Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 21 lutego 2026 16:59
  • Data zakończenia: 21 lutego 2026 17:34

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po przeprowadzonym remoncie budynku
B. Nie rzadziej niż co 5 lat
C. Nie rzadziej niż co 10 lat
D. Tylko po wymianie elementów instalacji
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 2

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. drutu nawojowego
B. izolacji żłobkowej
C. pierścienia zwierającego
D. lakieru izolacyjnego
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają nieprawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 5

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody z miedzi beztlenowej
B. Przewody do instalacji wewnętrznych
C. Przewody o podwyższonej odporności na UV
D. Przewody aluminiowe
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 6

Dla urządzenia zasilanego z instalacji elektrycznej trójfazowej o napięciu 400 V, maksymalna moc pobierana wynosi 10 kW. Jaką minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego należy wybrać, zakładając, że odbiorniki mają charakterystyki rezystancyjne i pomijając selektywność zabezpieczeń?

A. 25 A
B. 10 A
C. 16 A
D. 20 A
Dobra robota! Wiesz, że minimalna wartość prądu znamionowego zabezpieczenia przedlicznikowego w instalacji trójfazowej zasilanej napięciem 400 V i maksymalnym poborem mocy 10 kW wynosi 16 A? Obliczenia są oparte na wzorze P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Jak podstawisz wszystkie wartości, to dostaniesz, że I = 10 kW / (√3 * 400 V), co daje około 14,43 A. Jednak musisz pamiętać, że zabezpieczenie powinno mieć standardową wartość, więc bierzemy 16 A, bo to najbliższa wyższa wartość. Zwykle wybór odpowiedniego zabezpieczenia ma ogromne znaczenie dla bezpieczeństwa całej instalacji oraz dla uniknięcia przeciążenia. Pamiętaj, że wartości zabezpieczeń muszą być zgodne z normami PN-IEC 60898. To zapewnia, że urządzenia będą działały prawidłowo i nie będą narażone na uszkodzenia. Takie podejście naprawdę ma sens i pomoże Ci w przyszłości.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który z przyrządów pomiarowych przeznaczony jest do wykonania kompletnych okresowych pomiarów eksploatacyjnych instalacji elektrycznej w budynku mieszkalnym?

Ilustracja do pytania
A. Przyrząd 2.
B. Przyrząd 1.
C. Przyrząd 4.
D. Przyrząd 3.
Przyrząd 4. to miernik wielofunkcyjny, który odgrywa kluczową rolę w wykonywaniu kompleksowych okresowych pomiarów eksploatacyjnych instalacji elektrycznych w budynkach mieszkalnych. Tego rodzaju miernik pozwala na przeprowadzenie wielu istotnych testów, takich jak pomiar rezystancji izolacji, pętli zwarcia oraz ciągłości przewodów ochronnych, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Dokładność i wszechstronność miernika wielofunkcyjnego sprawiają, że jest on zgodny z zaleceniami norm krajowych i międzynarodowych, takich jak norma PN-EN 61557, która dotyczy pomiarów w instalacjach elektrycznych. Użycie tego przyrządu pozwala na wczesne wykrywanie usterek oraz ocenę stanu technicznego instalacji, co przekłada się na dłuższy okres eksploatacji oraz minimalizację ryzyka wystąpienia awarii. Przykładem zastosowania może być kontrola instalacji elektrycznych w domach jednorodzinnych, gdzie regularne pomiary są zalecane co najmniej raz na pięć lat, aby zapewnić zgodność z obowiązującymi przepisami oraz bezpieczeństwo domowników.

Pytanie 9

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Izolacja robocza
B. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
C. Podłączenie obudowy do uziemienia ochronnego
D. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 10

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. konfiguracji zabezpieczeń
B. odczytów aparatury kontrolno-pomiarowej
C. intensywności drgań
D. stanu szczotek
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 11

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. YDYt
B. OMYp
C. YADYn
D. LYg
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 12

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie między przewodem fazowym a neutralnym
B. uszkodzenie w grzałce
C. zwarcie przewodu ochronnego z obudową
D. uszkodzenie w przewodzie fazowym
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 13

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gB
B. aL
C. gR
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 14

