Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 20 listopada 2025 09:47
  • Data zakończenia: 20 listopada 2025 10:48

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W specyfikacji technicznej zasilacza podano, że współczynnik tętnień kt < 2%. Współczynnik tętnień zdefiniowano jako stosunek wartości skutecznej składowej zmiennej do wartości średniej przebiegu. Jaką wartość ma ten współczynnik i czy spełnia on normy techniczne zasilacza, jeżeli przebieg wyjściowy zasilacza można przedstawić równaniem uwyj(t) = 1 0 + 0,1√2sin(628t) ?

A. 1%, tak
B. 3%, nie
C. 3%, tak
D. 1%, nie
W odpowiedziach, które nie są prawidłowe, może występować mylne zrozumienie zasad obliczania współczynnika tętnień. Często błąd polega na niepoprawnym wyliczeniu wartości skutecznej składowej zmiennej lub wartości średniej przebiegu. Wartość skuteczna wyrażona w jednostkach RMS (Root Mean Square) dla składowej sinusoidalnej powinna być obliczana z odpowiednich wzorów. Przyjmując, że wartość średnia dla sinusoidy wynosi zero, nie można jej używać w równaniu do wyznaczenia współczynnika tętnień, co prowadzi do błędnych obliczeń. Dodatkowo, stosowanie błędnych wartości, jak 3% w kontekście wymagania mniejszego niż 2%, jest niepoprawne i nie spełnia standardów technicznych. W praktyce, zasilacze muszą być projektowane w oparciu o normy, takie jak IEC 61000, które określają dopuszczalne poziomy tętnień. W związku z tym, kluczowe jest zrozumienie, że zasilacze muszą być zaprojektowane z wysoką jakością, aby uniknąć problemów związanych z zakłóceniami w pracy urządzeń elektronicznych, co może prowadzić do ich uszkodzenia lub nieprawidłowego działania.

Pytanie 2

W jakim celu w obwodzie sterowania przekaźnika dołącza się dodatkową diodę D?

Ilustracja do pytania
A. Zwiększenia szybkości zadziałania przekaźnika.
B. Obniżenia napięcia zasilającego cewkę przekaźnika.
C. Zabezpieczenia cewki przekaźnika przed odwrotnym podłączeniem zasilania.
D. Zabezpieczenia tranzystora T przed uszkodzeniem wysokimi napięciami indukowanymi w cewce przekaźnika w chwili wyłączenia cewki.
Dioda D, dołączona równolegle do cewki przekaźnika, jest kluczowym elementem w obwodach sterowania, pełniąc funkcję diody zabezpieczającej. Jej głównym zadaniem jest ochrona tranzystora T przed uszkodzeniem, które może wystąpić w wyniku wysokiego napięcia indukowanego w cewce przekaźnika w chwili jego wyłączenia. Zjawisko to, znane jako samoindukcja, prowadzi do natychmiastowego wzrostu napięcia, które w przeciwnym razie mogłoby trwale uszkodzić tranzystor. W praktyce, takie zabezpieczenie jest powszechnie stosowane w układach sterowania, szczególnie tam, gdzie używane są przekaźniki elektromagnetyczne. Właściwe zastosowanie diody zabezpieczającej, zgodnie ze standardami branżowymi, nie tylko zwiększa niezawodność układu, ale także wydłuża żywotność komponentów elektronicznych. Warto zaznaczyć, że takie rozwiązanie jest standardem w nowoczesnych układach automatyki, co podkreśla jego znaczenie w projektowaniu systemów elektronicznych.

Pytanie 3

Aby zweryfikować prawidłowość działania generatora funkcyjnego, należy wykorzystać

A. omomierza
B. amperomierza
C. watomierza
D. oscyloskopu
Oscyloskop jest narzędziem niezbędnym do analizy sygnałów elektrycznych, w tym tych generowanych przez generator funkcyjny. Umożliwia wizualizację przebiegów napięcia w funkcji czasu, co pozwala na ocenę kształtu, częstotliwości oraz amplitudy sygnału. W praktyce, podczas testowania generatora funkcyjnego, oscyloskop pozwala na identyfikację zniekształceń sygnału, które mogą wpływać na jego poprawność działania. Na przykład, jeśli sygnał powinien mieć kształt fali sinusoidalnej, oscyloskop pozwala na natychmiastowe zidentyfikowanie ewentualnych zniekształceń, co jest kluczowe w aplikacjach audio oraz telekomunikacyjnych. Stosowanie oscyloskopów zgodnie z normami branżowymi, takimi jak IEC 61010, zapewnia bezpieczeństwo i dokładność pomiarów. Warto również zaznaczyć, że w zaawansowanych zastosowaniach oscyloskop umożliwia analizę sygnałów wielokanałowych, co jest istotne przy testowaniu układów cyfrowych i analogowych w nowoczesnych systemach elektronicznych.

Pytanie 4

W trakcie regularnych przeglądów nie przeprowadza się

A. oceny stanu technicznego
B. instalacji nowych urządzeń
C. analizy funkcjonowania urządzeń
D. pomiarów weryfikacyjnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacja nowych urządzeń nie jest częścią zakresu działań związanych z okresowymi przeglądami. Okresowe przeglądy są kluczowym procesem w zarządzaniu i konserwacji urządzeń technicznych, mającym na celu zapewnienie ich prawidłowego funkcjonowania oraz bezpieczeństwa użytkowników. W ich ramach dokonuje się analizy działania istniejących urządzeń, które obejmuje ocenę efektywności ich pracy oraz identyfikację potencjalnych problemów mogących wpłynąć na ich funkcjonowanie. Przykładem może być regularne sprawdzanie i kalibracja czujników w systemach automatyki przemysłowej, co pozwala na utrzymanie ich w optymalnym stanie. Niezwykle istotnym aspektem przeglądów jest także ocena stanu technicznego, która umożliwia wczesne wykrywanie uszkodzeń lub zużycia komponentów. Pomiary sprawdzające, takie jak testy wydajności czy pomiary napięcia, są kluczowe w zapewnieniu, że urządzenia działają zgodnie z wymaganiami norm i standardów bezpieczeństwa. W związku z tym, instalacja nowych urządzeń powinna być planowana jako osobny proces, związany z modernizacją lub rozbudową infrastruktury, a nie jako część rutynowych przeglądów.

Pytanie 5

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
B. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
C. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
D. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 6

Jakie jest napięcie zasilające dla układu cyfrowego wykonanego w technologii TTL?

