Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:05
  • Data zakończenia: 8 grudnia 2025 10:26

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. gwarantuje efektywne działanie systemu przeciwsabotażowego
B. ma za zadanie skupiać wiązki detekcji na pyroelemencie
C. jest komponentem wyłącznie dekoracyjnym
D. emituje promieniowanie podczerwone w stronę intruza
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 2

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaka jest wartość częstotliwości granicznej filtru o tej charakterystyce?

Ilustracja do pytania
A. 1 kHz
B. 100 Hz
C. 10 Hz
D. 10 kHz
Częstotliwość graniczna filtru to kluczowy parametr w analizie systemów filtracyjnych, definiowany jako wartość częstotliwości, przy której sygnał jest tłumiony o 3 dB w stosunku do poziomu maksymalnego przepuszczanego przez filtr. W kontekście zaprezentowanego wykresu, tłumienie zaczyna znacząco wzrastać po osiągnięciu częstotliwości 1 kHz. Taki punkt jest niezwykle istotny w projektowaniu filtrów, ponieważ pozwala na określenie zakresu częstotliwości, w którym filtr skutecznie działa. W praktyce, odpowiednia znajomość częstotliwości granicznych jest nieoceniona w takich dziedzinach jak telekomunikacja, audio, czy inżynieria sygnałowa, gdzie jakość sygnału jest kluczowa. Na przykład, w systemach audio, odpowiedni dobór częstotliwości granicznej pozwala na efektywne odfiltrowanie niepożądanych zakłóceń, co przekłada się na lepszą jakość dźwięku. Dobrą praktyką jest również wykonanie analizy impedancji w pobliżu częstotliwości granicznej, aby zapewnić optymalne dopasowanie i minimalizację strat sygnału. Zrozumienie tego konceptu jest fundamentalne dla inżynierów zajmujących się projektowaniem i optymalizacją systemów filtracyjnych.

Pytanie 3

Zmniejszenie amplitudy światła przesyłanego w linii światłowodowej określa się mianem

A. polaryzacji
B. tłumienia
C. propagacji
D. dyspersji
Tłumienie to naprawdę ważna sprawa w technologii światłowodowej. To zjawisko, które polega na spadku siły sygnału optycznego, gdy przesuwa się przez włókno. W praktyce to oznacza, że część energii światła gdzieś znika, bo jest wchłaniana albo rozpraszana przez włókno lub jego otoczenie. Kiedy mamy do czynienia z tłumieniem, to wpływa to na to, na jaką odległość możemy przesyłać sygnał bez utraty jakości. W branży telekomunikacyjnej mamy różne standardy, na przykład ITU-T G.652, które mówią, jakie powinny być limity tłumienia dla różnych typów światłowodów, żeby wszystko działało sprawnie. W przemyśle ważne jest monitorowanie tego zjawiska, bo każda strata dB może naprawdę zrujnować jakość połączeń, szczególnie w sieciach telekomunikacyjnych. Dobrze dobrane komponenty, takie jak wzmacniacze optyczne, mogą pomóc zredukować efekty tłumienia, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 4

Jaką rolę pełni program debugger?

A. Konwertuje kod napisany w jednym języku na odpowiednik w innym języku
B. Przekształca funkcję logiczną w układ funkcjonalny
C. Umożliwia uruchomienie programu i identyfikację błędów w nim
D. Generuje kod maszynowy na podstawie kodu źródłowego
Debugger to narzędzie, które odgrywa kluczową rolę w procesie tworzenia oprogramowania, umożliwiając programistom uruchamianie ich kodu w kontrolowanych warunkach oraz wykrywanie błędów. Główne funkcje debuggera obejmują możliwość zatrzymywania wykonania programu w określonych punktach (tzw. breakpointy), co pozwala na analizę stanu zmiennych oraz śledzenie przepływu wykonywania programu. Dzięki temu programiści mogą zidentyfikować, dlaczego dany fragment kodu nie działa zgodnie z oczekiwaniami. Na przykład, jeśli program nie zwraca oczekiwanego wyniku, debugger umożliwia analizę wartości zmiennych w momencie przerywania działania program, co jest nieocenionym wsparciem w diagnozowaniu problemów. W praktyce, używanie debuggera jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które zalecają testowanie oraz poprawianie kodu w iteracyjnym cyklu życia projektu. Dodatkowo, nowoczesne IDE (Integrated Development Environment) często integrują funkcje debugowania, co ułatwia programistom efektywne usuwanie błędów na wczesnych etapach rozwoju oprogramowania.

Pytanie 5

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20
A. termoparę.
B. termistor.
C. czujnik pirometryczny.
D. czujnik rezystancyjny.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 6

Który typ pamięci nieulotnej w urządzeniach elektronicznych pozwala na aktualizację firmware bez konieczności użycia dedykowanego programatora?

A. EPROM
B. EEPROM
C. FLASH ROM
D. OTP ROM
FLASH ROM (ang. Flash Read-Only Memory) to rodzaj pamięci nieulotnej, która umożliwia zapis oraz kasowanie danych w blokach. Jest to kluczowa cecha, która odróżnia ją od tradycyjnych pamięci ROM, takich jak EPROM czy OTP ROM. W przypadku FLASH ROM, użytkownicy mogą aktualizować firmware urządzenia bez potrzeby używania skomplikowanego sprzętu programującego, co znacząco uproszcza proces aktualizacji. Przykładowo, w urządzeniach takich jak smartfony, tablety czy routery, firmware można zaktualizować bezpośrednio z poziomu systemu operacyjnego. Tego typu rozwiązania są zgodne z powszechnie stosowanymi standardami w branży elektronicznej, które podkreślają znaczenie łatwej aktualizacji oprogramowania w kontekście zapewnienia bezpieczeństwa oraz wprowadzania nowych funkcji. Przykłady zastosowania FLASH ROM obejmują nie tylko urządzenia konsumenckie, ale także sprzęt przemysłowy, gdzie regularne aktualizacje są kluczowe dla utrzymania wydajności i bezpieczeństwa działania systemów.

Pytanie 7

Tranzystor NPN, którego współczynnik wzmocnienia prądowego P = 50, pracuje w układzie pokazanym na rysunku. Jaka jest wartość napięcia kolektor-emiter tego tranzystora?

