Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 9 grudnia 2025 14:26
  • Data zakończenia: 9 grudnia 2025 14:47

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego typu kabel wykorzystuje się do przesyłania cyfrowych sygnałów audio zgodnie ze standardem TOSLINK?

A. Kabel koncentryczny
B. Kabel skrętkowy
C. Kabel symetryczny
D. Kabel światłowodowy
Wybór kabli koncentrycznych, symetrycznych czy skrętkowych sugeruje pewne nieporozumienia dotyczące technologii transmisji sygnału audio. Kable koncentryczne są wykorzystywane w wielu zastosowaniach, takich jak telewizja kablowa czy sieci komputerowe, jednak do przesyłania sygnałów cyfrowych audio w standardzie TOSLINK się nie nadają. Zastosowanie kabla koncentrycznego w kontekście TOSLINK mogłoby prowadzić do degradacji sygnału, ponieważ nie jest przystosowany do przesyłania danych w formacie optycznym. Kable symetryczne, na przykład XLR, stosowane są głównie w profesjonalnych systemach audio, ale również nie mają zastosowania w standardzie TOSLINK, który wymaga specjalistycznych kabli światłowodowych, aby zrealizować właściwe przesyłanie sygnału. Skrętka, z kolei, jest powszechnie używana w sieciach komputerowych, ale w przypadku przesyłania sygnałów audio w technologii TOSLINK również jest niewłaściwym wyborem, ponieważ nie obsługuje optycznego formatu transmisji. Każda z tych pomyłek wynika z braku zrozumienia zasad działania różnorodnych typów kabli i ich zastosowań w kontekście przesyłania sygnałów audio, co jest kluczowe dla osiągnięcia wysokiej jakości dźwięku.

Pytanie 2

W przypadku, gdy obraz na ekranie LCD laptopa jest słaby, mało widoczny, dostrzegalny jedynie po podświetleniu lub pod kątem, a obraz na zewnętrznym monitorze działa poprawnie, to przyczyną tej awarii z pewnością nie jest uszkodzenie

A. dysku twardego
B. inwertera
C. świetlówki matrycy
D. taśmy matrycy
Odpowiedź wskazująca na dysk twardy jako przyczynę problemu z ciemnym obrazem na matrycy LCD notebooka jest prawidłowa, ponieważ dysk twardy nie ma bezpośredniego wpływu na wyświetlanie obrazu na ekranie. Problem z widocznością obrazu najczęściej związany jest z elementami odpowiedzialnymi za podświetlenie matrycy, takimi jak świetlówki, inwertery czy taśmy matrycy. Dysk twardy jest odpowiedzialny za przechowywanie danych i ich przetwarzanie, ale nie wpływa na sygnał wideo ani na jasność obrazu. W praktyce, aby zdiagnozować problem, można wykonać testy, takie jak podłączenie zewnętrznego monitora, co potwierdza, że karta graficzna oraz system operacyjny działają prawidłowo, a problem jest ograniczony do matrycy laptopa. Warto również zaznaczyć, że standardy diagnostyki sprzętowej zalecają rozpoczęcie od sprawdzenia komponentów związanych z wyświetlaniem, zanim podejmie się próby oceny dysku twardego.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Aby dwukrotnie zmniejszyć wzmocnienie członu inercyjnego pierwszego rzędu z transmitancją G(s) = k / (1 + sT), konieczne jest

A. zmniejszyć wartość T dwukrotnie
B. podwoić wartość k
C. podwoić wartość T
D. zmniejszyć wartość k dwukrotnie
Podnoszenie wzmocnienia k lub zwiększanie czasu T nie jest odpowiednim rozwiązaniem w celu osiągnięcia oczekiwanego zmniejszenia wzmocnienia systemu. Zwiększenie T prowadzi do wydłużenia czasu reakcji systemu, co może skutkować opóźnieniem w odpowiedzi i zubożeniem jego dynamiki. W kontekście systemów sterowania, wydłużenie czasu T może spowodować, że system stanie się mniej responsywny, a jego wzmocnienie nie ulegnie zmniejszeniu, co jest sprzeczne z zamierzonym efektem. Zwiększanie k, z drugiej strony, skutkuje podwyższeniem wzmocnienia, co może prowadzić do niestabilności systemu i nadmiernych oscylacji, co jest niepożądane. W praktykach inżynieryjnych, dąży się do uzyskania stabilnych wyników i odpowiedzi systemu bez nadmiernych oscylacji. Błędem myślowym jest założenie, że zwiększanie wzmocnienia lub wydłużanie czasu reakcji poprawi stabilność. Takie podejście może prowadzić do jeszcze większych problemów, zwłaszcza w systemach regulacji, gdzie kluczową rolę odgrywa odpowiednie dostosowanie parametrów w celu zapewnienia pożądanej charakterystyki odpowiedzi. Właściwe zrozumienie wpływu tych parametrów na dynamikę systemu jest niezbędne dla zapewnienia efektywności i stabilności w zastosowaniach inżynieryjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie IP może mieć drukarka sieciowa z wbudowanym interfejsem Ethernet (np. BROTHER HL-4040CN) działająca w prywatnej klasie C jako serwer druku, przy domyślnej masce podsieci 255.255.255.0?