A. 15 V
B. 12 V
C. 3,3 V
D. 5 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 5 V jest poprawna, ponieważ standardowe układy cyfrowe oparte na technologii TTL (Transistor-Transistor Logic) działają przy napięciu zasilania wynoszącym 5 V. Ta wartość napięcia stała się de facto normą w branży elektronicznej dla wielu rodzajów układów cyfrowych, co jest zgodne z normami IEEE. Zastosowanie 5 V umożliwia optymalną pracę układów TTL, które cechują się szybkim czasem reakcji oraz niskim poborem mocy, co jest kluczowe w projektowaniu nowoczesnych urządzeń elektronicznych. Przykładem zastosowania tej technologii są komputery osobiste, urządzenia mobilne oraz różne systemy automatyki domowej. Zrozumienie standardu napięcia zasilającego jest kluczowe dla inżynierów zajmujących się projektowaniem obwodów cyfrowych, ponieważ nieodpowiednie napięcie może prowadzić do uszkodzenia komponentów lub nieprawidłowego działania całego systemu. W praktyce, układy TTL można również spotkać w różnych modułach i zestawach edukacyjnych, które są używane w nauczaniu podstaw elektroniki.

Pytanie 7

Jakie parametry zasilacza są potrzebne do zasilenia 3 metrów taśmy LED, jeśli moc jednego metra taśmy wynosi 4,8 W, a napięcie zasilania taśmy LED to 12 V?

A. 12 V/1,2 A 6 W
B. 12 V/1,5 A 15 W
C. 12 V/1,5 A 12 W
D. 12 V/1,2 A 9 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zasilić 3 metry taśmy LED o mocy 4,8 W na metr przy napięciu zasilania 12 V, należy obliczyć całkowite zapotrzebowanie na moc. Moc taśmy LED wynosi 4,8 W/m, więc dla 3 metrów mamy 4,8 W/m * 3 m = 14,4 W. Zasilacz powinien dostarczać moc większą niż zapotrzebowanie taśmy, aby zapewnić stabilność oraz wydajność. Wybierając zasilacz 12 V/1,5 A, otrzymujemy moc 12 V * 1,5 A = 18 W, co w pełni pokrywa wymagane 14,4 W. Dobre praktyki zalecają, aby zasilacz miał zapas mocy na poziomie przynajmniej 20% w stosunku do obliczonego zapotrzebowania, co przy 14,4 W daje nam 17,28 W. Dlatego zasilacz o parametrach 12 V/1,5 A 15 W jest odpowiedni, a jego wykorzystanie jest zgodne ze standardami zapewniającymi długotrwałą i bezpieczną pracę taśm LED w różnych zastosowaniach, takich jak oświetlenie wnętrz czy dekoracje. Zastosowanie zasilacza z odpowiednim zapasem mocy pozwala uniknąć problemów związanych z przegrzewaniem i zmniejsza ryzyko uszkodzenia komponentów.

Pytanie 8

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 26 dBμV
B. 30 dBμV
C. 42 dBμV
D. 48 dBμV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór 48 dBμV jako minimalnego poziomu sygnału na wyjściu gniazda antenowego w systemie telewizyjnym opartym na modulacji 64QAM oraz kodowaniu FEC 3/4 jest zgodny z zaleceniami branżowymi. W przypadku sygnałów telewizyjnych, decydujące znaczenie ma nie tylko poziom sygnału, ale także jego jakość oraz odporność na zakłócenia. Standardy telewizyjne wskazują, że poziom 48 dBμV zapewnia odpowiednią rezerwę sygnału, co ma kluczowe znaczenie dla stabilności odbioru, zwłaszcza w warunkach nieidealnych, takich jak zjawiska atmosferyczne, przeszkody terenowe czy zakłócenia elektromagnetyczne. W praktyce, poziom sygnału powinien być dostosowany do specyfiki instalacji, a także do odległości od nadajnika. W przypadku wielu instalacji antenowych, poziom sygnału na wyjściu gniazda powinien również uwzględniać straty sygnału na drodze do odbiornika, dlatego 48 dBμV jest uważany za optymalny, aby zapewnić niezawodny i wysokiej jakości odbiór sygnału telewizyjnego w systemach cyfrowych. Warto również dodać, że przy ustawianiu anteny oraz projektowaniu systemów telewizyjnych, stosowanie się do standardów takich jak DVB-T (Digital Video Broadcasting - Terrestrial) oraz ich wymagań dotyczących poziomu sygnału jest kluczowe dla uzyskania optimalnych warunków pracy systemu.

Pytanie 9

Jakie wielkości powinny być zmierzone, aby określić zakres liniowości wzmacniacza?

A. Napięcie wyjściowe oraz napięcie zasilania
B. Napięcie wejściowe oraz moc wyjściowa
C. Napięcie wejściowe i wyjściowe
D. Napięcie wyjściowe oraz częstotliwość

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napięcie wejściowe i wyjściowe są kluczowymi parametrami przy ocenie zakresu liniowości wzmacniacza. Liniowość wzmacniacza odnosi się do zdolności urządzenia do zachowania proporcjonalności między sygnałem wejściowym a sygnałem wyjściowym. Gdy wzmacniacz działa w zakresie liniowym, zmiana napięcia wejściowego powinna powodować proporcjonalną zmianę napięcia wyjściowego. W praktyce, aby określić ten zakres, należy przeprowadzić pomiary napięcia wyjściowego przy różnych wartościach napięcia wejściowego. Na przykład podczas testowania wzmacniacza operacyjnego, który ma być używany w systemie audio, kluczowe jest zapewnienie, że jego działanie w zakresie liniowym pozwoli na wierne odwzorowanie sygnału audio. Wzmacniacze powinny działać liniowo w pełnym zakresie ich zastosowania, co jest zgodne z normami takimi jak IEEE 1076 dla wzmacniaczy analogowych. Dobrą praktyką jest również wykorzystanie oscyloskopu do wizualizacji sygnału wyjściowego i oceny nieliniowości, co pozwala na dokładną kalibrację urządzenia.

Pytanie 10

Multimetr prezentuje wyniki pomiarów w formacie trzech i pół cyfry. Jaka jest dokładność pomiaru napięcia tego multimetru w zakresie do 20 V?