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
B. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
C. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
D. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
Wyłączenie silników i transformatorów pracujących przy niewielkim obciążeniu jest kluczowym działaniem, które pozwala na poprawę współczynnika mocy. Współczynnik mocy (PF) odzwierciedla stosunek mocy rzeczywistej do mocy pozornej, a jego optymalizacja ma istotne znaczenie dla efektywności energetycznej. Silniki i transformatory, które działają przy niskich obciążeniach, mogą prowadzić do obniżenia PF, ponieważ wytwarzają dużą ilość mocy biernej. Wyłączenie tych urządzeń, gdy nie są potrzebne, zmniejsza zapotrzebowanie na moc bierną, co w rezultacie poprawia współczynnik mocy całego systemu. W praktyce, przedsiębiorstwa energetyczne często wykorzystują analizatory mocy do monitorowania PF i identyfikowania sprzętu, który można wyłączyć. Poprawa PF może również prowadzić do oszczędności w kosztach energii oraz zmniejszenia obciążeń dla systemu energetycznego, co jest zgodne z najlepszymi praktykami określonymi w normach ISO 50001 dotyczących zarządzania energią.

Pytanie 15

W obwodzie gniazd jednofazowych zabezpieczonym wyłącznikiem nadprądowym CLS6 B20, zmierzona impedancja pętli zwarcia ZL-N wynosi 0,1 Ω. Na podstawie zamieszczonej tabeli dobierz najmniejszy prąd znamionowy poprzedzającego wyłącznik zabezpieczenia topikowego tak, aby była zachowana selektywność zadziałania zabezpieczeń.

Ilustracja do pytania
A. 80 A
B. 63 A
C. 50 A
D. 35 A
Wybór prądu znamionowego 63 A dla zabezpieczenia topikowego w obwodzie gniazd jednofazowych, zabezpieczonym wyłącznikiem nadprądowym CLS6 B20, jest prawidłowy z punktu widzenia zapewnienia selektywności zadziałania zabezpieczeń. Selektywność oznacza, że w przypadku wystąpienia zwarcia, zadziała tylko najbliższe zabezpieczenie, co minimalizuje ryzyko przerwy w zasilaniu dla innych obwodów. Prąd zwarcia, który można obliczyć na podstawie zmierzonej impedancji pętli 0,1 Ω, wynosi 230 A przy standardowym napięciu 230 V, co jest wystarczające do wyzwolenia wyłącznika nadprądowego CLS6 B20, którego charakterystyka wyzwalania to 20 A. Wybierając prąd 63 A dla zabezpieczenia topikowego, zapewniamy, że wyłącznik nadprądowy zareaguje na zwarcie, zanim zadziała zabezpieczenie topikowe, co jest zgodne z zasadami ochrony obwodów elektrycznych. Przykłady zastosowania tej zasady można znaleźć w projektach instalacji elektrycznych, gdzie kluczowe jest zapewnienie bezpieczeństwa oraz minimalizacja skutków awarii. Zgodnie z normą PN-EN 60947-2, dobór odpowiednich zabezpieczeń jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 16

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Automatyczne odłączenie zasilania.
B. Izolacja elektryczna obwodu pojedynczego odbiornika.
C. Usytuowanie części czynnych poza zasięgiem dłoni.
D. Wykorzystanie izolacji podwójnej lub wzmocnionej.
Umieszczenie części czynnych poza zasięgiem ręki stanowi jedną z kluczowych metod zapobiegania porażeniom prądem, szczególnie w instalacjach niskonapięciowych do 1 kV. Ta strategia opiera się na zasadzie, że fizyczne oddalenie od elementów pod napięciem skutecznie eliminują ryzyko przypadkowego kontaktu. Przykładem takiego rozwiązania są obudowy urządzeń elektrycznych, które są projektowane w sposób, aby niebezpieczne części były niedostępne dla użytkownika. Zgodnie z normami, takimi jak PN-EN 61140, wymagane jest, aby części czynne były umieszczone w miejscach, które są trudne do osiągnięcia bez specjalnych narzędzi lub wiedzy. Dodatkowo, ta metoda ma zastosowanie w wielu obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem. W praktyce, umieszczając elementy elektryczne w trudno dostępnych miejscach, minimalizuje się możliwość przypadkowego dotyku, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 17