A. 198.162.1.1
B. 192.168.255.1
C. 192.168.0.255
D. 192.168.0.0
Odpowiedź 192.168.255.1 jest poprawna, ponieważ mieści się w zakresie adresów IP przeznaczonych dla prywatnych sieci klasy C. Klasa C obejmuje adresy od 192.168.0.0 do 192.168.255.255, a domyślna maska podsieci 255.255.255.0 oznacza, że pierwsze trzy oktety adresu definiują sieć, a ostatni oktet służy do identyfikacji urządzeń w tej sieci. Adres 192.168.255.1 to adres, który można przydzielić do urządzenia w sieci 192.168.255.0, co czyni go idealnym dla drukarki sieciowej. Tego typu konfiguracja jest powszechnie stosowana w domowych i biurowych sieciach lokalnych, gdzie drukarki są udostępniane wielu użytkownikom. Warto również zauważyć, że adres 192.168.255.255 jest adresem rozgłoszeniowym dla tej podsieci, a 192.168.255.0 to adres identyfikujący samą sieć. Dlatego adres 192.168.255.1 jest w pełni funkcjonalny i zgodny z dobrymi praktykami zarządzania adresacją IP.

Pytanie 8

Aby zweryfikować prawidłowe funkcjonowanie piezoelektrycznego przetwornika tensometrycznego w wadze elektronicznej, należy zastosować

A. amperomierz
B. omomierz
C. galwanometr
D. watomierz
Galwanometr jest przyrządem pomiarowym, który służy do wykrywania i pomiaru prądu elektrycznego, nawet w bardzo małych wartościach. W kontekście piezoelektrycznego przetwornika tensometrycznego, galwanometr jest idealnym narzędziem do oceny jego prawidłowego działania, ponieważ pozwala na dokładne pomiary zmian prądu, które są generowane w wyniku deformacji mechanicznej. Piezoelektryczne przetworniki tensometryczne są wykorzystywane w różnych aplikacjach, w tym w wagach elektronicznych, gdzie precyzyjne pomiary są kluczowe. Dobry przykład zastosowania galwanometru w praktyce to kalibracja wagi elektronicznej, gdzie przy pomocy tego urządzenia można określić, czy przetwornik działa w odpowiednich granicach tolerancji. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie dokładności pomiarów, co czyni galwanometr nieocenionym narzędziem w procesie zapewnienia jakości.

Pytanie 9

Wskaź zestaw narzędzi kontrolnych i pomiarowych do określenia indukcyjności cewki przy użyciu metody rezonansowej?

A. Generator, amperomierz, wzorcowy rezystor
B. Zasilacz, woltomierz, wzorcowa pojemność
C. Zasilacz, watomierz, wzorcowy rezystor
D. Generator, amperomierz, wzorcowa pojemność
Zestaw przyrządów, który nie obejmuje generatora, amperomierza i pojemności wzorcowej, nie jest odpowiedni do pomiaru indukcyjności cewki metodą rezonansową. W przypadku zestawu z zasilaczem, watomierzem i rezystorem wzorcowym, podejście to jest niewłaściwe, ponieważ nie umożliwia ono wytworzenia odpowiednich warunków rezonansowych. Zasilacz dostarcza napięcie, ale nie generuje sygnału o zmiennej częstotliwości, co jest niezbędne do uzyskania rezonansu. Watomierz służy do pomiaru mocy, co nie jest bezpośrednio związane z wyznaczaniem indukcyjności. Podobnie, rezystor wzorcowy nie ma zastosowania w pomiarze indukcyjności cewki w tej metodzie. Odpowiedzi zawierające woltomierz oraz pojemność wzorcową również są błędne, gdyż pomimo że mogą dostarczać użytecznych informacji o napięciu i pojemności, nie dostarczają kluczowego elementu, jakim jest generator sygnału o zmiennej częstotliwości. Typowym błędem myślowym jest założenie, że każdy przyrząd pomiarowy może być wykorzystany do dowolnego pomiaru, co prowadzi do nieprawidłowych wniosków. Aby skutecznie określić indukcyjność cewki, należy zrozumieć, że właściwy dobór przyrządów pomiarowych jest fundamentem dla uzyskania dokładnych i wiarygodnych wyników. Bez generatora w obwodzie nie można uzyskać odpowiednich warunków rezonansowych, co jest kluczowe dla tej metody pomiarowej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7915
B. LM7908
C. LM7812
D. LM7805
Wybór stabilizatora LM7805 do zasilania układów TTL jest uzasadniony przede wszystkim jego parametrami technicznymi, które są zgodne z wymaganiami tych układów. LM7805 to liniowy stabilizator napięcia, który dostarcza stabilne napięcie 5V, co jest standardowym napięciem zasilania dla układów TTL. Układy te, znane z niskiego poboru prądu i dużej szybkości działania, wymagają dostarczania precyzyjnego napięcia, co zapewnia LM7805. Jego zastosowanie w praktyce jest szerokie, od prostych projektów edukacyjnych po bardziej zaawansowane aplikacje w elektronice użytkowej. Warto również wspomnieć, że LM7805 charakteryzuje się dobrymi właściwościami termicznymi oraz możliwością pracy w szerszym zakresie temperatur, co czyni go odpowiednim wyborem w różnych warunkach. W kontekście dobrych praktyk, korzystanie z tego stabilizatora zgodnie z jego specyfikacją zapewnia wysoką niezawodność i stabilność działania układów TTL, co jest kluczowe w projektach elektronicznych.