A. 10 mV
B. 100 uV
C. 1 mV
D. 100 mV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 mV jest prawidłowa, ponieważ multimetr z wyświetlaczem w formacie trzy i pół cyfry oznacza, że może wyświetlić do 1999 jednostek. W przypadku pomiaru napięcia na zakresie 20 V, rozdzielczość instrumentu oblicza się jako maksymalna wartość podzielona przez liczbę wyświetlanych jednostek. W tym przypadku, zakres pomiarowy wynosi 20 V, co przekłada się na 20 000 mV. Dzieląc tę wartość przez 1999, otrzymujemy około 10 mV, co stanowi najmniejszą zmianę napięcia, którą multimetr jest w stanie zarejestrować. Taka rozdzielczość jest szczególnie przydatna w zastosowaniach, gdzie precyzyjne pomiary napięcia są wymagane, jak w laboratoriach elektronicznych czy podczas kalibracji urządzeń. Użytkownicy multimetrów powinni zwracać uwagę na rozdzielczość przy wyborze zakresu pomiarowego, ponieważ wyższa rozdzielczość umożliwia dokładniejsze analizy i diagnozy.

Pytanie 11

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 250
B. 50
C. 100
D. 25

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 zwojów uzwojenia wtórnego jest poprawna, ponieważ transformator działa na zasadzie proporcjonalności między liczbą zwojów w uzwojeniu pierwotnym a napięciem na uzwojeniu wtórnym. Zastosowanie wzoru: U1/U2 = N1/N2, gdzie U1 to napięcie pierwotne, U2 to napięcie wtórne, N1 to liczba zwojów w uzwojeniu pierwotnym, a N2 to liczba zwojów w uzwojeniu wtórnym, pozwala nam obliczyć, ile zwojów potrzeba, aby uzyskać pożądane napięcie. W tym przypadku mamy U1 = 230 V, a ponieważ chcemy uzyskać 23 V na każdym z uzwojeń wtórnych, U2 = 23 V. Zatem, stosując wzór: 230 V / 23 V = 500 zwojów / N2, otrzymujemy N2 = 50. W praktyce, takie transformatory są używane w zasilaczach niskonapięciowych, gdzie wymagane jest obniżenie napięcia do wartości bezpiecznych dla urządzeń elektronicznych. Dzięki zrozumieniu tej zasady, inżynierowie mogą projektować układy zasilające z odpowiednimi parametrami elektrycznymi, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w aplikacjach przemysłowych oraz domowych.

Pytanie 12

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g
A. Ruchu.
B. Akustyczna.
C. Magnetyczna.
D. Wibracyjna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka magnetyczna, która została opisana w tabeli, charakteryzuje się specyfiką, która czyni ją idealnym rozwiązaniem dla wielu zastosowań przemysłowych i zabezpieczeń. Niewielkie rozmiary oraz masa czujki są istotnymi czynnikami, które wpływają na jej wszechstronność. Czujki magnetyczne są często wykorzystywane w systemach alarmowych, do detekcji otwarcia drzwi i okien, a także w różnych aplikacjach automatyki budynkowej. Ich wysoka trwałość, wynikająca z minimalnej liczby przełączeń przy obciążeniu 20 V, 20 mA, wskazuje na mocne parametry elektryczne, które są niezbędne w środowiskach, gdzie niezawodność jest kluczowa. Materiał stykowy, jakim jest Ruten (Ru), zapewnia doskonałą przewodność oraz odporność na korozję, co jest typowe dla wysokiej jakości czujników. Zastosowanie czujników magnetycznych zgodnie z dobrymi praktykami i normami branżowymi, takimi jak standardy IEC, zapewnia ich efektywność i długowieczność w trudnych warunkach operacyjnych.

Pytanie 13

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Synchronizacji i odchylania
B. Wzmacniacza wizji
C. Selektora i separatora
D. Wielkiej i pośredniej częstotliwości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Wielkiej i pośredniej częstotliwości" jest poprawna, ponieważ to właśnie te moduły odpowiadają za odbiór sygnałów z anteny telewizyjnej. Moduł wielkiej częstotliwości (VHF/UHF) odbiera sygnały z anteny, a moduł pośredniej częstotliwości (IF) przetwarza te sygnały na format, który może być dalej przetwarzany przez telewizor. Kiedy telewizor nie odbiera sygnału z anteny, ale potrafi odtwarzać obraz z innych źródeł, jak tuner satelitarny czy kamera VHS-C, wskazuje to na problem z obiegiem sygnału w przedwzmacniaczu lub innym elemencie toru sygnałowego odbiornika. W praktyce, w takich sytuacjach, często zaleca się sprawdzenie zarówno anteny, jak i stanu technicznego modułów wielkiej i pośredniej częstotliwości, co jest zgodne z metodami diagnostyki stosowanymi w serwisach elektronicznych.

Pytanie 14

Język LD do tworzenia schematów drabinkowych pozwala na

A. zaprogramowanie pamięci EPROM
B. programowanie sterowników PLC
C. wizualizację pracy układów GAL
D. komunikowanie z procesorem GPU

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Język schematów drabinkowych (LD) jest standardowym językiem programowania używanym w automatyce przemysłowej, szczególnie w kontekście programowania sterowników PLC (Programmable Logic Controllers). Jego struktura przypomina schematy elektryczne, co ułatwia inżynierom zrozumienie logiki działania aplikacji. Przez użycie elementów takich jak styki i cewki, LD pozwala na łatwą reprezentację operacji logicznych oraz sekwencyjnych, co jest kluczowe w sterowaniu procesami przemysłowymi. Typowe zastosowania obejmują automatyzację linii produkcyjnych, kontrolę urządzeń, a także monitorowanie i diagnostykę systemów. W praktyce, inżynierowie często używają oprogramowania takich jak RSLogix, które umożliwia tworzenie, testowanie i wdrażanie programów w języku LD zgodnie z normą IEC 61131-3. Wspieranie standardów branżowych oraz dobrych praktyk, takich jak dokumentacja oraz testowanie programów, jest kluczowe dla zapewnienia niezawodności i efektywności systemów automatyki.