Ilustracja do pytania
A. UCE=2,5 V
B. UCE=0 V
C. UCE=9,5 V
D. UCE=5 V
Odpowiedzi UCE=5 V, UCE=2,5 V oraz UCE=0 V wynikają z błędnych założeń dotyczących zachowania tranzystora NPN i jego charakterystyki. W przypadku napięcia UCE=5 V, można błędnie sądzić, że spadek napięcia na rezystorze R jest zbyt mały, co nie odzwierciedla prawidłowych warunków pracy tranzystora w tym układzie. Przy napięciu kolektor-emiter równym 2,5 V można pomyśleć, że tranzystor wchodzi w stan nasycenia, co jest sprzeczne z założeniami o wysokim wzmocnieniu prądowym P=50. Takie założenie prowadzi do nieprawidłowego oszacowania działania układu. Odpowiedź UCE=0 V sugeruje, że tranzystor nie przewodzi prądu, co jest niemożliwe przy założeniu, że układ jest zasilany i prąd bazy jest odpowiednio dobrany. W rzeczywistości, UCE=0 V oznaczałoby, że tranzystor jest w stanie nasycenia, co jest niezgodne z danymi o wzmocnieniu prądowym. Typowe błędy myślowe obejmują także nieprawidłowe zrozumienie relacji między prądem bazy a prądem kolektora, co prowadzi do nieodpowiednich obliczeń. Kluczowe jest zrozumienie, że wzmocnienie prądowe β umożliwia odpowiednie oszacowanie wartości prądów i napięć w obwodzie, a także ich wpływu na działanie całego układu. W praktyce, prawidłowe obliczenia oparte na zrozumieniu zasad działania tranzystorów są niezbędne do zapewnienia stabilności i efektywności obwodów elektronicznych.

Pytanie 8

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaki to rodzaj filtru?

Ilustracja do pytania
A. Górnoprzepustowy.
B. Pasmowo-zaporowy.
C. Pasmowo-przepustowy.
D. Dolnoprzepustowy.
Odpowiedź "Dolnoprzepustowy" jest poprawna, ponieważ na przedstawionym wykresie widać, że tłumienie sygnałów maleje przy niskich częstotliwościach, a wzrasta w miarę zwiększania częstotliwości. Filtry dolnoprzepustowe są powszechnie stosowane w różnych aplikacjach inżynieryjnych, szczególnie w audio i telekomunikacji, gdzie istotne jest eliminowanie wyższych częstotliwości, które mogą wprowadzać szumy lub zakłócenia do sygnału. Przykładem zastosowania filtru dolnoprzepustowego jest jego użycie w systemach audio, gdzie często stosuje się go do eliminacji szumów wysokoczęstotliwościowych, co pozwala na uzyskanie czystszej jakości dźwięku. W praktyce, dobór odpowiednich parametrów filtru dolnoprzepustowego, takich jak częstotliwość odcięcia, jest kluczowy dla zapewnienia optymalnej jakości sygnału. Dobrze zaprojektowany filtr dolnoprzepustowy może znacząco poprawić wydajność systemu, co jest zgodne z najlepszymi praktykami w inżynierii sygnałów.

Pytanie 9

Urządzeniem realizującym zadania jest

A. silnik elektryczny prądu stałego
B. fotorezystor
C. przycisk monostabilny
D. czujnik
Silnik elektryczny prądu stałego to super przykład urządzenia, które zamienia energię elektryczną na mechaniczną. Widzisz, jest naprawdę wszechstronny i możemy go używać w różnych miejscach, jak automatyka czy robotyka. Działa na zasadzie elektromagnetyzmu, co jest fajne, bo dzięki temu można precyzyjnie kontrolować jego prędkość i moment obrotowy. Takie silniki są często wykorzystywane w sytuacjach, gdzie trzeba płynnie regulować prędkość, na przykład w wentylatorach czy taśmach transportowych. W branży mamy też różne normy, jak IEC, które mówią, jakie powinny być wymagania dotyczące bezpieczeństwa i efektywności energetycznej. Więc warto projektując systemy z takim silnikiem, pamiętać o zabezpieczeniach i dobierać odpowiednie komponenty, żeby wszystko działało bez zarzutu.

Pytanie 10

Jaka jest wartość mocy traconej w stabilizatorze napięcia pracującym z prądem o wartości I = 1,8 A oraz z napięciami o wartościach U1= 20 V i U2= 15 V?

Ilustracja do pytania
A. 1,8 W
B. 27 W
C. 15 W
D. 9 W
Moc tracona w stabilizatorze napięcia wynika z różnicy pomiędzy mocą wejściową a mocą wyjściową. W przypadku podanego zadania, przy prądzie I = 1,8 A oraz napięciach U1 = 20 V i U2 = 15 V, moc tracona oblicza się w następujący sposób: moc wejściowa to U1 * I = 20 V * 1,8 A = 36 W, natomiast moc wyjściowa to U2 * I = 15 V * 1,8 A = 27 W. W związku z tym moc tracona wynosi 36 W - 27 W = 9 W. Stabilizatory napięcia są powszechnie stosowane w elektronice, aby zapewnić stabilny poziom napięcia, co jest kluczowe dla poprawnego działania komponentów elektronicznych. Przykładami zastosowań stabilizatorów są zasilacze do urządzeń audio, systemy zasilania w komputerach czy urządzenia pomiarowe. Zgodnie z dobrymi praktykami inżynierskimi, dobór stabilizatora powinien uwzględniać nie tylko moc tracona, ale także efektywność i zarządzanie ciepłem, aby zapewnić długotrwałą i bezawaryjną pracę urządzenia.

Pytanie 11

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm
A. Włączone diody LED czerwona i niebieska.
B. Trzy krótkie dzwonki, wyłączone diody LED.
C. Szybkie zapalanie diody LED czerwonej.
D. Wyłączona dioda LED niebieska, bez brzęczyka.
Odpowiedź, w której masz trzy krótkie dzwonki i wyłączone diody LED, jest trochę myląca. To dlatego, że te dźwięki nie pokazują stanu programowania. W systemach zbliżeniowych takie dzwonki mogą być mylnie odbierane jako znak, że coś działa, a nie jak sygnał, że jesteśmy w trybie programowania. Ważne jest, żeby znać, co oznaczają dźwięki w kontekście systemów zabezpieczeń. Na przykład, jeśli diody LED świecą się na czerwono i niebiesko, to mogą pokazywać inne stany, jak alarm lub jakiś błąd, co jest zupełnie inne niż programowanie. Często ludzie mylą te sygnały, co prowadzi do zbędnych nieporozumień przy konfiguracji systemu. Ignorowanie, co sygnalizują diody LED, może prowadzić do błędnej interpretacji i mieć poważne konsekwencje dla bezpieczeństwa. Takie błędne odpowiedzi pokazują, że warto lepiej zrozumieć, jak działa sygnalizacja w systemach zbliżeniowych.

Pytanie 12

Jakie elementy należy zastosować, aby zapewnić współdziałanie układów TTL oraz CMOS z napięciem zasilania 5 V?