Pytanie 12

W przekształtniku DC/DC typu "boost" (układ podwyższający napięcie stałe), pracującym przy częstotliwości f = 1 kHz, w którym wartość średnia napięcia wyjściowego UO = 20 V, a napięcia wejściowego UD = 10 V, to czas impulsu ti powinien wynosić

Ilustracja do pytania
A. 500 µs
B. 750 µs
C. 250 µs
D. 1 000 µs
Odpowiedź 500 µs jest jak najbardziej na miejscu. Czas impulsu t_i w przekształtnikach DC/DC typu "boost" można łatwo obliczyć, korzystając z odpowiednich wzorów. W tym przypadku, przy częstotliwości f = 1 kHz oraz napięciach wejściowym U_D = 10 V i wyjściowym U_O = 20 V, wychodzi, że czas impulsu to t_i = D/f. D jest tu współczynnikiem wypełnienia, a dla tych wartości D to 0.5, co daje nam 500 µs. To jest ważna sprawa, bo dobrze dobrany czas impulsu wpływa na stabilność i efektywność przekształtnika. W branży mówi się o tym sporo, a standardy jak IEEE 1680.1 podkreślają, jak istotne jest, by wszystko było dobrze zgrane, żeby uniknąć strat energii i zapewnić bezpieczeństwo urządzeń.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie jest standardowe rozwiązanie transmisji DVB w systemach kablowych?

A. DVB-C
B. DVB-T
C. DVB-S
D. DVB-H
DVB-C, czyli Digital Video Broadcasting - Cable, jest standardem transmisji używanym w sieciach kablowych do przesyłania sygnałów telewizyjnych i multimedialnych. W przeciwieństwie do innych standardów, takich jak DVB-T, który jest przeznaczony do transmisji naziemnej, czy DVB-S, który służy do odbioru sygnału satelitarnego, DVB-C jest zoptymalizowane dla kablowych sieci telekomunikacyjnych. Standard ten pozwala na efektywne zarządzanie pasmem oraz zapewnia wysoką jakość sygnału, co jest szczególnie istotne w kontekście transmisji wideo wysokiej rozdzielczości. W praktyce, zastosowanie DVB-C jest widoczne w kablowych telewizjach, które oferują wiele kanałów w różnych rozdzielczościach, a także w usługach dostępu do internetu przez kable. Dzięki zastosowaniu modulacji QAM (Quadrature Amplitude Modulation), DVB-C umożliwia przesyłanie dużej ilości danych, co przekłada się na możliwość oferowania szerokiego wachlarza usług dla użytkowników. W branży telekomunikacyjnej DVB-C uważany jest za standard wysokiej jakości, który wspiera rozwój nowoczesnych rozwiązań transmisyjnych.

Pytanie 15

Jaką rolę pełni program debugger?

A. Przekształca funkcję logiczną w układ funkcjonalny
B. Umożliwia uruchomienie programu i identyfikację błędów w nim
C. Konwertuje kod napisany w jednym języku na odpowiednik w innym języku
D. Generuje kod maszynowy na podstawie kodu źródłowego
Debugger to narzędzie, które odgrywa kluczową rolę w procesie tworzenia oprogramowania, umożliwiając programistom uruchamianie ich kodu w kontrolowanych warunkach oraz wykrywanie błędów. Główne funkcje debuggera obejmują możliwość zatrzymywania wykonania programu w określonych punktach (tzw. breakpointy), co pozwala na analizę stanu zmiennych oraz śledzenie przepływu wykonywania programu. Dzięki temu programiści mogą zidentyfikować, dlaczego dany fragment kodu nie działa zgodnie z oczekiwaniami. Na przykład, jeśli program nie zwraca oczekiwanego wyniku, debugger umożliwia analizę wartości zmiennych w momencie przerywania działania program, co jest nieocenionym wsparciem w diagnozowaniu problemów. W praktyce, używanie debuggera jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które zalecają testowanie oraz poprawianie kodu w iteracyjnym cyklu życia projektu. Dodatkowo, nowoczesne IDE (Integrated Development Environment) często integrują funkcje debugowania, co ułatwia programistom efektywne usuwanie błędów na wczesnych etapach rozwoju oprogramowania.