Pytanie 15

Parametr Vpp, który znajduje się w dokumentacji technicznej wzmacniacza mocy o niskiej częstotliwości, wskazuje na wartość

A. skuteczną sygnału
B. między szczytową sygnału
C. średnią sygnału
D. maksymalną sygnału

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Parametr V<sub>pp</sub>, czyli napięcie między szczytowe, definiuje maksymalne napięcie sygnału, jakie wzmacniacz mocy może wygenerować pomiędzy dwoma szczytami. Sygnał ten jest kluczowy w analizie wydajności wzmacniaczy audio, ponieważ pozwala na ocenę ich zdolności do reprodukcji dynamicznych zakresów dźwięku. Przykładem zastosowania tego parametru jest projektowanie systemów audio, gdzie potrzebne jest określenie, czy wzmacniacz będzie w stanie obsłużyć sygnały o dużych amplitudach bez zniekształceń. W kontekście standardów branżowych, V<sub>pp</sub> jest często stosowany w dokumentacji technicznej, aby umożliwić inżynierom porównywanie różnych urządzeń. Dobrym przykładem może być sytuacja, w której inżynier projektujący system nagłośnienia wymaga wzmacniacza o określonym V<sub>pp</sub>, aby zapewnić odpowiednią moc wyjściową na poziomie, który zaspokoi wymagania konkretnego zastosowania, na przykład w sali koncertowej.

Pytanie 16

Jaką rolę pełni heterodyna w radiu?

A. Wzmacniacza pośredniej częstotliwości
B. Filtra aktywnego środkowo przepustowego
C. Układu zmiany zakresów w obwodach wielkiej częstotliwości
D. Generatora sygnału o określonej częstotliwości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Heterodyna w odbiorniku radiowym pełni kluczową rolę jako generator sygnału o określonej częstotliwości, który jest niezbędny do demodulacji sygnałów radiowych. Proces ten polega na wytworzeniu częstotliwości pośredniej, co umożliwia łatwiejsze przetwarzanie sygnału. Heterodyna działa poprzez sumowanie i różnicowanie częstotliwości sygnału odbieranego i sygnału generowanego przez oscylator lokalny. Dzięki temu możliwe jest uzyskanie stabilnej i przystosowanej do dalszego przetwarzania częstotliwości, co jest kluczowe w systemach radiowych, szczególnie w odbiornikach superheterodynowych. W praktyce, zastosowanie heterodyny przyczynia się do zwiększenia selektywności i czułości odbiornika, pozwalając na lepszą separację i identyfikację poszczególnych stacji radiowych. Standardy branżowe, takie jak IEEE 802.11 dla komunikacji bezprzewodowej, również korzystają z podobnych zasad, gdzie heterodyna odgrywa rolę w konwersji częstotliwości, co wpływa na jakość sygnału i zasięg transmisji. Warto dodać, że technologia ta jest szeroko stosowana w różnych dziedzinach, od telekomunikacji po radioastronomię, co potwierdza jej uniwersalność i znaczenie.

Pytanie 17

Jakie są komponenty sprzętowe sieci komputerowych?

A. sterowniki urządzeń
B. urządzenia dostępu
C. oprogramowanie komunikacyjne
D. protokoły

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 18

W celu zwiększenia częstotliwości sygnału wyjściowego, przy zachowaniu współczynnika wypełnienia, należy zmniejszyć wartość

Ilustracja do pytania
A. rezystora R2
B. rezystora R1
C. kondensatora Cp
D. kondensatora C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zrozumieć, dlaczego odpowiedź "kondensator C" jest poprawna, warto przypomnieć sobie podstawowe zasady działania układu 555 w konfiguracji astabilnej. W tym układzie, częstotliwość sygnału wyjściowego jest odwrotnie proporcjonalna do sumy czasów trwania stanów wysokiego i niskiego, które są zależne od wartości kondensatora C oraz rezystorów R1 i R2. Wzór na częstotliwość można zapisać jako f = 1/(t1 + t2), gdzie t1 = 0.693 * (R1 + R2) * C oraz t2 = 0.693 * R2 * C. Zmniejszenie wartości kondensatora C powoduje skrócenie zarówno t1, jak i t2, co w efekcie prowadzi do zwiększenia częstotliwości sygnału wyjściowego. W praktycznych zastosowaniach, takie podejście jest istotne, gdyż pozwala na dostosowanie parametrów układu do specyficznych wymagań aplikacji, jak generacja sygnałów PWM czy wydajnych oscylatorów. W przemyśle elektronicznym dobrze jest również stosować kondensatory o niskiej tolerancji, co pozwala na lepszą stabilność parametrów układu i dokładniejsze regulacje częstotliwości.

Pytanie 19

W specyfikacji katalogowej rezystora SMD podano wartość rezystancji wynoszącą 100 Ω oraz moc 0,25 W. Jakie jest maksymalne natężenie prądu, które może przepływać przez ten rezystor?

A. 200 mA
B. 50 mA
C. 250 mA
D. 4 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 mA jest prawidłowa, ponieważ zgodnie z prawem Ohma oraz wzorem na moc, możemy obliczyć maksymalne natężenie prądu dla danego rezystora. Moc (P) rezystora wyrażana jest wzorem P = I²R, gdzie I to natężenie prądu, a R to rezystancja. Podstawiając wartości: 0,25 W = I² * 100 Ω, przekształcamy wzór do postaci I² = 0,25 W / 100 Ω, co daje I² = 0,0025 A². Zatem I = √0,0025 A² = 0,05 A, co odpowiada 50 mA. Jest to zgodne z praktykami inżynieryjnymi, które zalecają obliczanie maksymalnych prądów dla komponentów, aby uniknąć ich uszkodzenia. W praktyce, taki rezystor o wartości 100 Ω i mocy 0,25 W jest często stosowany w układach filtrów, dzielnikach napięcia czy w obwodach sygnałowych, gdzie utrzymanie właściwego natężenia prądu jest kluczowe dla stabilności działania całego systemu.

Pytanie 20

Aby dokonać naprawy przetwornicy zasilającej w telewizorze, należy wykorzystać instrukcję

A. programowania
B. serwisową
C. instalacji
D. użytkownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to instrukcja serwisowa, ponieważ zawiera szczegółowe informacje dotyczące diagnostyki, naprawy oraz konserwacji urządzeń elektronicznych, w tym przetwornic zasilających w telewizorach. Instrukcje serwisowe są dostosowane do konkretnych modeli urządzeń i zazwyczaj zawierają schematy blokowe, opisy komponentów oraz procedury testowe. Przykładem zastosowania takiej instrukcji jest identyfikacja uszkodzonych elementów, takich jak kondensatory czy tranzystory, które mogą wpływać na funkcjonalność przetwornicy. Warto również zwrócić uwagę na dobre praktyki branżowe, takie jak korzystanie z oryginalnych części zamiennych oraz stosowanie odpowiednich narzędzi podczas naprawy, co zapewnia długotrwałą i bezpieczną eksploatację urządzenia. Ponadto, instrukcje serwisowe często zawierają informacje o wymaganiach dotyczących bezpieczeństwa, co jest kluczowe podczas pracy z urządzeniami elektrycznymi. Dlatego zawsze warto mieć tę dokumentację pod ręką podczas przeprowadzania napraw.