A. kondensatora podciągającego
B. diaka podciągającego
C. dioda podciągająca
D. rezystora podciągającego
Rezystor podciągający jest kluczowym elementem w interfejsach TTL (Transistor-Transistor Logic) oraz CMOS (Complementary Metal-Oxide-Semiconductor), gdyż pozwala na zapewnienie odpowiednich poziomów logicznych oraz stabilności sygnałów. W przypadku współpracy układów TTL i CMOS, które mogą mieć różne poziomy sygnałów oraz różne charakterystyki prądowe, zastosowanie rezystora podciągającego do zasilania sygnałów wejściowych jest szczególnie istotne. Rezystor ten działa jako element podciągający, który podnosi napięcie do wartości logicznej '1' w sytuacjach, kiedy sygnał jest w stanie wysokiej impedancji. Dzięki temu, układy TTL i CMOS mogą współpracować w sposób w pełni niezawodny, minimalizując ryzyko błędów logicznych. Przykładem zastosowania rezystora podciągającego może być obwód z mikrokontrolerem, w którym stan nieokreślony (floating) na pinach może prowadzić do nieprzewidywalnych rezultatów. Standardowe wartości rezystorów podciągających wynoszą od 1 kOhm do 10 kOhm, co zależy od konkretnej aplikacji oraz wymagań dotyczących prądu.

Pytanie 13

Na rysunku przedstawiono podstawowy schemat blokowy układu automatycznej regulacji. Znakiem X oznaczono

Ilustracja do pytania
A. obwód wejściowy.
B. układ korekcyjny.
C. obiekt regulacji.
D. wzmacniacz w. cz.
Na schemacie blokowym układu automatycznej regulacji znak X rzeczywiście oznacza obiekt regulacji. Obiekt regulacji to kluczowy element w systemach automatyki, odpowiadający za realizację procesu, który ma być kontrolowany. W praktyce może to być na przykład silnik elektryczny, piec, układ hydrauliczny, czy jakikolwiek inny system, którego parametry chcemy utrzymać w określonym zakresie. Wprowadzenie zakłóceń, które definiowane są jako z(t), pozwala na zrozumienie, jak układ reaguje na zmiany w otoczeniu oraz jak skutecznie wykonuje swoją funkcję regulacyjną. Wyjście obiektu, y(t), to wartość, która jest mierzona i na podstawie której podejmowane są decyzje w układzie regulacji. Zrozumienie roli obiektu regulacji jest fundamentalne w projektowaniu i analizie systemów automatyki, co jest potwierdzone w normach ISO 9001 dotyczących jakości i efektywności procesów. Przykładowo, w przemysłowej automatyce obiekty regulacji są często analizowane przy użyciu metod PID, które pozwalają na precyzyjne dostosowanie odpowiedzi systemu do zmian w zakłóceniach.

Pytanie 14

Rysunki przedstawiają czujkę

Ilustracja do pytania
A. zalania.
B. ruchu.
C. dymu i ciepła.
D. stłuczenia szyby.
Wybór odpowiedzi dotyczących stłuczenia szyby, ruchu oraz dymu i ciepła wskazuje na nieporozumienia dotyczące funkcji i zastosowania różnych typów czujników. Czujniki stłuczenia szyby są zaprojektowane do wykrywania nieautoryzowanego dostępu poprzez monitorowanie dźwięków związanych z rozbijaniem szkła, co jest całkowicie odmiennym zastosowaniem niż wykrywanie wody. Z kolei czujniki ruchu są elementem systemów alarmowych, które rejestrują ruch w określonym obszarze i są stosowane głównie dla bezpieczeństwa obiektów. Wykrywanie dymu i ciepła to funkcjonalność czujników dymu, które działają w celu identyfikacji zagrożenia pożarowego, a nie sytuacji związanych z zalaniem. Typowe błędy myślowe w tym przypadku wynikają z mylenia zastosowania różnych czujników oraz ich specyfikacji technicznych. Każdy z tych czujników pełni inną rolę i jest stosowany w odpowiednich kontekstach, co podkreśla znaczenie właściwego doboru urządzeń w zależności od potrzeb zabezpieczeń budynku. Dobrą praktyką jest zrozumienie, że czujniki powinny być dobierane w oparciu o specyfikę zagrożeń występujących w danym obiekcie, co zapewni efektywność systemu ochrony.

Pytanie 15

W skład linii światłowodowej o długości 50 km wchodzi wzmacniacz optyczny oraz 4 złącza optyczne i 4 spawy. W tabeli przedstawiono wyniki pomiarów linii światłowodowej. Ile wynosi całkowite tłumienie tej linii?

Tłumienie złącza0,15 dB
Tłumienie spawu0,15 dB
Tłumienie światłowodu0,2 dB/km
Wzmocnienie wzmacniacza10 dB
A. 21,2 dB
B. 0,5 dB
C. 1,2 dB
D. 11,2 dB
Analizując dostępne odpowiedzi, można zauważyć, że niektóre z nich są oparte na nieprawidłowych założeniach dotyczących obliczania całkowitego tłumienia w systemach światłowodowych. Odpowiedzi takie jak 21,2 dB, 0,5 dB oraz 11,2 dB wskazują na istotne błędy w obliczeniach. Przykładowo, wartość 21,2 dB mogłaby sugerować, że tłumienie zostało wyliczone na podstawie niepoprawnych danych dotyczących długości włókna, złączy lub spawów, co prowadzi do zawyżenia tych wartości. Z kolei odpowiedź 0,5 dB może odnosić się tylko do tłumienia pojedynczego złącza, ignorując inne istotne elementy linii. Odpowiedź 11,2 dB pomija całkowite sumowanie tłumienia złączy i spawów oraz tłumienia na odcinku 50 km. W praktyce, kluczowe jest, aby znać i stosować standardowe wartości tłumienia dla poszczególnych komponentów systemu światłowodowego, co pozwala uniknąć typowych błędów oceny jakości sieci. Właściwe podejście do analizy tłumienia w linii światłowodowej powinno uwzględniać każdy element składowy i jego wpływ na całkowite tłumienie, co jest fundamentem dla efektywnego projektowania oraz eksploatacji sieci telekomunikacyjnych.

Pytanie 16

W urządzeniach do zdalnego sterowania wykorzystuje się diody do przesyłania danych

A. RGB
B. mikrofalowe
C. Zenera
D. IR
Dioda podczerwieni to mega ważny element w zdalnym sterowaniu. Działa tak, że emituje promieniowanie, którego ludzkie oko nie widzi, ale urządzenia potrafią to wykryć. Można to zobaczyć w pilotach do telewizorów czy audio, gdzie dioda IR wysyła sygnały w postaci impulsów świetlnych. Dzięki temu można wygodnie sterować różnymi sprzętami. Są różne standardy, jak RC5 czy NEC, które mówią, jak kodować te sygnały. Dobrze to widać na przykładzie pilota telewizyjnego, który sprawia, że korzystanie z telewizora jest o wiele prostsze i przyjemniejsze.