Pytanie 16

Panel tylni płyty komputerowej GIGABYTE model GA-K8N51GMF umożliwia podłączenie wielu urządzeń zewnętrznych. Oznaczone gniazda "a", "b", "c", "d", to kolejno:

Ilustracja do pytania
A. PS/2, LPT, RS-232, VGA.
B. RS-232, LPT, DVI, VGA.
C. RS-232, RS-485, VGA, LPT.
D. PS/2, RS-232, RS-485, VGA.
Poprawna odpowiedź to PS/2, LPT, RS-232, VGA. Gniazdo PS/2 jest klasycznym portem, który od lat służy do podłączania urządzeń wskazujących, takich jak klawiatury i myszy. Standard ten, mimo że ustępuje miejsca nowocześniejszym interfejsom USB, wciąż bywa stosowany w niektórych systemach ze względu na swoją niezawodność. Port LPT, znany również jako port równoległy, był powszechnie wykorzystywany do podłączania drukarek, zwłaszcza w starszych urządzeniach. W czasach, gdy drukowanie z komputera odbywało się głównie za pomocą połączeń równoległych, port LPT był standardem branżowym. Gniazdo RS-232, które jest portem szeregowym, ma swoje zastosowanie w komunikacji z urządzeniami takimi jak modemy i niektóre starsze urządzenia zewnętrzne. VGA to z kolei standardowy interfejs dla monitorów, który pozwala na przesyłanie sygnału wideo. Pomimo rozwoju technologii, VGA wciąż znajduje swoje miejsce w wielu aplikacjach i urządzeniach. Zrozumienie tych portów i ich zastosowań jest kluczowe dla każdego specjalisty w dziedzinie technologii komputerowej.

Pytanie 17

Ilustracja przedstawia przerzutnik JK. Wejście C jest wyzwalane

Ilustracja do pytania
A. zboczem opadającym.
B. stanem niskim.
C. zboczem narastającym.
D. stanem wysokim.
Odpowiedzi wskazujące na "stanem wysokim" oraz "stanem niskim" są błędne, ponieważ nie odnoszą się do właściwego sposobu wyzwalania przerzutnika JK. Przerzutniki tego typu nie reagują na poziomy sygnału, ale na zmiany sygnałów, co jest kluczowe w ich działaniu. Zbocze opadające oznacza, że przerzutnik zmienia stan [J] lub [K] w momencie, gdy sygnał zegarowy przechodzi z wysokiego na niski, a nie gdy osiąga stan wysoki lub niski. Odpowiedzi "zboczem narastającym" także są niewłaściwe, ponieważ sugerują, że przerzutnik reaguje na zmiany od stanu niskiego do wysokiego, co jest charakterystyczne dla przerzutników wyzwalanych zboczem narastającym. Tego rodzaju błędne zrozumienie może wynikać z mylnego przeświadczenia, że każdy przerzutnik działa na tej samej zasadzie, co nie jest prawdą w kontekście przerzutników synchronicznych. Kluczowym elementem w projektowaniu układów cyfrowych z użyciem przerzutników JK jest zrozumienie, jak i kiedy zachodzi zmiana stanu, co jest fundamentalną koncepcją w elektronice cyfrowej. Dlatego ważne jest, aby w praktyce projektowej dokładnie analizować oznaczenia i zachowanie przerzutników, aby uniknąć problemów z synchronizacją oraz nieprawidłowym działaniem całego układu.