Pytanie 21

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Funkcjonuje jako czytnik kart dostępu.
B. Daje możliwość aktualizacji oprogramowania tunera.
C. Pozwala na podłączenie pamięci zewnętrznej.
D. Służy do łączenia urządzeń audio-video.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moduł CI (Common Interface) w tunerze satelitarnym pełni kluczową rolę jako czytnik kart kodowych, co umożliwia dostęp do zaszyfrowanych kanałów telewizyjnych. System ten pozwala na korzystanie z różnych usług dostarczanych przez operatorów telewizji, którzy wykorzystują karty dostępu, aby chronić swoje treści przed nieautoryzowanym dostępem. W praktyce oznacza to, że użytkownik może włożyć kartę z subskrypcją do modułu CI, co umożliwia dekodowanie sygnału i tym samym oglądanie programów telewizyjnych. Moduł CI jest zgodny z różnymi standardami, takimi jak DVB (Digital Video Broadcasting), co zapewnia jego szeroką kompatybilność z wieloma modelami tunerów i telewizorów. Dzięki temu rozwiązaniu, użytkownicy nie są zmuszeni do korzystania z zewnętrznych dekoderów, co upraszcza instalację i obsługę ich systemów telewizyjnych. Warto również zauważyć, że metoda ta jest stosowana nie tylko w telewizji satelitarnej, ale również w kablowej, co czyni ją uniwersalnym rozwiązaniem w branży telekomunikacyjnej.

Pytanie 22

Do przetwornicy 12 V DC/ 230 V AC 1 000 W podłączono działający silnik indukcyjny o mocy 120 W. Silnik nie funkcjonuje prawidłowo. Żarówka o mocy 200 W podłączona do tej przetwornicy działa poprawnie. Zmierzona wartość napięcia wyjściowego przetwornicy wynosi 229 V. Na podstawie obserwacji oraz wyniku pomiaru można wnioskować, że

A. przetwornica dysponuje zbyt niską mocą, aby zasilić silnik
B. przetwornica nie generuje przebiegu sinusoidalnego
C. akumulator zasilający przetwornicę jest wyczerpany
D. napięcie wyjściowe jest zbyt wysokie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik indukcyjny wymaga do prawidłowego działania napięcia o określonym przebiegu, najlepiej sinusoidalnym. Przetwornice z reguły powinny wytwarzać taki przebieg, aby urządzenia elektryczne mogły pracować bez zakłóceń. W przypadku silników indukcyjnych, ich działanie opiera się na zjawisku magnetycznym, które jest silnie uzależnione od jakości dostarczonego napięcia. Jeśli przetwornica nie generuje przebiegu sinusoidalnego, lecz na przykład przebieg prostokątny lub modyfikowany, może to prowadzić do nieprawidłowej pracy silnika. Przykładem praktycznym jest sytuacja, gdy używamy przetwornicy, aby zasilać urządzenia wymagające stabilnego napięcia, jak komputery czy silniki, ponieważ niewłaściwy przebieg może prowadzić do uszkodzeń urządzeń. Zgodnie z normami, takimi jak IEC 61000, jakość napięcia i jego przebieg są kluczowe dla zapewnienia niezawodności działania urządzeń. W przypadku silników indukcyjnych, które mogą być bardziej wrażliwe na jakość zasilania, zaleca się użycie przetwornic o czystym przebiegu sinusoidalnym.

Pytanie 23

Ilość stabilnych stanów przerzutnika bistabilnego wynosi

A. 3
B. 0
C. 1
D. 2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerzutnik bistabilny, czyli ten flip-flop, to całkiem ciekawy układ cyfrowy. Ma dwie stabilne wartości: 0 albo 1. To znaczy, że jest w stanie jednocześnie przechowywać jeden bit informacji. Można go spotkać w różnych miejscach, jak rejestry czy pamięci RAM, ale też w generatorach zegarów i układach sekwencyjnych. Właśnie to, że potrafi zmieniać swoje stany w odpowiedzi na sygnały wejściowe, sprawia, że mogą powstawać złożone układy logiczne, które są podstawą współczesnych komputerów. Różne standardy, jak TTL i CMOS, dają nam różne typy tych przerzutników, co otwiera drzwi do wielu zastosowań w elektronice cyfrowej. Moim zdaniem, to naprawdę interesujące jak te małe elementy potrafią mieć tak duże znaczenie w naszym codziennym życiu.

Pytanie 24

Aby podwoić zakres pomiarowy woltomierza o rezystancji wewnętrznej Rw = 150 kΩ, konieczne jest dodanie rezystora Rp o wartości rezystancji w układzie szeregowym

A. 450 kΩ
B. 150 kΩ
C. 75 kΩ
D. 300 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 150 kΩ jest prawidłowa, ponieważ aby dwukrotnie rozszerzyć zakres pomiarowy woltomierza, konieczne jest dołączenie rezystora w szereg z woltomierzem. Woltomierz o rezystancji wewnętrznej Rw = 150 kΩ ma wartość rezystancji, która jest kluczowa w obliczeniach. Aby uzyskać nowy, pożądany zakres, suma rezystancji wewnętrznej woltomierza i dodatkowego rezystora musi być taka, aby całkowity opór był dwukrotnie większy niż początkowy. Przy dołączeniu rezystora Rp w szereg, całkowity opór wynosi Rw + Rp. Chcąc podwoić wartość Rw, musimy rozwiązać równanie Rw + Rp = 2 * Rw, co prowadzi do Rp = Rw. Zatem, dla Rw = 150 kΩ, Rp również wynosi 150 kΩ. Tego typu połączenia są powszechnie stosowane w praktyce inżynieryjnej, zwłaszcza w pomiarach elektrycznych, gdzie precyzja jest kluczowa. Dlatego w takich zastosowaniach, jak kalibracja przyrządów pomiarowych, istotne jest, aby znać zasady dołączania rezystorów w celu uzyskania dokładnych wyników pomiarów.

Pytanie 25

Jakiej pamięci usunięcie danych wymaga wykorzystania źródła promieniowania UV?