Pytanie 17

Czym jest radiator?

A. radiacyjny pirometr termoelektryczny
B. nastawna cewka toroidalna do strojenia radioodbiornika
C. tor używany w transmisji radiowej
D. element odprowadzający ciepło do otoczenia
Radiator to naprawdę ważny element w systemach chłodzenia, który odprowadza ciepło z różnych urządzeń, jak silniki czy sprzęt elektroniczny. Jego głównym zadaniem jest przekazywanie ciepła do otoczenia, żeby urządzenia się nie przegrzały. Radiatory znajdziesz w wielu miejscach, od komputerów po systemy klimatyzacji. Ważne, żeby były wykonane z odpowiednich materiałów, jak aluminium czy miedź, bo mają one super przewodność cieplną. Warto zwrócić uwagę na to, jak projektuje się radiatory – dobrze jest optymalizować powierzchnię, która wymienia ciepło, i zapewnić właściwy przepływ powietrza, co można wspierać wentylatorami. W branżowych standardach, jak IPC-9592, mówi się o tym, jak ważne są efektywne systemy chłodzenia w elektronice, więc naprawdę warto zrozumieć, czemu radiator jest tak istotny dla trwałości urządzeń.

Pytanie 18

Skrót odnoszący się do zakresu fal radiowych o częstotliwości od 30 MHz do 300 MHz z modulacją FM to

A. MF
B. LF
C. ULF
D. VHF
Odpowiedź VHF, czyli Very High Frequency, odnosi się do pasma fal radiowych o częstotliwości od 30 MHz do 300 MHz. Jest to kluczowy zakres częstotliwości, który znajduje szerokie zastosowanie w komunikacji radiowej, w tym w nadawaniu telewizyjnym, radiu FM oraz w systemach komunikacji bezprzewodowej. Przykładem zastosowania VHF są stacje telewizyjne, które nadawane są w tym paśmie, zapewniając wysoką jakość sygnału i zasięg. W praktyce, urządzenia działające w zakresie VHF, takie jak transceivery i odbiorniki, muszą spełniać określone normy techniczne, aby zapewnić efektywność i niezawodność działania w tym zakresie. Warto również zauważyć, że VHF jest mniej podatne na zakłócenia ze strony przeszkód terenowych, co czyni je bardziej efektywnym w zastosowaniach mobilnych i na otwartych przestrzeniach. Dlatego VHF jest preferowane w wielu zastosowaniach, od komunikacji morskiej po systemy awaryjne, co pokazuje jego znaczenie w nowoczesnej technologii komunikacyjnej.

Pytanie 19

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. lutownicę transformatorową
B. stację lutowniczą grzałkową
C. lutownicę gazową
D. stację na gorące powietrze
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 20

W obwodowych systemach zabezpieczeń wykorzystuje się detektory

A. dymu i ciepła
B. magnetyczne
C. zalania
D. gazów usypiających
Czujki magnetyczne to naprawdę ważne elementy systemów ochrony obwodowej. Działają na zasadzie wykrywania zmian w polu magnetycznym, co super chroni różne miejsca przed włamaniami. Zazwyczaj montuje się je w drzwiach i oknach, gdzie sprawdzają, czy są zamknięte. Jak coś się otworzy, to czujki od razu dają sygnał do centrali, co pozwala na szybkie działanie w razie zagrożenia. Można je znaleźć w alarmach w domach czy biurach, a zgodność z normami, jak PN-EN 50131, zapewnia, że naprawdę dobrze spełniają swoją rolę. Fajnie też, że mogą współpracować z innymi systemami bezpieczeństwa, co zwiększa ich skuteczność. Jak się zmodernizuje starsze systemy o czujki magnetyczne, to można poprawić ich sprawność i dostosować do aktualnych potrzeb użytkowników.

Pytanie 21

Która z czynności związanych z konserwacją systemu alarmowego nie wymaga przestawienia centrali na tryb serwisowy?

A. Zamiana akumulatora
B. Wymiana czujnika PIR
C. Korekta bieżącego czasu
D. Modyfikacja czasu na wejście
Korekta bieżącego czasu w systemie alarmowym to ważna czynność, która nie wpływa na jego funkcjonalność ani bezpieczeństwo. Wprowadzenie centrali w tryb serwisowy jest wymagane w sytuacjach, które mogą wpływać na działanie systemu oraz jego zdolność do skutecznego reagowania na zagrożenia. Takie operacje jak wymiana akumulatora czy czujki PIR wiążą się z ryzykiem zakłócenia działania systemu, co może prowadzić do błędów w monitorowaniu i powiadamianiu o alarmach. Zmiana czasu na wejście, podobnie jak korekta bieżącego czasu, jest operacją czysto administracyjną, jednak istnieją różnice w ich wpływie na system. Korekta bieżącego czasu jest zazwyczaj realizowana podczas rutynowych przeglądów, co podkreśla znaczenie regularnej konserwacji. W dobrych praktykach branżowych wskazuje się, że administratorzy systemów alarmowych powinni regularnie monitorować i aktualizować czas w systemach, aby zapewnić ich adekwatne działanie. Ponadto, właściwe zarządzanie czasem jest kluczowe dla precyzyjnego rejestrowania zdarzeń, co jest istotne z perspektywy audytów bezpieczeństwa.

Pytanie 22

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 10 nF 1000 V
B. 100 nF 100 V
C. 10 nF 100 V
D. 1000 nF 1000 V
Odpowiedź "100 nF 100 V" jest poprawna, ponieważ kondensator oznaczony jako "104 100 V" wskazuje na pojemność 100 nF i maksymalne napięcie robocze 100 V. Oznaczenie "104" oznacza, że dwie pierwsze cyfry to znaczące liczby (10), a trzecia cyfra to mnożnik, który w tym przypadku wynosi 10^4 pF, co daje 100000 pF, co po przeliczeniu daje 100 nF. Napięcie znamionowe wynosi 100 V, co jest zgodne z wymaganiami dla aplikacji elektronicznych. W praktycznych zastosowaniach kondensatory ceramiczne o pojemności 100 nF są powszechnie stosowane w filtrach, układach czasowych oraz w obwodach zasilających, gdzie stabilność i niskie straty są kluczowe. Warto pamiętać, że dobór kondensatora powinien być zgodny z normami branżowymi, takimi jak IEC 60384, które określają parametry bezpieczeństwa i jakości dla komponentów elektronicznych.

Pytanie 23

Jak wygląda poziom sygnału w.cz. po przejściu przez tłumik o tłumieniu -20 dB, jeżeli poziom sygnału na wejściu wynosi 40 dBmV?