Wirnik silnika pracującego w układzie pokazanym na schemacie po załączeniu napięcia zasilającego nie obraca się, a z sieci pobierany jest prąd stanowiący kilka procent prądu znamionowego silnika. Przyczyną zaistniałej sytuacji może być

Ilustracja do pytania
A. zwarcie w rezystorze Rr
B. przerwa w uzwojeniu twornika.
C. przerwa w rezystorze Rb
D. zwarcie w uzwojeniu komutacyjnym.
Przerwa w uzwojeniu twornika jest jedną z najczęstszych przyczyn, dla których wirnik silnika nie może się obracać, a pobór prądu jest znacznie obniżony. W systemach silników elektrycznych, takich jak silniki prądu stałego, uzwojenie twornika odgrywa kluczową rolę w generowaniu pola magnetycznego, które inicjuje ruch wirnika. Gdy uzwojenie jest uszkodzone, prąd nie przepływa, co prowadzi do obniżonego poboru energii, co w tym przypadku wynosi kilka procent prądu znamionowego. W praktyce, aby rozwiązać ten problem, należy wykonać dokładną diagnostykę silnika, sprawdzając zarówno wizualnie, jak i za pomocą pomiarów elektrycznych stan uzwojenia. Standardy branżowe, takie jak IEC 60034 dotyczące maszyn elektrycznych, zalecają regularne kontrole i testy, aby zapewnić niezawodność i wydajność silników, co może zapobiec takim awariom. Ponadto, postępując zgodnie z dobrymi praktykami, warto zainwestować w sprzęt do diagnostyki, który pozwoli na wczesne wykrycie uszkodzeń uzwojeń.

Pytanie 18

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 3 MΩ
B. 5 MΩ
C. 1 MΩ
D. 10 MΩ
Minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW, zgodnie z normami obowiązującymi w branży, powinna wynosić co najmniej 5 MΩ. Wartość ta jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności urządzenia. Izolacja uzwojeń odgrywa fundamentalną rolę w ochronie przed zwarciami oraz w minimalizowaniu strat energii. W praktyce, pomiar rezystancji izolacji przeprowadza się regularnie, aby ocenić stan techniczny silnika, a także zidentyfikować potencjalne problemy, takie jak degradacja izolacji spowodowana wilgocią lub starzeniem się materiałów. Przykładowo, w przypadku silników pracujących w trudnych warunkach środowiskowych, takich jak przemysł chemiczny czy metalurgiczny, wartość ta powinna być monitorowana szczególnie pilnie, aby uniknąć niebezpiecznych sytuacji i kosztownych przestojów. Przestrzeganie tych norm to nie tylko kwestia zgodności z przepisami, ale również kluczowy element zarządzania ryzykiem w eksploatacji maszyn.

Pytanie 19

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Czterokrotnie wzrośnie
B. Dwukrotnie wzrośnie
C. Dwukrotnie zmniejszy się
D. Czterokrotnie zmniejszy się
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Przebicie izolacji uzwojenia twornika do obudowy.
B. Przerwa w uzwojeniu twornika.
C. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
D. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to uszkodzenie, które może prowadzić do poważnych problemów w działaniu silnika prądu stałego. W analizowanej tabeli rezystancji, zauważalne różnice w wartościach wskazują na to, że rezystancja między zaciskami E1-E2 jest znacząco wyższa niż w innych punktach. W przypadku zwarcia międzyzwojowego, następuje zmniejszenie efektywnej rezystancji, co prowadzi do przegrzewania się uzwojenia i potencjalnych awarii. W praktyce, aby zdiagnozować to uszkodzenie, ważne jest regularne monitorowanie rezystancji uzwojeń oraz prowadzenie testów izolacji, zgodnie z normami branżowymi. Pomiar rezystancji izolacji powinien być wykonywany w cyklach, aby wykrywać nieprawidłowości zanim doprowadzą do poważnych uszkodzeń. Zastosowanie odpowiednich metod diagnostycznych, takich jak pomiary rezystancji czy testy wysokonapięciowe, pozwala na wczesne wykrycie problemów i ich skuteczne eliminowanie, co jest kluczowe dla zapewnienia długotrwałej efektywności silników prądu stałego.