A. EEPROM
B. PROM
C. EPROM
D. FLASH

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedzią na to pytanie jest EPROM (Erasable Programmable Read-Only Memory), która rzeczywiście wymaga użycia źródła promieniowania ultrafioletowego do kasowania zapisanych danych. EPROM to typ pamięci, który można programować i kasować przy użyciu światła UV. Proces kasowania polega na naświetlaniu chipu, co powoduje usunięcie zapisanych danych. Zastosowanie EPROM jest szczególnie istotne w produkcji urządzeń elektronicznych, gdzie konieczne jest wielokrotne programowanie układów. Przykładem zastosowania EPROM są systemy wbudowane, w których programy muszą być modyfikowane po instalacji. W branży inżynieryjnej EPROM nadal znajduje zastosowanie w prototypowaniu oraz w produkcie końcowym, gdy wymagane jest aktualizowanie oprogramowania. Dzięki swojej architekturze, EPROM zapewnia stabilność danych przez długi czas, co jest zgodne z najlepszymi praktykami inżynieryjnymi dotyczącymi przechowywania informacji. Koszt programowania i kasowania epromów jest znacznie niższy w porównaniu do alternatywnych technologii, co czyni je atrakcyjnym rozwiązaniem.

Pytanie 26

Sieć komputerowa obejmująca obszar miasta to sieć

A. WAN
B. MAN
C. LAN
D. PAN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'MAN' (Metropolitan Area Network) jest poprawna, ponieważ odnosi się do sieci komputerowej o zasięgu miejskim, która łączy różne lokalizacje w obrębie jednego miasta lub aglomeracji. Sieci MAN są zazwyczaj używane do połączeń między biurami, uczelniami, a także dostawcami usług internetowych w danym regionie, co pozwala na efektywną wymianę danych. W praktyce, sieci te mogą wykorzystywać różnorodne technologie, takie jak Ethernet, Wi-Fi czy światłowody. Przykładem zastosowania sieci MAN może być system komunikacji miejskiej, który łączy różne punkty obsługi pasażerów oraz sieci zarządzania ruchem. W branży telekomunikacyjnej, MAN stanowi istotny element architektury sieci, umożliwiając zbudowanie infrastruktury, która wspiera usługi szerokopasmowe i wideo, zapewniając jednocześnie odpowiednią przepustowość i niskie opóźnienia. Zgodnie z dobrymi praktykami, projektowanie sieci MAN powinno uwzględniać aspekty skalowalności i niezawodności, co jest kluczowe dla zapewnienia ciągłości usług.

Pytanie 27

Jaką wartość ma impedancja wejściowa gniazda antenowego w odbiorniku telewizyjnym?

A. 300 Ω
B. 150 Ω
C. 75 Ω
D. 50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 75 Ω jest poprawna, ponieważ gniazdo antenowe odbiornika telewizyjnego standardowo projektowane jest z impedancją 75 Ω. Taki wybór impedancji wynika z optymalizacji transmisji sygnałów telewizyjnych, które są przesyłane w większości systemów kablowych oraz satelitarnych. W przypadku zastosowania impedancji 75 Ω, mamy do czynienia z minimalizacją strat sygnałowych oraz refleksji, co jest kluczowe dla zachowania jakości odbioru. W praktyce, urządzenia, takie jak dekodery czy telewizory, powinny być podłączane do anten o tej samej impedancji, aby zapewnić maksymalną efektywność. Ponadto, w branży telekomunikacyjnej powszechnie stosowane są standardy, takie jak IEC 60169-2, które definiują parametry techniczne gniazd oraz przewodów antenowych. Zastosowanie impedancji 75 Ω przyczynia się także do lepszego dopasowania z systemami przesyłowymi, co jest istotne w kontekście nowoczesnej telewizji wysokiej rozdzielczości i transmisji cyfrowej.

Pytanie 28

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. konwerter
B. zwrotnica
C. rozgałęźnik
D. symetryzator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwolnica to urządzenie, które odgrywa kluczową rolę w systemach telewizyjnych, umożliwiając przesyłanie sygnału z wielu anten przez jedno łącze. Dzięki swojej konstrukcji, zwrotnica separuje sygnały z różnych źródeł, takich jak różne anteny, i kieruje je do jednego przewodu, co jest szczególnie przydatne w instalacjach, gdzie dostęp do wielu źródeł sygnału jest ograniczony. To rozwiązanie jest powszechne w budynkach wielorodzinnych oraz w rejonach z różnorodnym pokryciem sygnałem telewizyjnym. Przykładami zastosowania zwrotnic są instalacje w domach, gdzie użytkownicy chcą odbierać sygnał z kilku anten, np. naziemnych oraz satelitarnych, bez konieczności układania wielu przewodów. Standardy branżowe, takie jak DVB-T, nakładają wymagania dotyczące efektywności sygnału, a wykorzystanie zwrotnic pozwala na ich spełnienie, eliminując straty sygnału i zakłócenia. Ponadto, zwrotnice są projektowane z myślą o minimalizacji strat sygnałowych i zapewnieniu wysokiej jakości obrazu oraz dźwięku.

Pytanie 29

Rodzaj metody pomiarowej, w której wartość mierzonej wielkości uzyskuje się na podstawie pomiarów innych, powiązanych z nią wielkości, zgodnie z zależnością funkcyjną teoretyczną lub doświadczalną, to metoda

A. bezwzględna
B. bezpośrednia
C. względna
D. pośrednia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda pomiarowa, która polega na określaniu wartości wielkości mierzonej na podstawie pomiarów innych, powiązanych z nią wielkości, nosi nazwę metody pośredniej. W tej metodzie stosuje się zależności funkcyjne, które mogą być teoretycznie wyprowadzone na podstawie praw naukowych lub oparte na danych doświadczalnych. Przykładem zastosowania metody pośredniej może być pomiar objętości cieczy za pomocą pomiaru wysokości słupa cieczy w naczyniu o znanej powierzchni podstawy. Obliczając objętość, wykorzystuje się zależność między wysokością a objętością (V = A * h, gdzie V to objętość, A to pole podstawy, a h to wysokość). W praktyce, metody pośrednie są często wykorzystywane w inżynierii, gdzie bezpośrednie pomiary mogą być trudne do realizacji. Dobre praktyki w zakresie pomiarów zalecają stosowanie metod pośrednich, gdyż pozwalają one na uzyskanie wysokiej precyzji i dokładności pomiaru, jednocześnie minimalizując ryzyko błędów wynikających z pomiarów bezpośrednich. Warto również wspomnieć, że w inżynierii metody pośrednie są często stosowane w systemach automatyki, gdzie sensory zbierają dane o różnych parametrach i na ich podstawie określają pożądane wartości wyjściowe.