Pytanie 18

Którym symbolem graficznym, w sprzęcie elektronicznym powszechnego użytku, oznacza się uziemienie bezszumowe?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Niepoprawne odpowiedzi mogą wynikać z nieporozumienia dotyczącego symboliki stosowanej w sprzęcie elektronicznym. Wiele osób może mylić oznaczenia uziemienia z innymi symbolami graficznymi, które reprezentują różne funkcje, takie jak zasilanie czy wyłączniki. Oznaczenia A, B i C mogą przypominać symbole związane z innymi aspektami bezpieczeństwa elektrycznego, co może prowadzić do błędnych interpretacji. Przykładowo, symbol uziemienia zawiera trzy poziome linie, które wskazują na stabilność, oraz linię pionową, która symbolizuje połączenie z ziemią. Osoby, które udzieliły błędnej odpowiedzi, mogą także nie być świadome znaczenia bezszumowego uziemienia, które jest kluczowe w kontekście ochrony przed zakłóceniami. Takie zakłócenia mogą pochodzić z różnych źródeł, w tym z urządzeń radiowych, telefonów komórkowych czy nawet z sieci elektrycznej. W kontekście projektowania systemów audio i wideo, brak uziemienia bezszumowego może prowadzić do znacznego pogorszenia jakości dźwięku i obrazu, co jest nieakceptowalne w profesjonalnych zastosowaniach. Dlatego kluczowe jest zrozumienie, że odpowiednie oznaczenie uziemienia ma praktyczne zastosowanie w każdym elemencie infrastruktury elektronicznej, a jego pominięcie może skutkować poważnymi konsekwencjami zarówno dla sprzętu, jak i użytkowników.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze
A. J1-wyłączona, J2-wyłączona, J3-wyłączona.
B. J1-włączona, J2-wyłączona, J3-wyłączona.
C. J1-wyłączona, J2-włączona, J3-włączona.
D. J1-wyłączona, J2-wyłączona, J3-włączona.
Aby włączyć wysoką ochronę, diodę LED i detekcję ruchu pojedynczym sygnałem, zworki muszą być ustawione zgodnie z określonymi wymaganiami. Zworka J1 musi być wyłączona, co oznacza, że czujka będzie działać w trybie wysokiej ochrony. W kontekście standardów ochrony, tryb wysoki zapewnia większą czułość detekcji, co jest kluczowe w środowiskach o podwyższonej konieczności zabezpieczeń. Zworka J2 powinna być włączona, co aktywuje diodę LED, informując użytkownika o stanie czujki. Zworka J3, również włączona, umożliwia detekcję ruchu na pojedynczym sygnale, co jest istotne w systemach alarmowych, gdzie szybka reagowanie na incydent jest kluczowe. Ustawienia te są zgodne z najlepszymi praktykami w zakresie instalacji systemów zabezpieczeń i zapewniają optymalną funkcjonalność urządzenia. Należy pamiętać, że niewłaściwe ustawienie zworek może skutkować obniżeniem efektywności detekcji, co w kontekście ochrony mienia może prowadzić do poważnych konsekwencji.

Pytanie 22

Element, którego napięcie na wyjściu jest uzależnione od porównania dwóch napięć na wejściu, to

A. układ różniczkujący.
B. sumator.
C. układ całkujący.
D. komparator.
Komparator to kluczowy element w elektronice analogowej, który pozwala na porównywanie dwóch napięć wejściowych. Działa on na zasadzie analizy, które z napięć jest wyższe, co prowadzi do zmian stanu wyjściowego. W praktyce komparatory są szeroko stosowane w systemach automatyki, takich jak kontrola poziomu cieczy, gdzie mogą szybko zareagować na zmiany napięcia sygnalizujące zmiany w poziomie cieczy. Dodatkowo komparatory są fundamentem w konstrukcji układów takich jak odbiorniki sygnałów, przetworniki analogowo-cyfrowe oraz w systemach zabezpieczeń. Warto zwrócić uwagę, że komparator działa niezależnie od wartości napięć, koncentrując się jedynie na relacji między nimi, co czyni go niezwykle wszechstronnym narzędziem w inżynierii. W kontekście standardów, komparatory są często używane w układach zgodnych z normami przemysłowymi, co zapewnia ich niezawodność i efektywność w różnych aplikacjach.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Wtyk typu RJ-45 jest przedstawiony na rysunku

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wtyk RJ-45 jest kluczowym elementem w budowie sieci komputerowych, wykorzystywanym przede wszystkim w lokalnych sieciach komputerowych (LAN). Jego charakterystyczną cechą jest obecność ośmiu pinów, co pozwala na przesyłanie danych w standardzie Ethernet, w tym 10BASE-T, 100BASE-TX oraz 1000BASE-T. Wtyki RJ-45 są zgodne z normą TIA/EIA-568, która określa standardy dla kabli i złącz w sieciach telekomunikacyjnych. W praktyce wtyki te są powszechnie stosowane do łączenia komputerów z routerami, switchami oraz innymi urządzeniami sieciowymi, co umożliwia efektywną komunikację. Dodatkowo, dzięki zastosowaniu wtyków RJ-45, możliwe jest realizowanie połączeń w różnych topologiach sieciowych, co wpływa na elastyczność i skalowalność sieci. Wiedza na temat wtyków RJ-45 jest niezbędna dla specjalistów IT oraz techników zajmujących się instalacją i konserwacją sieci, ponieważ pozwala na poprawne wykonanie połączeń oraz diagnozowanie ewentualnych problemów z łącznością.

