskać najlepsze rezultaty cięcia, warto stosować odpowiednie techniki, takie jak równomierne dociskanie narzędzia i odpowiednia prędkość obracania ostrza. W standardach branżowych oraz najlepszych praktykach, obcinarki krążkowe są uznawane za jedne z najbardziej niezawodnych narzędzi do cięcia rur.

Pytanie 40

Do połączenia rur miedzianych, w technologii przedstawionej na rysunku,należy użyć

Ilustracja do pytania
A. klucza nastawnego do rur.
B. palnika gazowego.
C. lutownicy elektrycznej.
D. zaciskarki.
Zaciskarki to narzędzia, które służą do łączenia rur miedzianych poprzez zaciskanie złączek, co zapewnia szczelność i trwałość połączenia. W technologii instalacji hydraulicznych, łączenie rur miedzianych za pomocą zaciskarek jest jedną z najczęściej stosowanych metod, gdyż nie wymaga żadnych dodatkowych materiałów lutowniczych ani źródeł ognia, co zwiększa bezpieczeństwo pracy. Przykładem może być zastosowanie zaciskarki w instalacjach wodociągowych, gdzie złączki są zaciskane na końcach rur, tworząc solidne połączenia, które wytrzymują wysokie ciśnienia. Standardy branżowe, takie jak normy PN-EN 1057 dotyczące rur miedzianych, zalecają stosowanie technologii zaciskowej jako jednego z najbardziej efektywnych i bezpiecznych sposobów łączenia rur, co czyni tę metodę idealną dla profesjonalnych instalatorów. Warto również podkreślić, że proces ten jest szybki i nie wymaga długotrwałego przygotowania, co przyspiesza tempo prac budowlanych i instalacyjnych.