A. 20 dBmV
B. 60 dB
C. 70 dBmV
D. 20 dB
Poprawna odpowiedź to 20 dBmV, co wynika z zastosowania wzoru na poziom sygnału po przejściu przez tłumik. Tłumik o tłumieniu -20 dB oznacza, że sygnał zostaje osłabiony o 20 dB. Wzór do obliczeń wygląda następująco: Poziom sygnału wyjściowego (dBmV) = Poziom sygnału wejściowego (dBmV) - Tłumienie (dB). Zatem, 40 dBmV - 20 dB = 20 dBmV. Tego rodzaju obliczenia są powszechnie stosowane w dziedzinie telekomunikacji, gdzie precyzyjne zarządzanie poziomami sygnałów jest kluczowe dla zapewnienia wysokiej jakości transmisji. W praktyce, znajomość wartości tłumienia jest niezbędna do projektowania systemów antenowych oraz optymalizacji sygnałów w sieciach kablowych i bezprzewodowych. Warto również pamiętać, że w telekomunikacji standardem jest dążenie do minimalizacji strat sygnału, co podkreśla znaczenie wysokiej jakości komponentów oraz staranności w ich instalacji.

Pytanie 24

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego emitera
B. wspólnego kolektora
C. wspólnej bazy
D. wspólnego źródła
Wtórnik emiterowy, który często nazywamy wzmacniaczem w konfiguracji wspólnego kolektora, to jeden z fundamentalnych typów wzmacniaczy tranzystorowych. Co jest w nim fajne? To, że sygnał wyjściowy bierzemy z kolektora, a nie z emitera. Dzięki temu ten wzmacniacz świetnie nadaje się do sytuacji, gdzie potrzebujemy zwiększyć prąd, ale nie chcemy za bardzo podnosić napięcia sygnału. W praktyce często spotyka się go w interfejsach sygnałowych, gdzie łączy się różne elementy obwodu. Przydatne jest to, że ma niski opór wyjściowy i dużą impedancję wejściową, więc zazwyczaj wykorzystuje się go jako bufor między różnymi etapami układów elektronicznych. W dziedzinie audio ten typ wzmacniacza pozwala świetnie wzmocnić sygnał bez wpływania na jego jakość. Z mojego doświadczenia, stosowanie wtórnika emiterowego pomaga też w eliminacji zakłóceń i zniekształceń, co jest mega istotne w aplikacjach, gdzie precyzja ma znaczenie.

Pytanie 25

W celu odkręcenia śrub mocujących obudowę urządzenia pokazanego na rysunku należy użyć wkrętaka:

Ilustracja do pytania
A. typu torx.
B. krzyżakowego.
C. płaskiego.
D. imbusowego.
Odpowiedź typu torx jest poprawna, ponieważ na zdjęciu widoczna jest śruba z charakterystycznym sześcioramiennym gwiazdkowym wzorem, który jest dedykowany dla wkrętaków torx. Wkrętaki te są powszechnie stosowane w branży elektronicznej i mechanicznej ze względu na ich zdolność do zapewnienia większego momentu obrotowego oraz lepszego dopasowania do śruby, co redukuje ryzyko uszkodzenia zarówno narzędzia, jak i elementu mocującego. Wkrętaki torx są również powszechnie używane w montażu urządzeń elektronicznych, samochodów oraz w konstrukcjach meblowych. Standard torx jest szczególnie ceniony w sytuacjach, gdzie wymagana jest większa precyzja i trwałość połączenia. Warto również zauważyć, że wkrętak torx występuje w różnych rozmiarach, co pozwala na dostosowanie narzędzia do konkretnych zastosowań, co jest zgodne z dobrymi praktykami w zakresie inżynierii i produkcji.

Pytanie 26

Opisz konstrukcję czujki

OPIS KONSTRUKCJI

Podstawowym elementem czujki jest układ detekcyjny, który składa się z: diody emitującej podczerwień oraz diody odbierającej. Oba te elementy są zamontowane w uchwycie w taki sposób, by promieniowanie ze diody nadawczej nie docierało bezpośrednio do diody odbierającej. Układ detekcyjny (uchwyt z diodami) jest przymocowywany bezpośrednio do płytki drukowanej, która zawiera elektronikę z procesorem kontrolującym działanie czujki. Labirynt chroni przed przedostawaniem się zewnętrznego światła do układu detekcyjnego. Metalowa siatka zabezpiecza układ detekcyjny przed niewielkimi owadami oraz większymi zanieczyszczeniami. Całość jest zainstalowana w obudowie wykonanej z białego tworzywa, składającej się z koszyczka, osłony czujki oraz ekranu.

A. dymu
B. stłuczenia
C. zalania
D. ruchu
Wybór odpowiedzi dotyczącej czujek ruchu, zalania lub stłuczenia wskazuje na nieporozumienie dotyczące funkcji i zastosowania czujki opisanej w pytaniu. Czujki ruchu są skonstruowane w celu wykrywania ruchu obiektów w danym obszarze, najczęściej na podstawie zmian pola elektromagnetycznego lub ciepła, co jest zupełnie inną technologią niż ta stosowana w czujkach dymu. Z kolei czujki zalania wykrywają obecność wody, zazwyczaj w systemach zabezpieczeń budynków przed wodami gruntowymi lub wyciekami, a ich zasada działania opiera się na detekcji przewodności elektrycznej. Dlatego też są one niezdolne do wykrywania dymu, co czyni je niewłaściwym wyborem w kontekście tego pytania. W odniesieniu do stłuczenia, urządzenia te mogą być używane do detekcji szkód fizycznych w obiektach, ale nie mają nic wspólnego z procesem wykrywania dymu. Przy podejmowaniu decyzji o tym, jakie urządzenie dobrane jest do konkretnej aplikacji, ważne jest zrozumienie specyficznych właściwości i przeznaczenia czujników, a także świadomość, że różne czujki operują na odmiennych zasadach. Coraz częściej w obiektach komercyjnych oraz mieszkalnych stosuje się systemy alarmowe, które integrują różne typy czujników, ale kluczowe jest, aby każda z tych technologii była używana zgodnie z jej właściwym przeznaczeniem.