Pytanie 22

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. SPZ
B. SPD
C. LPL
D. LPS
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 23

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 2 A, Un = 200 V
B. In = 1 A, Un = 200 V
C. In = 1 A, Un = 400 V
D. In = 2 A, Un = 400 V
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 24

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Dwie osoby
B. Cztery osoby
C. Jedna osoba
D. Trzy osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 25

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Transformatorem bezpieczeństwa
B. Autotransformatorem
C. Dzielnikiem napięcia
D. Falownikiem
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 26

W trakcie remontu instalacji zasilającej silnik betoniarki wymieniono wtyk na nowy, przedstawiony na rysunku. Wtyk połączony jest z silnikiem przewodem OWY 4×2,5 mm2. W trakcie wymiany wtyku monter pomylił się i połączył żyłę PE przewodu z biegunem oznaczonym we wtyku symbolem N. Jakie mogą być skutki tej pomyłki?

Ilustracja do pytania
A. Wirnik silnika zmieni kierunek wirowania na przeciwny.
B. Wyłącznik nadprądowy nie zadziała w przypadku zwarcia międzyfazowego w uzwojeniu silnika.
C. Silnik będzie pracował z mocą mniejszą od znamionowej.
D. Wyłącznik RCD zadziała w momencie podłączenia wtyku do gniazda.
Prawidłowa odpowiedź wskazuje, że wyłącznik różnicowoprądowy (RCD) zadziała w momencie podłączenia wtyku do gniazda. Takie działanie RCD jest kluczowe dla bezpieczeństwa w instalacjach elektrycznych. W przypadku pomylenia żyły PE z biegunem neutralnym N, może dojść do sytuacji, w której prąd upływowy pojawi się na żyłach, co RCD wykryje i natychmiast odłączy zasilanie. RCD monitoruje różnicę między prądem wpływającym a wypływającym, a jego zadziałanie ma na celu ochronę przed porażeniem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Standardy, takie jak norma PN-EN 61008, odnoszą się do wymaganych parametrów i działania RCD, które powinny być stosowane w każdym obiekcie budowlanym. Praktycznym zastosowaniem tych urządzeń jest ochrona ludzi i sprzętu przed skutkami awarii izolacji czy błędów w instalacji. Właściwe podłączenie przewodów to kluczowy element zapewniający prawidłowe funkcjonowanie instalacji oraz bezpieczeństwo użytkowników. Zrozumienie działania RCD oraz znaczenia żyły PE w instalacjach elektrycznych to niezbędne elementy wiedzy każdego montera elektryka.

Pytanie 27

Na rysunku przedstawiono fragment instalacji zasilającej odbiornik oraz charakterystyki czasowo-prądowe zastosowanych zabezpieczeń. Jeżeli bezpiecznik topikowy o charakterystyce 1a zastąpi się szybszym bezpiecznikiem o charakterystyce 1b, to w przypadku zwarcia w odbiorniku selektywność działania zabezpieczeń

Ilustracja do pytania
A. będzie zachowana dla prądów zwarciowych mniejszych od Ig.
B. będzie zawsze zachowana.
C. będzie zachowana dla prądów zwarciowych większych od Ig.
D. nie będzie nigdy zachowana.
Selektywność działania zabezpieczeń jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a jej zrozumienie jest niezbędne do uniknięcia poważnych błędów w eksploatacji. Stwierdzenie, że selektywność nigdy nie będzie zachowana, jest nieprawidłowe, ponieważ selektywność może być zapewniona w odpowiednich warunkach. W przypadku zwarcia, działanie zabezpieczeń o różnej charakterystyce może prowadzić do wyłączenia tylko jednego segmentu instalacji, co jest pożądane. Wybór zabezpieczenia o szybszej charakterystyce, jak 1b, nie oznacza automatycznie braku selektywności. Dla prądów zwarciowych mniejszych od Ig, szybsze zabezpieczenie zadziała jako pierwsze, co jest korzystne. Kompletna rezygnacja z selektywności prowadzi do sytuacji, w której w przypadku zwarcia na jednym obwodzie, może dojść do wyłączenia całej instalacji, co jest nieefektywne i niezgodne z normami, takimi jak PN-IEC 60947-2. Często występującym błędem jest mylenie szybkości działania zabezpieczeń z ich selektywnością; zabezpieczenia mogą działać szybko, ale selektywność można zachować, odpowiednio dobierając ich charakterystyki. Dobrze zaprojektowana instalacja uwzględnia różne scenariusze zwarciowe, co pozwala na zachowanie funkcjonalności i bezpieczeństwa systemu elektrycznego.