Pytanie 25

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. minimalizacja wpływu tętnień napięcia zasilającego.
B. odseparowanie składowej stałej napięcia wyjściowego.
C. ograniczenie od góry pasma przenoszenia układu.
D. realizacja pętli ujemnego sprzężenia zwrotnego.
Trzeba przyznać, że zrozumienie, co robi kondensator w układzie wspólnego emitera, jest naprawdę ważne, jeśli chcesz dobrze projektować obwody. Mówić, że kondensator odpowiada za pętlę sprzężenia zwrotnego, to lekko się myli. Sprzężenie zwrotne w tym układzie robi się głównie za pomocą rezystorów, które wpływają na różne parametry wzmacniacza. No i jeszcze ta sprawa z tętnieniami napięcia zasilającego – kondensator C nie jest tu głównym aktorem. Tętnienia powinny być eliminowane raczej przez porządne filtrowanie na zasilaniu. Co do ograniczenia pasma przenoszenia, to też nie jest zadanie kondensatora, bo na to wpływają inne elementy, jak układ sprzężenia zwrotnego czy pojemności pasożytnicze. Często spotykam się z pomyłkami na ten temat, co wprowadza w błąd i może przeszkadzać w dobrym projektowaniu. Dlatego ważne jest, żeby zrozumieć, jak powinny działać kondensatory i jakie mają znaczenie w układach elektronicznych.

Pytanie 26

Rodzaj metody pomiarowej, w której wartość mierzonej wielkości uzyskuje się na podstawie pomiarów innych, powiązanych z nią wielkości, zgodnie z zależnością funkcyjną teoretyczną lub doświadczalną, to metoda

A. bezwzględna
B. pośrednia
C. względna
D. bezpośrednia
Pojęcie metod pomiarowych jest złożone i może prowadzić do nieporozumień, szczególnie w kontekście różnych typów metod. Propozycja zastosowania metody bezwzględnej odnosi się do pomiarów, które są dokonywane bezpośrednio na badanej wielkości, co nie jest zgodne z treścią pytania. Metoda ta polega na bezpośrednim określeniu wartości wielkości, bez potrzeby odniesienia do innych parametrów, co czyni ją niewłaściwą w kontekście opisywanego zagadnienia. W przypadku metody względnej, pomiar także polega na odniesieniu do innej, lecz niekoniecznie stosuje się przy tym funkcje matematyczne, które określają tę zależność. Metoda bezpośrednia, jak sama nazwa wskazuje, odnosi się do sytuacji, w której wartość mierzona jest określane bezpośrednio, na przykład poprzez użycie tradycyjnego przyrządu pomiarowego, co kontrastuje z ideą metody pośredniej, która wymaga więcej kroków w celu uzyskania finalnego wyniku. Błędem jest mylenie tych koncepcji, co może wynikać z nieprecyzyjnego zrozumienia podstawowych zasad pomiarów. Również, uznawanie metod bezpośrednich i względnych jako takich, które mogą być stosowane zamiennie z metodą pośrednią, prowadzi do dezinformacji i zniekształcenia zrozumienia procesów pomiarowych. W praktyce, ważne jest, aby rozróżniać te metody, aby stosować je w odpowiednich kontekstach oraz zapewnić dokładność i wiarygodność wyników pomiarów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Urządzenie, które sumuje sygnały o odmiennych częstotliwościach (pochodzące z różnych MUX’ów) z dwóch lub więcej anten odbiorczych, aby przesłać je do odbiornika przy pomocy jednego przewodu, to

A. zwrotnica antenowa
B. konwerter
C. multiswitch
D. głowica antenowa
Wybór multiswitcha jako odpowiedzi na pytanie o urządzeniu sumującym sygnały z różnych częstotliwości prowadzi do nieporozumienia związane z jego rolą w systemach antenowych. Multiswitch jest urządzeniem typowo stosowanym w instalacjach satelitarnych, które rozdziela sygnał z jednej anteny satelitarnej do wielu odbiorników. Jego funkcja nie obejmuje jednak łączenia sygnałów z różnych anten, co jest kluczowym aspektem dla zwrotnicy antenowej. Konwersja sygnału z jednego źródła na wiele wyjść nie odpowiada zadaniu sumowania sygnałów z różnych źródeł, co jest głównym celem zwrotnicy. Co więcej, nie można porównywać głowicy antenowej z zwrotnicą, gdyż głowica pełni zupełnie inną rolę jako element wizyjny odbierający i przetwarzający sygnał kanałowy. Natomiast konwerter, mimo że zmienia częstotliwość sygnału, nie dostarcza rozwiązania do sumowania sygnałów z wielu anten. Zrozumienie tych różnic jest kluczowe dla właściwego doboru urządzeń w instalacjach antenowych. Często osoby uczące się o systemach telewizyjnych mylą funkcje tych urządzeń, co prowadzi do niewłaściwego montażu i wyboru sprzętu, a w konsekwencji do obniżonej jakości odbioru sygnału. Dlatego istotne jest, aby mieć świadomość, jakie urządzenie jest odpowiednie do danego zadania i jakie są jego możliwości w kontekście systemu antenowego.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Rysunki przedstawiają czujkę