Pytanie 30

Liczba 364 w systemie dziesiętnym po przekształceniu na kod BCD (ang. Binary-Coded Decimal) przyjmie formę

A. B3C6D4
B. 1101100
C. 16C
D. 0011 0110 0100

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0011 0110 0100 jest poprawna, ponieważ reprezentuje liczbę 364 w systemie BCD, znanym jako kod dziesiętny binarny. W BCD każda cyfra liczby dziesiętnej jest kodowana oddzielnie jako czterobitowa wartość binarna. Dla liczby 364, cyfry 3, 6 i 4 są konwertowane na ich odpowiedniki binarne: 3 to 0011, 6 to 0110, a 4 to 0100. Po złączeniu tych wartości otrzymujemy 0011 0110 0100. Stosowanie kodu BCD jest powszechne w systemach cyfrowych, takich jak w zegarach cyfrowych, kalkulatorach i różnych urządzeniach elektronicznych, gdzie istotne jest bezpośrednie wyświetlanie cyfr dziesiętnych. Dzięki BCD możliwe jest łatwe przetwarzanie i reprezentowanie danych numerycznych w formacie zrozumiałym dla użytkowników. Ponadto, z punktu widzenia standardów, BCD jest często stosowany w interfejsach i protokołach komunikacyjnych, gdzie precyzyjne odwzorowanie cyfr dziesiętnych jest kluczowe.

Pytanie 31

W jakim typie pamięci przechowywane są indywidualne preferencje użytkownika podczas programowania cyfrowego odbiornika satelitarnego z opcją nagrywania wybranego kanału telewizyjnego?

A. EEPROM
B. EPROM
C. ROM
D. RAM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o wyborze EEPROM ( Electrically Erasable Programmable Read-Only Memory) jest prawidłowa, ponieważ ten typ pamięci jest idealny do przechowywania indywidualnych ustawień użytkownika w urządzeniach takich jak cyfrowe tunery satelitarne. EEPROM pozwala na elektroniczne kasowanie i ponowne programowanie danych, co czyni go doskonałym rozwiązaniem do zapisywania ustawień użytkownika, które mogą być zmieniane i aktualizowane bez potrzeby wymiany układu pamięci. W kontekście tunera satelitarnego, użytkownik może zapisać preferencje dotyczące kanałów, harmonogramy nagrywania, czy inne szczegóły, które muszą być zachowane nawet po wyłączeniu urządzenia. Przykładem zastosowania EEPROM jest przechowywanie kodów dostępu oraz danych konfiguracyjnych, co jest zgodne z najlepszymi praktykami w projektowaniu urządzeń elektronicznych, gdzie elastyczność i możliwość aktualizacji oprogramowania są kluczowe. Standardy branżowe zalecają użycie EEPROM do takich celów z uwagi na jego trwałość i niezawodność w przechowywaniu danych, co czyni go preferowanym wyborem w wielu nowoczesnych urządzeniach.

Pytanie 32

W jakim układzie pracuje wzmacniacz operacyjny oznaczony na schemacie literą B?

Ilustracja do pytania
A. Różniczkującym.
B. Nieodwracającym.
C. Całkującym.
D. Odwracającym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzmacniacz operacyjny oznaczony literą B pracuje w konfiguracji nieodwracającej, co oznacza, że sygnał wyjściowy jest równy sygnałowi wejściowemu pomnożonemu przez współczynnik wzmocnienia, który jest większy lub równy jeden. W tej konfiguracji, wejście nieodwracające (plus) jest podłączone do sygnału wejściowego przez rezystor R8, natomiast wejście odwracające (minus) jest połączone z masą za pomocą rezystora R9. Taki układ zapewnia, że sygnał wyjściowy nie zmienia fazy w stosunku do sygnału wejściowego. W praktyce, wzmacniacze operacyjne w konfiguracji nieodwracającej są powszechnie stosowane w aplikacjach takich jak wzmacniacze audio, filtry aktywne oraz systemy pomiarowe, gdzie zachowanie fazy sygnału jest kluczowe. Dzięki wysokiej impedancji wejściowej i niskiej impedancji wyjściowej, wzmacniacze te są w stanie efektywnie współpracować z różnymi źródłami sygnału, co czyni je niezwykle użytecznymi w projektowaniu układów elektronicznych.

Pytanie 33

Zamontowanie na jednym końcu toru transmisyjnego źródła sygnału o stałej i znanej mocy oraz na przeciwnym końcu miernika mocy optycznej pozwala bezpośrednio ustalić

A. miejsce spawu lub zgięcia światłowodu
B. całkowite tłumienie toru optycznego
C. długość światłowodu
D. tłumienie złączy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podłączenie źródła sygnału o stałej i znanej mocy do toru transmisyjnego oraz miernika mocy optycznej po drugiej stronie pozwala na bezpośrednie określenie całkowitego tłumienia toru optycznego. Całkowite tłumienie to suma wszystkich strat sygnału, które mogą wystąpić w torze transmisyjnym, w tym strat spowodowanych przez złącza, spawy oraz straty wewnętrzne samego włókna. Miernik mocy optycznej, po zmierzeniu mocy sygnału na wyjściu, umożliwia obliczenie różnicy między mocą wprowadzaną a mocą mierzona, co daje wartość całkowitego tłumienia. Zrozumienie i pomiar całkowitego tłumienia jest kluczowe w projektowaniu i utrzymaniu systemów światłowodowych, ponieważ wpływa na jakość sygnału oraz zasięg transmisji. W praktyce, technicy często wykorzystują te pomiary do diagnostyki i optymalizacji sieci, a także do monitorowania stanu infrastruktury zgodnie z normami takich organizacji jak IEC czy ITU.

Pytanie 34

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. ferromagnetyka twardego
B. ferromagnetyka miękkiego
C. materiału paramagnetycznego
D. materiału diamagnetycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Głośniki dynamiczne są jednym z najpowszechniej stosowanych typów głośników w przemyśle audio. W ich budowie wykorzystuje się magnesy z ferromagnetyka miękkiego, co pozwala na uzyskanie wysokiej efektywności przetwarzania sygnału elektrycznego na dźwięk. Ferromagnetyk miękki charakteryzuje się zdolnością do łatwego namagnesowania oraz demagnetyzacji. Dzięki temu, zmiany w kierunku prądu elektrycznego w cewce głośnika powodują, że pole magnetyczne jest dynamicznie modyfikowane, co z kolei wpływa na ruch membrany głośnika i generowanie fal dźwiękowych. W praktyce oznacza to lepsze odwzorowanie dźwięku oraz szybszą reakcję na zmiany sygnału audio. W branży audiofilskiej stosuje się takie rozwiązania w celu maksymalizacji jakości dźwięku, co jest zgodne z wysokimi standardami, jakimi są normy AES i IEC dotyczące sprzętu audio. Przykładem zastosowania ferromagnetyków miękkich mogą być głośniki wysokiej klasy, które muszą odtwarzać dźwięk w szerokim zakresie częstotliwości z zachowaniem wysokiej dynamiki oraz niskich zniekształceń.