Pytanie 28

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Megaomomierz
B. Pirometr
C. Anemometr
D. Waromierz
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 29

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się czterokrotnie
Gdy skracasz długość spirali grzejnej w grzejniku elektrycznym o połowę, to ma to spory wpływ na opór elektryczny. Zgodnie z prawem Ohma, im krótszy przewodnik, tym jego opór jest mniejszy. Więc jak długość spirali zmniejszamy, mamy też mniejszy opór, co automatycznie zwiększa naszą moc. Wzór na moc grzejnika to P = U²/R, więc jak R spada o połowę, to P rośnie dwa razy, zakładając, że napięcie U zostaje takie samo. Na przykład, jeśli miałeś grzejnik na 1000 W, to po skróceniu spirali do 2000 W to już nie taka niespodzianka. Tego typu zmiany są istotne, bo prowadzą do lepszej efektywności energetycznej i lepszego używania nowoczesnych materiałów w grzejnikach. Takie rozwiązania pozwalają na szybsze nagrzewanie pomieszczeń, co jest mega praktyczne w codziennym użytkowaniu.

Pytanie 30

Który z wymienionych pomiarów odbiorczych instalacji elektrycznej w układzie TN-S został wykonany za pomocą miernika przedstawionego na rysunku?

Ilustracja do pytania
A. Pomiar rezystancji izolacji przewodów.
B. Pomiar rezystancji uziemienia uziomu odgromowego.
C. Pomiar impedancji pętli zwarcia.
D. Pomiar rezystancji uziemienia uziomu ochronnego.
Pomiar rezystancji izolacji przewodów to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Miernik, który widzisz na rysunku, jest specjalnie stworzony do takich pomiarów, co jest kluczowe, by spełniać normy bezpieczeństwa. Jeśli masz wartości rezystancji izolacji na poziomie przynajmniej 1 MΩ, to daje to pewność, że izolacja jest w dobrym stanie. Regularne wykonywanie takich pomiarów pozwala wychwycić ewentualne problemy, które mogłyby prowadzić do zwarć lub innych uszkodzeń. Jak dla mnie, to warto robić te pomiary przed oddaniem instalacji do użytku, a także systematycznie, zwłaszcza w miejscach, gdzie jest większe ryzyko, jak w przemyśle. Warto dodać, że inspekcje w obiektach użyteczności publicznej powinny być szczególnie starannie przeprowadzane, bo tam niezawodność instalacji jest priorytetem.

Pytanie 31

Symbol graficzny którego z elementów należy dorysować w miejscu przerwania obwodu na przedstawionym schemacie, aby układ pełnił funkcję jednopulsowego prostownika sterowanego?

Ilustracja do pytania
A. Diody Zenera.
B. Diody prostowniczej.
C. Kondensatora.
D. Tyrystora.
W jednopulsowym prostowniku sterowanym kluczowe jest słowo „sterowany”. Oznacza ono, że element prostujący musi umożliwiać regulację chwili rozpoczęcia przewodzenia w każdym półokresie napięcia przemiennego. Zwykła dioda prostownicza przewodzi automatycznie, gdy tylko jest spolaryzowana w kierunku przewodzenia, więc nie daje możliwości zmiany kąta załączenia – mamy wtedy prostownik niesterowany. To typowy błąd myślowy: skoro prostownik, to „na pewno dioda”. W wersji sterowanej potrzebny jest element, który można włączyć sygnałem sterującym, czyli tyrystor lub triak (dla prądu przemiennego dwukierunkowo), ale w tym konkretnym układzie jednopulsowym po stronie wtórnej transformatora stosuje się klasyczny tyrystor jednokierunkowy. Innym częstym skojarzeniem jest kondensator. Kondensator oczywiście bardzo często występuje w prostownikach, ale głównie jako element filtrujący (wygładzanie tętnień) albo element układu snubber do ograniczania przepięć i stromości narastania napięcia du/dt na tyrystorze. Sam kondensator nie pełni jednak funkcji elementu prostującego, nie ma właściwości jednokierunkowego przewodzenia, więc nie może „zastąpić” tyrystora w przerwie obwodu. Pojawia się też odpowiedź z diodą Zenera. Dioda Zenera pełni w prostownikach role pomocnicze: stabilizacja napięcia odniesienia, zabezpieczenie przed przepięciem, czasem ochrona bramki tyrystora. Nie nadaje się do sterowania przepływem dużego prądu obciążenia w pełnym zakresie napięcia wtórnego transformatora, bo jest projektowana na zupełnie inne warunki pracy i ma zupełnie inną charakterystykę prądowo-napięciową. Moim zdaniem warto zapamiętać prostą zasadę: elementem wykonawczym w prostownikach sterowanych jest tyrystor (lub układ tyrystorów), natomiast diody prostownicze, Zenera i kondensatory są dodatkowymi elementami kształtującymi przebiegi, stabilizującymi lub filtrującymi, ale nie zapewniają właściwej „sterowalności” układu.