Ilustracja do pytania
A. dymu i ciepła.
B. stłuczenia szyby.
C. ruchu.
D. zalania.
Czujnik zalania, który został przedstawiony na zdjęciu, jest kluczowym elementem systemów zabezpieczeń i zarządzania budynkiem. Jego głównym zadaniem jest wykrywanie obecności wody w miejscach szczególnie narażonych na zalanie, takich jak piwnice, łazienki czy kuchnie. W momencie, gdy czujnik wykryje wodę, uruchamia alarm, co pozwala na szybkie działanie i minimalizację potencjalnych strat. Zastosowanie czujników zalania jest szczególnie istotne w budynkach komercyjnych, gdzie konsekwencje zalania mogą prowadzić do poważnych uszkodzeń mienia oraz przestojów w działalności. Dobrą praktyką jest integracja czujników zalania z systemami zarządzania budynkiem (BMS), co umożliwia centralne monitorowanie i efektywne zarządzanie sytuacjami kryzysowymi. Warto również pamiętać o regularnym serwisowaniu czujników, aby zapewnić ich niezawodność i dokładność działania, zgodnie z normami branżowymi.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby ocenić efektywność energetyczną przetwornicy DC/DC, należy użyć

A. amperomierza
B. dwóch watomierzy
C. dwóch woltomierzy
D. omomierza
W kontekście pomiaru sprawności energetycznej przetwornicy DC/DC, wykorzystanie omomierza jest niewłaściwe, ponieważ jego podstawową funkcją jest pomiar oporu elektrycznego, a nie mocy czy energii. Omomierz nie dostarcza informacji o prądzie i napięciu, które są niezbędne do obliczenia sprawności przetwornicy. Z kolei amperomierz, chociaż mierzy prąd, również nie dostarcza pełnego obrazu, ponieważ brakuje mu pomiaru napięcia, co uniemożliwia obliczenie mocy. Pomiar tylko jednego z tych parametrów prowadzi do niekompletnych i nieprecyzyjnych wyników. Użycie dwóch woltomierzy również nie jest odpowiednie, ponieważ chociaż pozwala na zmierzenie napięcia, nie uwzględnia wartości prądu, co jest niezbędne do obliczenia mocy. Typowym błędem jest myślenie, że można oszacować sprawność poprzez pomiar tylko jednego z parametrów – napięcia lub prądu. W rzeczywistości oba te parametry są komplementarne i niezbędne do prawidłowego określenia wydajności energetycznej systemu. Niezrozumienie tego konceptu może prowadzić do poważnych błędów w ocenie efektywności systemów zasilania, co może mieć negatywne konsekwencje w praktycznych zastosowaniach, takich jak systemy zarządzania energią czy projekty inżynieryjne związane z odnawialnymi źródłami energii.

Pytanie 33

W układzie filtru górnoprzepustowego pulsację graniczną ωgr wyznacza się korzystając z warunku R=Xc. Dobierz wartość rezystancji R aby pulsacja graniczna była równa 106 rad/s.

Ilustracja do pytania
A. 1 MΩ
B. 100 kΩ
C. 10 Ω
D. 1 kΩ
Wybór błędnej wartości rezystancji R w kontekście filtru górnoprzepustowego może prowadzić do nieprawidłowego funkcjonowania układu, co w praktyce objawia się brakiem osiągnięcia pulsacji granicznej ωgr na wymaganym poziomie. Na przykład, wybierając 10 Ω, 100 kΩ lub 1 MΩ, nie spełnia się warunku R = Xc, co skutkuje złym dopasowaniem impedancji. Wartości te nie tylko nie są zgodne z obliczeniami, ale także skutkują znacznym przesunięciem charakterystyki częstotliwościowej filtrów. Typowe błędy myślowe, które mogą prowadzić do takich nieprawidłowych wyborów, to przede wszystkim brak zrozumienia zależności między reaktancją kondensatora a rezystancją w układzie górnoprzepustowym. Warto zauważyć, że przy zbyt niskiej rezystancji, filtr może przepuszczać zbyt wiele niskoczęstotliwościowych sygnałów, co negatywnie wpływa na jakość sygnału. Z kolei zbyt wysoka rezystancja może prowadzić do osłabienia sygnału oraz opóźnień w odpowiedzi układu. Kluczowe jest zrozumienie równania, które łączy te elementy, a także praktyczne zastosowanie tej wiedzy w projektowaniu filtrów, aby zapewnić ich właściwe działanie i zgodność z wymaganiami aplikacji elektronicznych.

Pytanie 34

Urządzenie, które automatycznie przerywa zasilanie, gdy prąd elektryczny wypływający z obwodu różni się od prądu wpływającego, to

A. ochronnik przeciwprzepięciowy
B. bezpiecznik wymienny
C. wyłącznik różnicowoprądowy
D. wyłącznik nadmiarowoprądowy
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które monitoruje różnice między prądem wpływającym a wypływającym z obwodu elektrycznego. Gdy ta różnica przekracza ustalony próg, wyłącznik automatycznie odcina zasilanie, co ma na celu ochronę przed porażeniem prądem oraz pożarami spowodowanymi uszkodzeniem izolacji. Przykłady zastosowania obejmują instalacje w łazienkach, kuchniach oraz w miejscach, gdzie występuje zwiększone ryzyko kontaktu z wodą. Zgodnie z normami IEC 61008, RCD powinny być stosowane w obwodach o napięciu do 400 V, szczególnie w miejscach publicznych i mieszkalnych. Stosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, a ich regularne testowanie jest zalecane przez przepisy budowlane oraz normy bezpieczeństwa.