Pytanie 35

Kto głównie korzysta z instrukcji serwisowych?

A. osoby sprzedające sprzęt
B. osoby użytkujące sprzęt
C. osoby dostarczające sprzęt do klienta
D. osoby naprawiające uszkodzony sprzęt

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.

Pytanie 36

Jakie dwa rezystory połączone w sposób równoległy powinny zostać użyte, aby zastąpić uszkodzony rezystor o parametrach 200 Q / 0,5 W?

A. OMŁT 600 ? / 0,25 W i ML 400 ? / 0,5 W
B. OMŁT 400 ? / 0,5 W i ML 300 ? / 0,5 W
C. OMŁT 800 ? / 0,25 W i OMŁT 400 ? / 0,25 W
D. OMŁT 600 ? / 0,5 W i ML 300 ? / 0,5 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór rezystorów OMŁT 600 ? / 0,5 W oraz ML 300 ? / 0,5 W jest naprawdę dobry. Jak połączysz je równolegle, to dostajesz całkiem fajną wartość rezystancji, około 200 ?, która ładnie zastępuje uszkodzony rezystor. Z moich doświadczeń, przy połączeniu równoległym, liczy się całkowita rezystancja według wzoru: 1/R_total = 1/R1 + 1/R2. Tutaj to wygląda tak: 1/R_total = 1/600 + 1/300, co po przekształceniu daje R_total = 200 ?. Tak naprawdę, ważne jest też, żeby pamiętać o mocy znamionowej tych rezystorów. Połączenie dwóch z mocą 0,5 W jest wystarczające, bo całkowita moc, jaką będą brały, jest poniżej ich maksymalnych wartości. To, moim zdaniem, jest zgodne z zasadami, które mówią o dobieraniu elementów elektronicznych. Dzięki temu nie tylko zapewniasz bezpieczeństwo, ale i niezawodność układu. Co więcej, takie podejście pozwala lepiej zarządzać ciepłem, a to jest kluczowe w elektronice, żeby uniknąć przegrzewania.

Pytanie 37

Częścią odpowiedzialną za przekształcenie energii fal elektromagnetycznych na napięcie w radiowym odbiorniku jest

A. wzmacniacz w.cz.
B. demodulator
C. heterodyna
D. antenna odbiorcza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Antena odbiorcza jest kluczowym elementem w odbiornikach radiowych, ponieważ jej podstawową funkcją jest przekształcanie energii fal elektromagnetycznych w sygnały elektryczne. Dzięki swojej konstrukcji, antena jest w stanie efektywnie zbierać fale radiowe, które następnie są konwertowane na napięcie. W praktyce oznacza to, że anteny są projektowane z myślą o ich rezonansie dla określonych częstotliwości, co pozwala na optymalne odbieranie sygnałów. Na przykład, anteny dipolowe są popularne w zastosowaniach amatorskich, a ich prostota i efektywność sprawiają, że są szeroko stosowane w radiokomunikacji. W branży telekomunikacyjnej istotne jest również przestrzeganie standardów dotyczących efektywności anten, takich jak te określone przez ETSI lub IEEE, co zapewnia wysoką jakość odbioru sygnałów. Zrozumienie roli anteny w systemie radiowym pozwala inżynierom lepiej projektować i integrować różne komponenty, poprawiając jakość i niezawodność komunikacji.

Pytanie 38

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. stację na gorące powietrze
B. stację lutowniczą grzałkową
C. lutownicę transformatorową
D. lutownicę gazową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 39

Jakie narzędzie należy zastosować do przykręcenia kabli w czujniku dymu i ciepła?

A. przecinak
B. klucz nasadowy
C. wkrętak
D. szczypce boczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkrętaka jako narzędzia do przykręcania przewodów w czujce dymu i ciepła jest słuszny, ponieważ wkrętak jest specjalistycznym narzędziem, które zostało zaprojektowane do pracy z wkrętami i śrubami. W przypadku instalacji czujników dymu i ciepła, które są kluczowe dla bezpieczeństwa pożarowego, odpowiednie mocowanie przewodów jest niezbędne. Wkrętak pozwala na precyzyjne i pewne dokręcenie elementów, co eliminuje ryzyko luźnych połączeń, które mogłyby prowadzić do awarii urządzenia. Użycie wkrętaka zgodnie z zaleceniami producenta oraz normami branżowymi, takimi jak normy IEC 60335 dotyczące urządzeń elektrycznych, jest praktyką, która zapewnia bezpieczeństwo i niezawodność działania systemów alarmowych. Ponadto, wkrętaki są dostępne w różnych rozmiarach i typach (np. płaskie, krzyżakowe), co pozwala na ich zastosowanie w wielu różnych konfiguracjach instalacyjnych, co czyni je uniwersalnym narzędziem dla techników i instalatorów.

Pytanie 40

Ilość stabilnych stanów przerzutnika astabilnego wynosi

A. 1
B. 0
C. 2
D. ∞

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerzutnik astabilny, znany również jako multivibrator astabilny, to układ elektroniczny, który nie posiada stanów stabilnych. Jego działanie opiera się na ciągłej zmianie stanów, co oznacza, że jest w stanie nieustannie oscylować pomiędzy dwoma stanami, tworząc w ten sposób sygnał prostokątny. Teoretycznie nie ma 'spoczynkowego' stanu, do którego mógłby przejść, w przeciwieństwie do przerzutnika bistabilnego, który ma dwa stabilne stany. W praktyce przerzutniki astabilne są szeroko wykorzystywane w aplikacjach takich jak generatory sygnałów, migacze LED, oraz w zegarach cyfrowych, gdzie potrzebne jest regularne zmienianie stanu. Zastosowanie przerzutników astabilnych w dziedzinach takich jak automatyka oraz elektronika analogowa jest zgodne z zaleceniami norm IEC 61131-3, co potwierdza ich znaczenie w nowoczesnych systemach elektronicznych.