Pytanie 32

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie międzyzwojowe w uzwojeniu W1 – W2
B. przerwę w uzwojeniu U1 – U2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 33

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 25kΩ
B. 50kΩ
C. 10kΩ
D. 75kΩ
Odpowiedzi, które sugerują wartości rezystancji niższe niż 50 kΩ, mogą wprowadzać w błąd, prowadząc do niewłaściwych wniosków na temat bezpieczeństwa elektrycznego. Na przykład, wartość 25 kΩ może wydawać się wystarczająca, ale w rzeczywistości jest znacznie poniżej zalecanych standardów, co oznacza, że w przypadku wystąpienia problemów z izolacją, prąd może swobodnie przepływać przez ciało osoby pracującej w tym środowisku. Podobnie, wartości takie jak 10 kΩ czy 75 kΩ również nie spełniają kryteriów bezpieczeństwa. W przypadku 10 kΩ, ryzyko porażenia prądem jest znacząco wyższe, a przy 75 kΩ, chociaż jest to lepsza wartość, nadal nie zapewnia wystarczającej ochrony, zwłaszcza przy wyższych napięciach. Podstawowym błędem jest niewłaściwe rozumienie znaczenia rezystancji ochronnej w kontekście dotyku pośredniego oraz nieświadomość konsekwencji związanych z niewłaściwym doborze wartości rezystancji. Każdy instalator lub inżynier powinien dążyć do rozumienia i stosowania norm oraz zaleceń dotyczących bezpieczeństwa, aby zminimalizować ryzyko związane z pracą w potencjalnie niebezpiecznych warunkach.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Realizowanie pracy w zespole
B. Przyłączenie wyłączonej linii do uziemienia
C. Używanie sprzętu izolacyjnego
D. Ogrodzenie terenu, na którym prowadzone są prace
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 36

Określ cele i zasady normalizacji, które decydują o potrzebie stosowania układu TN-S w Polsce.

A. Jednolitość stosowania, zapewnienie ochrony życia i zdrowia, zgodność z zasadami europejskimi.
B. Zapewnienie ochrony życia i zdrowia, ułatwienie przesyłu energii, zgodność z zasadami europejskimi.
C. Jednolitość stosowania, zapewnienie ochrony życia i zdrowia, ułatwienie przesyłu energii.
D. Jednolitość stosowania, ułatwienie przesyłu energii, zgodność z zasadami europejskimi.
Wybrana odpowiedź dobrze oddaje sens normalizacji w kontekście stosowania układu TN‑S w Polsce. Normalizacja ma zapewnić przede wszystkim jednolitość stosowania rozwiązań – czyli żeby w całym kraju instalacje były projektowane i wykonywane według tych samych zasad. Dzięki temu elektryk, który wchodzi na dowolny obiekt, wie czego się spodziewać: osobny przewód ochronny PE, osobny neutralny N, odpowiednie przekroje, kolory żył, sposób uziemienia. To bardzo upraszcza eksploatację, serwis, pomiary i późniejsze modernizacje. Drugi element to zapewnienie ochrony życia i zdrowia. Układ TN‑S, zgodnie z wymaganiami norm PN‑HD 60364 i powiązanych, zwiększa skuteczność ochrony przeciwporażeniowej: mamy oddzielny przewód ochronny, mniejsze ryzyko pojawienia się napięcia na obudowach urządzeń, lepsze warunki do zadziałania zabezpieczeń różnicowoprądowych i nadprądowych. Z mojego doświadczenia widać to zwłaszcza w obiektach z dużą ilością elektroniki i urządzeń IT – TN‑S dużo lepiej znosi zakłócenia i prądy upływu. Trzeci punkt to zgodność z zasadami europejskimi. Polska przyjęła system norm zharmonizowanych z IEC i CENELEC, więc stosowanie TN‑S wpisuje się w europejskie standardy bezpieczeństwa i kompatybilności. To ułatwia też współpracę z zagranicznymi projektantami i producentami urządzeń. W praktyce oznacza to, że nowe instalacje w budynkach mieszkalnych, biurowych czy przemysłowych projektuje się właśnie w układzie TN‑S lub z rozdziałem PEN na PE i N możliwie blisko punktu zasilania, a nie „jak komu wygodnie”. Takie uporządkowanie, moim zdaniem, naprawdę podnosi poziom bezpieczeństwa i kultury technicznej w branży.