Pytanie 35

Podczas pomiaru napięcia UCE spoczynkowego punktu pracy tranzystora m.cz. woltomierzem analogowym CE o podziałce 100 działek ustawionym na zakresie 0,3 V wskazówka wskazuje 80 działek. Ile wynosi wartość mierzonego napięcia?

Ilustracja do pytania
A. 240 mV
B. 120 mV
C. 60 mV
D. 180 mV
W przypadku niepoprawnych odpowiedzi, takich jak 120 mV, 60 mV czy 180 mV, można zaobserwować typowe błędy w rozumieniu zasad funkcjonowania woltomierzy analogowych. Często zdradza to niepoprawne podejście do konwersji jednostek oraz nieprawidłowe obliczenia wartości działek. Na przykład, przy obliczeniach niektórzy mogą pomylić zakres pomiarowy lub stosować niewłaściwe przeliczniki. Przy 120 mV mogło dojść do założenia, że każda działka to 1 mV, co jest błędne, ponieważ wartość każdej działki wynosi 3 mV. Z kolei 60 mV mogło wyniknąć z błędnego pomnożenia 20 działek zamiast 80, co również jest fundamentalnym błędem w odczycie. W przypadku 180 mV, można zauważyć, że osoba odpowiadająca mogła zinterpretować zakres woltomierza jako 0,18 V zamiast 0,3 V, co skutkowałoby nieprawidłowym odczytem. Kluczowe jest zrozumienie, że precyzyjne pomiary wymagają nie tylko umiejętności matematycznych, ale także głębokiego zrozumienia instrumentów pomiarowych i ich zakresów działania. W praktyce inżynieryjnej, błędy tego rodzaju mogą prowadzić do poważnych konsekwencji w analizie układów elektronicznych, dlatego niezbędna jest skrupulatność w interpretacji wyników oraz znajomość zasad pomiarowych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. resetuje się.
B. nie wraca do tego stanu, oscyluje.
C. wyłącza się automatycznie.
D. sam wraca do tego stanu.
Stabilność układu automatycznej regulacji jest kluczowym parametrem, zapewniającym, że po zakłóceniu układ powróci do stanu równowagi. Odpowiedź, że układ "sam powraca do tego stanu", odnosi się do właściwości układów stabilnych, w których reakcja na zakłócenie prowadzi do minimalizacji odchyleń od ustalonej wartości. Przykładem zastosowania tego zjawiska są systemy termostatyczne, w których temperatura pomieszczenia regulowana jest automatycznie, a po przywróceniu właściwych warunków, temperatura wraca do zadanej wartości. W praktyce oznacza to, że układy takie, jak regulatory PID (Proporcjonalno- całkująco- różniczkujące), są projektowane zgodnie z zasadami stabilności, co pozwala na efektywne zarządzanie różnorodnymi procesami przemysłowymi. W standardach, takich jak IEC 61508, podkreśla się znaczenie stabilności w kontekście bezpieczeństwa funkcjonalnego, co dodatkowo zwiększa wagę tego zagadnienia w inżynierii automatyki.

Pytanie 40

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaka jest wartość częstotliwości granicznej filtru o tej charakterystyce?

Ilustracja do pytania
A. 100 Hz
B. 1 kHz
C. 10 Hz
D. 10 kHz
Częstotliwość graniczna filtru to kluczowy parametr w analizie systemów filtracyjnych, definiowany jako wartość częstotliwości, przy której sygnał jest tłumiony o 3 dB w stosunku do poziomu maksymalnego przepuszczanego przez filtr. W kontekście zaprezentowanego wykresu, tłumienie zaczyna znacząco wzrastać po osiągnięciu częstotliwości 1 kHz. Taki punkt jest niezwykle istotny w projektowaniu filtrów, ponieważ pozwala na określenie zakresu częstotliwości, w którym filtr skutecznie działa. W praktyce, odpowiednia znajomość częstotliwości granicznych jest nieoceniona w takich dziedzinach jak telekomunikacja, audio, czy inżynieria sygnałowa, gdzie jakość sygnału jest kluczowa. Na przykład, w systemach audio, odpowiedni dobór częstotliwości granicznej pozwala na efektywne odfiltrowanie niepożądanych zakłóceń, co przekłada się na lepszą jakość dźwięku. Dobrą praktyką jest również wykonanie analizy impedancji w pobliżu częstotliwości granicznej, aby zapewnić optymalne dopasowanie i minimalizację strat sygnału. Zrozumienie tego konceptu jest fundamentalne dla inżynierów zajmujących się projektowaniem i optymalizacją systemów filtracyjnych.