Pytanie 27

Na podstawie analizy instalacji telewizyjnej nie jest możliwe określenie

A. uszkodzenia powłoki kabla
B. uszkodzeń elektroniki konwertera
C. zniekształceń lustra czaszy anteny
D. korozji czaszy anteny
Analizując pozostałe odpowiedzi, można zauważyć, że uszkodzenia zniekształcenia lustra czaszy anteny, uszkodzenia powłoki kabla i skorodowanie czaszy anteny to wszystkie problemy, które mogą być zidentyfikowane podczas wizualnych oględzin instalacji telewizyjnej. Zniekształcenia lustra czaszy anteny mogą wystąpić na skutek uderzeń, działanie warunków atmosferycznych czy nieodpowiedniego montażu. Tego rodzaju uszkodzenia zazwyczaj można zauważyć gołym okiem, co sprawia, że są łatwiejsze do zdiagnozowania. Uszkodzenia powłoki kabla mogą prowadzić do utraty sygnału, a ich obecność często jest widoczna w postaci przetarć lub uszkodzeń mechanicznych. Skorodowanie czaszy anteny, szczególnie w przypadku instalacji eksponowanych na niekorzystne warunki atmosferyczne, również może być dostrzegalne. Ponadto, użytkownicy powinni być świadomi, że wiele z tych problemów może wpływać na jakość odbioru sygnału, co podkreśla znaczenie regularnych przeglądów oraz właściwej konserwacji instalacji telewizyjnych. Typowe błędy myślowe, które prowadzą do nieprawidłowych odpowiedzi, często wynikają z założenia, że wszystkie uszkodzenia muszą być widoczne, co jest mylną interpretacją. Dobra praktyka w diagnostyce to holistyczne podejście, które łączy zarówno analizy wizualne, jak i testy funkcjonalne, co pozwala na dokładniejszą ocenę stanu instalacji.

Pytanie 28

Jaką rolę pełni fotorezystor w wyłączniku zmierzchowym?

A. regulatora temperatury
B. detektora drgań
C. czujnika wilgoci
D. detektora światła widzialnego
Fotorezystor, pełniący funkcję detektora światła widzialnego w wyłączniku zmierzchowym, działa na zasadzie zmiany swojej rezystancji w odpowiedzi na natężenie światła. Gdy poziom oświetlenia spada, rezystancja fotorezystora rośnie, co powoduje, że układ elektroniczny wykonuje odpowiednią akcję, na przykład włącza światło. Takie rozwiązanie jest szczególnie efektywne w automatyzacji systemów oświetleniowych w przestrzeniach zewnętrznych, takich jak ogrody, parkingi czy tereny rekreacyjne. Wysoka czułość oraz niskie koszty produkcji sprawiają, że fotorezystory są powszechnie stosowane w nowoczesnych układach automatyki budynkowej. Zgodnie z normami branżowymi, zaleca się ich wykorzystanie w systemach, które muszą reagować na zmiany oświetlenia w czasie rzeczywistym, co podnosi komfort użytkowania i efektywność energetyczną. Warto także zwrócić uwagę, że fotorezystory mogą być używane w połączeniu z innymi czujnikami, co zwiększa ich funkcjonalność i zastosowanie w różnych scenariuszach, takich jak inteligentne domy.

Pytanie 29

Jaką wartość napięcia odczytuje cyfrowy multimetr z aktywowaną funkcją True RMS na wyjściu obciążonego transformatora głośnikowego, który zasila szkolną instalację radiowęzłową, pokazując wartość 22,8 V?

A. Maksymalną
B. Średnią
C. Skuteczną
D. Międzyszczytową
Wybór innej wartości napięcia, takiej jak międzyszczytowa, maksymalna czy średnia, wskazuje na nieporozumienie dotyczące podstawowych pojęć związanych z pomiarami napięcia w systemach AC. Międzyszczytowa odnosi się do wartości, która nie jest bezpośrednio stosowana w kontekście pomiaru mocy w obwodach AC, ponieważ nie uwzględnia cyklicznych wahań napięcia. Maksymalna wartość napięcia oznacza piki, które mogą być znacznie wyższe niż wartość skuteczna, co prowadzi do mylących interpretacji, zwłaszcza w kontekście obliczeń związanych z mocą. Z kolei średnia wartość napięcia w AC nie oddaje rzeczywistego efektu energetycznego, ponieważ wartość ta nie uwzględnia równoważnej mocy dostarczanej do obciążenia. Typowym błędem myślowym jest mylenie tych różnych wartości, co prowadzi do niewłaściwych wniosków o efektywności systemu. W kontekście pomiaru napięcia w instalacjach radiowęzłowych, zrozumienie różnicy między tymi wartościami jest kluczowe dla zapewnienia stabilności i jakości sygnału audio. Mierzenie napięcia skutecznego powinno być zawsze priorytetem w praktycznych zastosowaniach elektroakustycznych, aby zapewnić dokładne i wiarygodne wyniki.

Pytanie 30

Jakie z podanych rodzajów sprzężeń między poszczególnymi stopniami wzmacniacza wielostopniowego gwarantuje separację galwaniczną?

A. Sprzężenia transformatorowe
B. Sprzężenia pojemnościowe
C. Sprzężenia rezystancyjne
D. Sprzężenia bezpośrednie
Separacja galwaniczna w wzmacniaczach wielostopniowych to coś, co czasem mylone jest z różnymi rodzajami sprzężeń. Pojemnościowe sprzężenie, mimo że może trochę wpływać na sygnał, nie daje nam prawdziwej separacji galwanicznej. W sumie, opiera się ono na pojemności między przewodami i przy wyższych częstotliwościach może to prowadzić do różnych problemów. Sprzężenie rezystancyjne, które to jest po prostu podłączenie rezystorów między stopniami wzmacniacza, w ogóle nie izoluje obwodów, więc nie może dać separacji galwanicznej. Bezpośrednie sprzężenie, które łączy stopnie bez jakiejkolwiek izolacji, też nie rozwiąże tego problemu. Używając tych metod, inżynierowie mogą nieświadomie zmieniać parametry sygnału, co niestety psuje jakość i stabilność wzmacniacza. Dobrze jest pamiętać, że skuteczna separacja galwaniczna wymaga zastosowania rozwiązań, które fizycznie oddzielają obwody, a w wzmacniaczach wielostopniowych najlepiej osiąga się to przez sprzężenie transformatorowe.

Pytanie 31

W przedstawionym na rysunku stabilizatorze wystąpiło zwarcie jednego z elementów. Wskaż, który podzespół uległ uszkodzeniu. Woltomierz prądu stałego wskazuje około 5 V.

Ilustracja do pytania
A. Kondensator C1
B. Układ μA7805
C. Dioda Dz
D. Kondensator C2
Analizując inne odpowiedzi, możemy zauważyć pewne nieporozumienia dotyczące funkcji i zachowania elementów w przedstawionym stabilizatorze napięcia. W przypadku kondensatorów C1 i C2, ich głównym zadaniem jest filtrowanie, co oznacza, że nie są one odpowiedzialne za regulację napięcia. Kondensatory działają jako akumulatory energii, a ich awaria zazwyczaj prowadzi do spadku wydajności systemu lub zakłóceń, ale nie wpływa bezpośrednio na poziom napięcia wyjściowego w taki sposób, jak sugeruje pytanie. Z kolei układ μA7805 pełni rolę stabilizatora napięcia i, jeśli woltomierz wskazuje 5 V, oznacza to, że jego działanie jest prawidłowe. Sądzenie, że którykolwiek z wymienionych kondensatorów lub układ sam w sobie mógłby być przyczyną zwarcia, jest błędne, ponieważ ich uszkodzenie nie spowodowałoby stabilizacji napięcia na tym poziomie. Zdarza się, że użytkownicy mylnie przypisują winę za awarię komponentów na podstawie objawów, nie biorąc pod uwagę, jak poszczególne elementy współdziałają w układzie. Kluczowe jest zrozumienie, że przy diagnozowaniu usterek ważne jest dokładne przeanalizowanie roli każdego z elementów oraz ich interakcji w całym systemie. Takie podejście pozwala na skuteczniejsze rozwiązywanie problemów oraz lepsze projektowanie obwodów elektronicznych.