Pytanie 37

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. C10
B. B10
C. C20
D. B16
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 38

Którym z przedstawionych na rysunkach wyłączników silnikowych należy zastąpić uszkodzony w układzie zasilania trójfazowego silnika klatkowego o znamionowym prądzie 2,4 A?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wyłącznik silnikowy dobrany do znamionowego prądu silnika jest kluczowym elementem zapewniającym bezpieczeństwo oraz efektywność pracy urządzenia. W przypadku silnika klatkowego o prądzie znamionowym 2,4 A, odpowiednim wyborem jest wyłącznik z rysunku B, który ma zakres regulacji prądu od 2,5 A do 4 A. Taki dobór jest zgodny z zasadą, że wyłącznik musi mieć wartość znamionową wyższą od prądu roboczego silnika, aby zapewnić jego prawidłowe działanie bez ryzyka zadziałania wyłącznika przy normalnych warunkach pracy. W praktyce oznacza to, że wyłącznik nie powinien być zbyt mały, ponieważ mogłoby to prowadzić do częstego zadziałania w sytuacjach, kiedy silnik przy rozruchu generuje chwilowe skoki prądu. Zastosowanie wyłącznika z rysunku B zapewnia również zgodność z normą PN-EN 60947-4-1, która określa wymagania dla urządzeń rozdzielczych i kontrolnych dla silników. Prawidłowy dobór urządzeń zabezpieczających jest niezbędny do uniknięcia uszkodzeń i nieefektywności w pracy maszyn. Dodając do tego, wyłączniki silnikowe są także elementem, który powinien być regularnie kontrolowany w aspekcie jego funkcjonalności i zgodności z parametrami aplikacji.

Pytanie 39

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Codzienne, wskazane w instrukcji eksploatacji
B. Związane z ochroną urządzeń przed zniszczeniem
C. Związane z ochroną zdrowia i życia ludzi
D. Okresowe, określone w planie przeglądów
Odpowiedź wskazująca na konieczność wydania polecenia przy okresowych przeglądach instalacji elektrycznych do 1 kV jest zgodna z obowiązującymi standardami oraz regulacjami prawnymi w zakresie bezpieczeństwa eksploatacji urządzeń elektrycznych. Okresowe przeglądy, wpisane w planie przeglądów, mają na celu weryfikację stanu technicznego instalacji oraz wykrywanie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Wydanie polecenia w tym kontekście jest niezbędne, aby formalnie zlecić te działania odpowiedniemu personelowi, który ma kompetencje oraz uprawnienia do ich przeprowadzenia. Przykładem zastosowania może być sytuacja, w której po przeprowadzeniu przeglądu instalacji wykryto nieprawidłowości, co wymaga szybkiego podjęcia działań naprawczych w celu uniknięcia awarii. Warto również podkreślić, że systematyczne przeglądy są rekomendowane przez Polskie Normy oraz przepisy prawa budowlanego, co potwierdza ich istotność w kontekście bezpieczeństwa elektrycznego.

Pytanie 40

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Ocena stanu pierścieni ślizgowych i komutatora
B. Weryfikacja stabilności połączeń elementów napędowych
C. Kontrola stanu szczotek oraz szczotkotrzymaczy
D. Sprawdzenie stopnia nagrzewania obudowy
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.