Pytanie 32

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. zmniejsza się
B. wynosi 0
C. zwiększa się
D. pozostaje takie samo
W przypadku rozważania wpływu sprzędzenia zwrotnego na wzmocnienie układu, niektóre odpowiedzi mogą być mylące. Utrzymywanie wzmocnienia bez zmian jest błędnym założeniem, gdyż ujemne sprzężenie zwrotne ma jasno określony wpływ na obniżenie wzmocnienia. W rzeczywistości, analogowe układy wzmacniające, takie jak wzmacniacze operacyjne, zawsze podlegają wpływowi sprzężenia zwrotnego, co jest kluczowe dla ich poprawnego działania. Dalsze zwiększanie wzmocnienia w kontekście ujemnego sprzężenia zwrotnego jest niemożliwe, ponieważ mechanizm ten działa zgodnie z zasadą redukcji wzmocnienia, co skutkuje stabilizacją. W odpowiedzi sugerującej, że wzmocnienie jest równe zeru, występuje znaczący błąd rozumienia natury sprzężenia zwrotnego. Owszem, wzmocnienie może dążyć do zera w niektórych ekstremalnych przypadkach, ale nie jest to normą w zastosowaniach praktycznych. Takie podejście zniekształca zrozumienie funkcjonalności wzmacniaczy i ich zdolności do pracy w różnych warunkach. Dlatego, interpretując ujemne sprzężenie zwrotne, kluczowe jest zrozumienie jego roli w stabilizacji wzmocnienia oraz w poprawie jakości sygnału, co jest fundamentalnym aspektem inżynierii elektronicznej.

Pytanie 33

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. (2-1)12
B. 212-1
C. 212-1
D. 212
Wszystkie odpowiedzi, które nie wskazują na 2^12, opierają się na błędnym zrozumieniu działania przetworników C/A. Liczba poziomów w przetworniku C/A jest obliczana na podstawie potęgi liczby 2, co wynika z tego, że każdy bit przetwornika może przyjmować dwie wartości: 0 lub 1. Dlatego dla dwunastu bitów mamy 2^12, a nie żadną inną kombinację. Opcje takie jak 2^12-1 mylą koncepcję, ponieważ sugerują, że poziomy są ograniczone do wartości mniejszych od maksymalnej, co jest istotne w kontekście niektórych zastosowań, jednak przy obliczaniu całkowitej liczby poziomów przetwornika C/A nie jest to właściwe podejście. Wartość (2-1)12 również jest niepoprawna, ponieważ nie odnosi się do liczby poziomów, a zrozumienie tej koncepcji jest kluczowe w projektowaniu systemów przetwarzania sygnałów. Typowym błędem jest myślenie, że liczba poziomów może być obliczona poprzez inne operacje matematyczne, co prowadzi do niewłaściwych wniosków. Ważne jest, aby zrozumieć podstawy działania przetworników C/A i ich znaczenie w praktycznych zastosowaniach technologicznych.

Pytanie 34

Liczba 3,5 w naturalnym systemie binarnym będzie zapisana jako

A. 11,1
B. 01,1
C. 10,1
D. 11,0
Liczba 3,5 w naturalnym kodzie binarnym przyjmuje postać '11,1', co można rozłożyć na dwie części: część całkowitą i część ułamkową. Część całkowita liczby 3 w systemie binarnym to '11', ponieważ 3 to suma 2^1 oraz 2^0. Część ułamkowa 0,5 reprezentowana jest w systemie binarnym jako ',1', ponieważ 0,5 to 1/2, co odpowiada 2^-1. W naturalnym kodzie binarnym łączymy obie części, uzyskując '11,1'. Zrozumienie konwersji liczb z systemu dziesiętnego na binarny jest kluczowe w informatyce, szczególnie w kontekście programowania oraz obliczeń w systemach komputerowych. W praktyce, znajomość tych konwersji jest niezbędna przy tworzeniu algorytmów operujących na liczbach zmiennoprzecinkowych oraz przy pracy z systemami obliczeń numerycznych, gdzie precyzja i dokładność zapisu wartości są kluczowe. Wiedza ta jest również istotna przy projektowaniu systemów cyfrowych, takich jak mikroprocesory, które operują na danych zapisanych w formacie binarnym.

Pytanie 35

Standard umożliwiający bezprzewodową, optyczną transmisję danych zawiera interfejs

A. Bluetooth
B. LoRa
C. WiFi
D. IrDa
Wybór jednego z pozostałych standardów, takich jak Bluetooth, LoRa czy WiFi, pomimo ich popularności, jest niewłaściwy w kontekście bezprzewodowej, optycznej transmisji danych. Bluetooth, na przykład, to technologia oparta na falach radiowych, która umożliwia komunikację na krótkie odległości, ale nie wykorzystuje optycznego przesyłu danych. Jego główną zaletą jest mobilność i możliwość przesyłania danych między różnymi urządzeniami w bliskim zasięgu, jednak nie ma to nic wspólnego z transmisją optyczną. Podobnie LoRa, która jest używana głównie w aplikacjach IoT (Internet of Things), również opiera się na falach radiowych, a jej celem jest zapewnienie długozasięgowej komunikacji przy niskim zużyciu energii. WiFi, z kolei, jest technologią, która obsługuje szerokopasmową transmisję danych w sieciach lokalnych, ale również nie używa optyki. Osoby wybierające te odpowiedzi mogą mylić różne formy transmisji, nie zdając sobie sprawy z kluczowych różnic między nimi. To zrozumienie, jakie typy technologii komunikacyjnych są wykorzystywane w różnych kontekstach, jest istotne dla efektywnego zastosowania ich w praktyce. Bezprzewodowa komunikacja może przybierać różne formy, ale tylko standardy, takie jak IrDa, są ukierunkowane na optyczną transmisję, co czyni je unikalnymi w swoim zastosowaniu.

Pytanie 36

Jaki układ wzmacniający z użyciem tranzystora bipolarnego odznacza się względnie wysokim wzmocnieniem napięciowym oraz znacznym wzmocnieniem prądowym?

A. OB
B. OG
C. OE
D. OC
Wybór odpowiedzi OB, OC lub OG wskazuje na nieporozumienie związane z charakterystyką układów wzmacniających. Układ OB (obrotnik bazy) jest stosunkowo rzadko używany w praktycznych zastosowaniach, ponieważ jego wzmocnienie napięciowe jest niskie, a głównym celem jest przekształcenie sygnału bez znaczącego wzmocnienia. Z kolei układ OC (obrotnik kolektora) charakteryzuje się wysokim wzmocnieniem prądowym, ale niskim wzmocnieniem napięciowym. Jest to konfiguracja, która jest wykorzystywana głównie w przypadku wzmacniaczy mocy, gdzie kluczowe jest dostarczenie dużych prądów do obciążenia, a niekoniecznie wzmocnienie sygnału. W przypadku OG (obrotnik górny) mamy do czynienia z układem, który nie jest standardowo używany w klasycznych układach wzmacniających, co może prowadzić do mylnego wniosku, że ma zastosowanie w kontekście dużego wzmocnienia zarówno napięciowego, jak i prądowego. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują mylenie typów wzmacniaczy i ich podstawowych właściwości. Kluczowe jest zrozumienie, że różne konfiguracje tranzystorów mają różne zastosowania i skutki dla wzmocnienia sygnałów, co jest fundamentalne w inżynierii elektronicznej.

Pytanie 37

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 50
B. 100
C. 250
D. 25
Odpowiedź 50 zwojów uzwojenia wtórnego jest poprawna, ponieważ transformator działa na zasadzie proporcjonalności między liczbą zwojów w uzwojeniu pierwotnym a napięciem na uzwojeniu wtórnym. Zastosowanie wzoru: U1/U2 = N1/N2, gdzie U1 to napięcie pierwotne, U2 to napięcie wtórne, N1 to liczba zwojów w uzwojeniu pierwotnym, a N2 to liczba zwojów w uzwojeniu wtórnym, pozwala nam obliczyć, ile zwojów potrzeba, aby uzyskać pożądane napięcie. W tym przypadku mamy U1 = 230 V, a ponieważ chcemy uzyskać 23 V na każdym z uzwojeń wtórnych, U2 = 23 V. Zatem, stosując wzór: 230 V / 23 V = 500 zwojów / N2, otrzymujemy N2 = 50. W praktyce, takie transformatory są używane w zasilaczach niskonapięciowych, gdzie wymagane jest obniżenie napięcia do wartości bezpiecznych dla urządzeń elektronicznych. Dzięki zrozumieniu tej zasady, inżynierowie mogą projektować układy zasilające z odpowiednimi parametrami elektrycznymi, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w aplikacjach przemysłowych oraz domowych.

Pytanie 38

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze
A. J1-włączona, J2-wyłączona, J3-wyłączona.
B. J1-wyłączona, J2-wyłączona, J3-włączona.
C. J1-wyłączona, J2-włączona, J3-włączona.
D. J1-wyłączona, J2-wyłączona, J3-wyłączona.
Aby włączyć wysoką ochronę, diodę LED i detekcję ruchu pojedynczym sygnałem, zworki muszą być ustawione zgodnie z określonymi wymaganiami. Zworka J1 musi być wyłączona, co oznacza, że czujka będzie działać w trybie wysokiej ochrony. W kontekście standardów ochrony, tryb wysoki zapewnia większą czułość detekcji, co jest kluczowe w środowiskach o podwyższonej konieczności zabezpieczeń. Zworka J2 powinna być włączona, co aktywuje diodę LED, informując użytkownika o stanie czujki. Zworka J3, również włączona, umożliwia detekcję ruchu na pojedynczym sygnale, co jest istotne w systemach alarmowych, gdzie szybka reagowanie na incydent jest kluczowe. Ustawienia te są zgodne z najlepszymi praktykami w zakresie instalacji systemów zabezpieczeń i zapewniają optymalną funkcjonalność urządzenia. Należy pamiętać, że niewłaściwe ustawienie zworek może skutkować obniżeniem efektywności detekcji, co w kontekście ochrony mienia może prowadzić do poważnych konsekwencji.

Pytanie 39

Jakie urządzenie wykorzystuje się do diagnozowania płyty głównej komputera?

A. kartę diagnostyczną
B. wobuloskop
C. oscyloskop
D. miernik uniwersalny
Karta diagnostyczna to narzędzie, które umożliwia weryfikację stanu płyty głównej oraz podzespołów komputera. Działa na zasadzie odczytu kodów POST (Power-On Self-Test), które są generowane przez BIOS podczas uruchamiania systemu. Dzięki karcie diagnostycznej można szybko zidentyfikować problemy z pamięcią RAM, procesorem oraz innymi komponentami, co pozwala na szybką reakcję i naprawę. W praktyce, korzystając z karty diagnostycznej, technik może bezpośrednio zlokalizować źródło usterki, co znacząco przyspiesza proces diagnozowania i naprawy. Karty diagnostyczne są standardowym narzędziem w warsztatach komputerowych i są zgodne z najlepszymi praktykami w branży. Warto również dodać, że użycie karty diagnostycznej jest preferowane w przypadku bardziej złożonych usterek, gdzie inne metody, takie jak testowanie poszczególnych podzespołów, mogą być czasochłonne i nieefektywne. W nowoczesnych systemach komputerowych, gdzie złożoność sprzętu wzrasta, karta diagnostyczna staje się nieocenionym narzędziem w rękach specjalistów.

Pytanie 40

Która z poniższych liczb stanowi przedstawienie w kodzie BCD 8421?

A. 01100110
B. 11001100
C. 11101110
D. 10101010
Wybór odpowiedzi, która nie pasuje do kodu BCD 8421, może być wynikiem pewnego zamieszania co do tego, jak ten kod działa. Kod BCD 8421 używa czterech bitów do wyrażania cyfr od 0 do 9. Kiedy pojawiają się takie liczby jak '11101110' czy '10101010', to są to kombinacje bitów, które nie odpowiadają żadnej cyfrze w zakresie 0-9. Na przykład, '1110' to 14, a '1010' to 10, co wykracza poza możliwości BCD. Każda pomyłka w odczytywaniu tych kombinacji może prowadzić do błędów w obliczeniach i w tym, jak dane są pokazywane. Często zapominamy, że każda cyfra w kodzie BCD musi być traktowana jako oddzielna rzecz, a nie część większej liczby. Zrozumienie tego jest kluczowe, gdy stosujemy BCD w praktyce, na przykład przy programowaniu mikroprocesorów czy projektowaniu cyfrowych systemów. Dobrze jest wiedzieć, jak poprawnie używać BCD, bo to może poprawić wydajność obliczeń i całych systemów. Zachęcam do dalszej nauki o kodowaniu w BCD i jego zastosowaniach w życiu codziennym.